首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 898 毫秒
1.
1. The activities of acyl-CoA hydrolase, catalase, urate oxidase and peroxisomal palmitoyl-CoA oxidation as well as the protein content and the level of CoASH and long-chain acyl-CoA were measured in subcellular fractions of liver from rats fed diets containing phenobarbital (0.1% w/w) or clofibrate (0.3% w/w). 2. Whereas phenobarbital administration resulted in increased microsomal protein, the clofibrate-induced increase was almost entirely attributed to the mitochondrial fraction with minor contribution from the light mitochondrial fraction. 3. The specific activity of palmitoyl-CoA hydrolase in the microsomal fraction was only slightly affected while the mitochondrial enzyme was increased to a marked extent (3-4-fold) by clofibrate. 4. Phenobarbital administration mainly enhanced the microsomal palmitoyl-CoA hydrolase. 5. The increased long-chain acyl-CoA and CoASH level observed after clofibrate treatment was mainly associated with the mitochondrial, light mitochondrial and cytosolic fractions, while the slight increase in the levels of these compounds found after phenobarbital feeding was largely of microsomal origin. 6. The findings suggest that there is an intraperoxisomal CoASH and long-chain acyl-CoA pool. 7. The specific activity of palmitoyl-CoA hydrolase, catalase and peroxisomal palmitoyl-CoA oxidation was increased in the lipid-rich floating layer of the cytosol-fraction. 8. The changes distribution of the peroxisomal marker enzymes and microsomal palmitoyl-CoA hydrolase after treatment with hypolipidemic drugs may be related to the origin of peroxisomes.  相似文献   

2.
The present study has confirmed previous findings of long-chain acyl-CoA hydrolase activities in the mitochondrial and microsomal fractions of the normal rat liver. In addition, experimental evidence is presented in support of a peroxisomal localization of long-chain acyl-CoA hydrolase activity. (a) Analytical differential centrifugation of homogenates from normal rat liver revealed that this activity (using palmitoyl-CoA as the substrate) was also present in a population of particles with an average sedimentation coefficient of 6740 S, characteristic of peroxisomal marker enzymes. (b) The subcellular distribution of the hydrolase activity was greatly affected by administration of the peroxisomal proliferators clofibrate and tiadenol. The specific activity was enhanced in the mitochondrial fraction and in a population of particles with an average sedimentation coefficient of 4400 S, characteristic of peroxisomal marker enzymes. Three populations of particles containing lysosomal marker enzymes were found by analytical differential centrifugation, both in normal and clofibrate-treated rats. Our data do not support the proposal that palmitoyl-CoA hydrolase and acid phosphatase belong to the same subcellular particles. In livers from rats treated with peroxisomal proliferators, the specific activity of palmitoyl-CoA hydrolase was also enhanced in the particle-free supernatant. Evidence is presented that this activity at least in part, is related to the peroxisomal proliferation.  相似文献   

3.
The effects of two peroxisome proliferators, p-chlorophenoxyisobutyric acid (clofibric acid) and 2,2'-(decamethylenedithio)diethanol (tiadenol), on cytosolic long-chain acyl-CoA hydrolase and peroxisomal beta-oxidation were studied in several organs of rat. Among organs of control rats, the brain had the highest activity of long-chain acyl-CoA hydrolase, followed by testis, and a low activity was found in other tissues. Administration of the peroxisome proliferators caused a marked increase in activity of long-chain acyl-CoA hydrolase in both liver and intestinal mucosa and a slight increase in the activity in kidney, but little affected acyl-CoA hydrolase activity in either brain, testis, heart, spleen and skeletal muscle. In accordance with the change in the activity of acyl-CoA hydrolase, the activity of peroxisomal beta-oxidation was markedly increased in liver, intestinal mucosa and kidney, and a slight increase was found in brain and testis, whereas peroxisome proliferators little affected the activity in other organs tested. Gel filtration of cytosol from intestinal mucosa showed that clofibric acid caused an appearance of a new peak in intestinal mucosa. Although cytosol of liver, intestinal mucosa, brain and testis contained two 4-nitrophenyl acetate esterases with different molecular weights (about 105,000 and about 55,000), these esterases are different from cytosolic long-chain acyl-CoA hydrolases of these four organs in respect of molecular weight. The administration of clofibric acid little affected cytosolic 4-nitrophenyl acetate esterases. Comparative studies on cytosolic long-chain acyl-CoA hydrolases from these four organs showed that liver hydrolase I (molecular weight of about 80,000) had properties similar to those of brain and testis enzymes. On the other hand, intestinal mucosa enzyme was different from either hepatic hydrolase I or II (molecular weight of about 40,000). The results from the present study suggest that inductions of peroxisomal beta-oxidation and cytosolic long-chain acyl-CoA hydrolases are essential responses of rats to peroxisome proliferators not only in liver but also in intestinal mucosa and that induced hydrolases are not attributable to non-specific esterases.  相似文献   

4.
1. Medium-chain acyl-CoA hydrolase activities were determined in liver from control and valproate-fed rats and rabbits. 2. Octanoyl-CoA was readily hydrolyzed by all control liver preparations. 3. Animals that had been fed diets containing 0.5 or 1.0% (w/w) valproic acid had significantly elevated octanoyl-CoA hydrolase activities. 4. The CoA ester of valproic acid, a branched-chain isomer of octanoic acid, was poorly hydrolyzed by liver preparations from both control and valproate-fed animals. 5. Livers from the valproate-fed animals contained high levels of medium-chain acyl-CoA; total CoA content was also increased. 6. The inefficiency of hepatic valproyl-CoA hydrolysis may play a role in the toxicity of valproic acid.  相似文献   

5.
Data obtained in earlier studies with rats fed diets containing high doses of peroxisome proliferators (niadenate, tiadenol, clofibrate, or nitotinic acid) are used to look for a quantitative relationship between peroxisomal beta-oxidation, palmitoyl-CoA hydrolase, palmitoyl-CoA synthetase and carnitine palmitoyltransferase activities, and the cellular concentration of their substrate and reaction products. The order of the hyperlipidemic drugs with regard to their effect on CoA derivatives and enzyme activities was niadenate greater than tiadenol greater than clofibrate greater than nicotinic acid. Linear regression analysis of long-chain acyl-CoA content versus palmitoyl-CoA hydrolase and peroxisomal beta-oxidation activity showed highly significant linear correlations both in the total liver homogenate and in the peroxisome-enriched fractions. A dose-response curve of tiadenol showed that carnitine palmitoyltransferase and palmitoyl-CoA synthetase activities and the ratio of long-chain acyl-CoA to free CoASH in total homogenate rose at low doses before detectable changes occurred in the peroxisomal beta-oxidation and palmitoyl-CoA hydrolase activity. A plot of this ratio parallelled the palmitoyl-CoA synthetase activity. The specific activity of microsomally localized carnitine palmitoyl-transferase was low and unchanged up to a dose where no enhanced peroxisomal beta-oxidation was observed, but over this dose the activity increased considerably so that the specific of the enzyme in the mitochondrial and microsomal fractions became comparable. The mitochondrial palmitoyl-CoA synthetase activity decreased gradually. The correlations may be interpreted as reflecting a common regulation mechanism for palmitoyl-CoA hydrolase and peroxisomal beta-oxidation enzymes, i.e., the cellular level of long-chain acyl-CoA acting as the metabolic message for peroxisomal proliferation resulting in induction of peroxisomal beta-oxidation and palmitoyl-CoA hydrolase activity. The findings are discussed with regard to their possible consequences for mitochondrial fatty acid oxidation and the conversion of long-chain acyl-L-carnitine to acyl-CoA derivatives.  相似文献   

6.
The ability of purified rat liver and heart fatty acid binding proteins to bind oleoyl-CoA and modulate acyl-CoA synthesis by microsomal membranes was investigated. Using binding assays employing either Lipidex 1000 or multilamellar liposomes to sequester unbound ligand, rat liver but not rat heart fatty acid binding protein was shown to bind radiolabeled acyl CoA. Binding studies suggest that liver fatty acid binding protein has a single binding site acyl-CoA which is separate from the two binding sites for fatty acids. Experiments were then performed to determine how binding may influence acyl-CoA metabolism by liver microsomes or heart sarcoplasmic reticulum. Using liposomes as fatty acid donors, liver fatty acid binding protein stimulated acyl-CoA production, whereas that from heart did not stimulate production over control values. 14C-labeled fatty acid-fatty acid binding protein complexes were prepared, incubated with membranes, and acyl-CoA synthetase activity was determined. Up to 70% of the fatty acid could be converted to acyl-CoA in the presence of liver fatty acid binding protein but in the presence of heart fatty acid binding protein, only 45% of the fatty acid was converted. Liver but not heart fatty acid binding protein bound the acyl-CoA formed and removed it from the membranes. The amount of product formed was not changed by additional membrane, enzyme cofactors, or incubation time. Additional liver fatty acid binding protein was the only factor found that stimulated product formation. Acyl-CoA hydrolase activity was also shown in the absence of ATP and CoA. These studies suggest that liver fatty acid binding protein can increase the amount of acyl-CoA by binding this ligand, thereby removing it from the membrane and possibly aiding transport within the cell.  相似文献   

7.
The subcellular localizations of carnitine acyltransferase and acyl-CoA hydrolase activities with different chain-length substrates were quantitatively evaluated in human liver by fractionation of total homogenates in metrizamide density gradients and by differential centrifugation. Peroxisomes were found to contain 8-37% of the liver acyltransferase activity, the relative amount depending on the chain length of the substrate. The remaining activity was ascribed to mitochondria, except for carnitine octanoyltransferase, for which 25% of the activity was present in microsomal fractions. In contrast with rat liver, where the activity in peroxisomes is very low or absent, human liver peroxisomes contain about 20% of the carnitine palmitoyltransferase. Short-chain acyl-CoA hydrolase activity was found to be localized mainly in the mitochondrial and soluble compartments, whereas the long-chain activity was present in both microsomal fractions and the soluble compartment. Particle-bound acyl-CoA hydrolase activity for medium-chain substrates exhibited an intermediate distribution, in mitochondria and microsomal fractions, with 30-40% of the activity in the soluble fraction. No acyl-CoA hydrolase activity appears to be present in human liver peroxisomes.  相似文献   

8.
In this paper we describe the identification of pristanoyl-CoA oxidase activity in rat liver peroxisomes. This activity was not stimulated by clofibrate feeding. Furthermore, the activity was found in multiple tissues. These results show that pristanoyl-CoA oxidase is different from any of the known oxidases which include a clofibrate-inducible acyl-CoA oxidase and the recently identified cholestanoyl-CoA oxidase. Gelfiltration and chromatofocusing experiments provide conclusive evidence that we are dealing with a novel acyl-CoA oxidase with a unique function in peroxisomal beta-oxidation.  相似文献   

9.
The in vivo oxidation of perfused [14C]-labeled fatty acids has been shown to decrease dramatically in hypoxic hearts. This study addresses the influence of ischemia and reperfusion on the enzymic activities of beta-oxidation of fatty acids in mitochondria and of peroxisomal origin. The rate of beta-oxidation of fatty acids in the isolated mitochondria from myocardium of swine fed control diet declined about 20% by the ischemic insult induced by hypothermic cardioplegic arrest. Upon reperfusion, the rate of mitochondrial beta-oxidation returned to a normal level. In clofibrate-fed animals, the rate of mitochondrial beta-oxidation did not vary significantly between control, ischemic, and perfused tissues. Furthermore, neither in control nor in clofibrate-fed animals did the rates of peroxisomal beta-oxidation of fatty acids vary significantly in the ischemic or reperfused tissues as compared to that of preischemic controls. These results suggest that ischemia does not contribute to any loss of enzymic activity in beta-oxidation of fatty acid cycles either in mitochondria or peroxisomes. Furthermore, the feeding of 0.5% (w/w) clofibrate to pigs increased the rate of mitochondrial beta-oxidation of fatty acids only by 50% while that of peroxisomes increased threefold. A similar threefold increase in catalase activity was also produced by clofibrate feeding. These results suggest that the heart plays a role in the hypolipidemic action of clofibrate.  相似文献   

10.
Catalase activity and peroxisomal and mitochondrial palmitate oxidation have been investigated in cardiac and skeletal muscle from rats fed clofibrate, ciprofibrate or nafenopin in an unrefined diet for different periods of time. Nafenopin was also added to either a high carbohydrate (70% of kilocalories from glucose) or high fat (70% of kilocalories from lard) diet and fed to rats for either 1 or 3 weeks. Catalase activity was elevated in all muscles from rats fed the hypolipidemic drugs. The response of catalase activity in muscle to clofibrate was dose-dependent. The response time of catalase activity was different in individual muscles. Peroxisomal palmitate oxidation was elevated in the heart and soleus muscle from rats fed nafenopin in either the high-carbohydrate or the high-fat diet. There was no change in peroxisomal palmitate oxidation in psoas or extensor digitorum longus muscle from rats fed the drugs. Mitochondrial palmitate oxidation was only slightly increased by nafenopin in the heart and soleus muscles after 3 weeks of nafenopin feeding. The results suggest that the cardiac muscle, like the liver, responds to hypolipidemic drug treatment with an increase in peroxisomal fat oxidation. The skeletal muscle response is less specific and that tissue may not contribute to the hypolipidemic effect of the drugs. The findings also suggest that these drugs do not induce peroxisome proliferation in skeletal muscle.  相似文献   

11.
We studied the fatty acyl-CoA binding activity of rat liver peroxisomes. After subcellular fractionation of rat liver treated with or without clofibrate, a peroxisome proliferator, the binding activity with [1-(14)C]palmitoyl-CoA was detected in the light mitochondrial fraction in addition to the mitochondrial and cytosol fractions. After Nycodenz centrifugation of the light mitochondrial fraction, the binding activity was detected in peroxisomes. The peroxisomal activity depended on the incubation temperature and peroxisome concentration. The activity also depended on the concentration of 2-mercaptoethanol, and a plateau of activity was unexpectedly found at 2-mercaptoethanol concentrations from 20 to 40 mM. Clofibrate increased the total and specific activity of the fatty acyl-CoA binding of peroxisomes by 7.9 and 2.5 times compared with the control, respectively. In the presence of 20% glycerol at 0 degree C, approximately 90% of the binding activity was maintained for up to at least 3 wk. After successive treatment with an ultramembrane Amicon YM series, about 70% of the binding activity was detected in the M.W. 30,000-100,000 fraction. When the M.W. 30,000-100,000 fraction was added to the incubation mixture of the peroxisomal fatty acyl-CoA beta-oxidation system, a slight increase in the beta-oxidation activity was found. 2-Mercaptoethanol (20 mM) significantly activated the fatty acyl-CoA beta-oxidation system to 1.4 times control. After gel filtration of the M.W. 30,000-100,000 fraction, the peaks of fatty acyl-CoA binding protein showed broad elution profiles from 45,000 to 75,000. These results suggest that fatty acyl-CoA binding activity can be detected directly in peroxisomes and is increased by peroxisome proliferators. The high binding activity in the presence of higher concentrations of 2-mercaptoethanol indicates the importance of the SH group for binding. The apparent molecular weight of the binding protein may be from 45,000 to 75,000.  相似文献   

12.
Rats were maintained on a riboflavin-deficient diet or on a diet containing clofibrate (0.5%, w/w). The activities of the mitochondrial FAD-dependent straight-chain acyl-CoA dehydrogenases (butyryl-CoA, octanoyl-CoA and palmitoyl-CoA) and the branched-chain acyl-CoA dehydrogenases (isovaleryl-CoA and isobutyryl-CoA) involved in the degradation of branched-chain acyl-CoA esters derived from branched-chain amino acids were assayed in liver mitochondrial extracts prepared in the absence and presence of exogenous FAD. These activities were low in livers from riboflavin-deficient rats (11, 28, 16, 6 and less than 2% of controls respectively) when prepared in the absence of exogenous FAD, and were not restored to control values when prepared in 25 microM-FAD (29, 47, 28, 7 and 17%). Clofibrate feeding increased the activities of butyryl-CoA, octanoyl-CoA and palmitoyl-CoA dehydrogenases (by 48, 116 and 98% of controls respectively), but not, by contrast, the activities of isovaleryl-CoA and isobutyryl-CoA dehydrogenases (62 and 102% of controls respectively). The mitochondrial fractions from riboflavin-deficient and from clofibrate-fed rats oxidized palmitoylcarnitine in State 3 at rates of 32 and 163% respectively of those from control rats.  相似文献   

13.
Male albino rats (Sprague Dawley) were fed for 2-6 weeks on a diet containing 0.75% clofibrate. Liver cell fractions obtained from these animals were assayed for peroxisomal enzymes. In the cell homogenate the catalase activity was doubled, whereas the activity of urate oxidase was found to be only slightly depressed. The activity of carnitine acetyltransferase increased several times. In liver peroxisomes purified by isopycnic gradient centrifugation the specific activity of urate oxidase decreased appreciably showing that peroxisomes formed under the proliferative influence of clofibrate are not only modified with respect to their morphological characteristics but also to their enzymic equipment. This is also obvious from the changes in peroxisomal carnitine acetyltransferase activity which was enhanced by clofibrate to more than the fivefold amount. In purified mitochondria this enzyme was even more active: clofibrate advances both, the peroxisomal and the mitochondrial moiety of carnitine acetyltransferase. Morphological and cytochemical studies showed an increase in the number of microbodies and as compared to the controls microbodies were lying in groups more frequently. Small particles located closely adjacent to "normal" sized peroxisomes were found particularly after short feeding periods. While the number of coreless microbodies increased studies gave no clear evidence for an increase in marked shape irregularities of the peroxisomes.  相似文献   

14.
The role of peroxisome proliferator-activated receptor alpha (PPARalpha)-stimulated phospholipase A2 (PLA2) in cardiac mitochondrial cardiolipin (CL) biosynthesis was examined in both in vivo and in vitro models. Treatment of rat heart H9c2 cells with clofibrate increased the expression and activity of 14 kDa PLA2 but did not affect the pool size of CL. Clofibrate treatment stimulated de novo CL biosynthesis via an increase in phosphatidylglycerolphosphate (PGP) synthase activity, accounting for the unaltered CL content. Cardiac PLA2, PGP synthase, and CDP-1,2-diacyl-sn-glycerol synthase (CDS-2) activities and CDS-2 mRNA levels were elevated in mice fed clofibrate for 14 days compared with controls. In PPARalpha-null mice, clofibrate feeding did not alter cardiac PLA2, PGP synthase activities, or CDS-2 activity and mRNA level, confirming that these enzymes are regulated by PPARalpha activation. In contrast to mouse heart, clofibrate treatment did not affect the activity or mRNA levels of CDS-2 in H9c2 cells, indicating that CDS-2 is regulated differently in rat heart H9c2 cells in vitro and in mouse heart in vivo. These results clearly indicate that cardiac CL de novo biosynthesis is stimulated by PPARalpha activation in responsive rodent models and that CDS-2 is an example of an enzyme that exhibits alternative regulation in vivo and in cultured cell lines. This study is the first to demonstrate that CL de novo biosynthesis is regulated by PPARalpha activation.  相似文献   

15.
Lei Z  Chen W  Zhang M  Napoli JL 《Biochemistry》2003,42(14):4190-4196
The mouse liver 16,000 g fraction, which contains peroxisomes, reduces all-trans-retinal, but has limited ability to dehydrogenate retinol enzymatically. Feeding mice for 2 weeks with a diet containing clofibrate (0.5%, w/w), a PPAR alpha ligand and peroxisome proliferator, increased the 16,000 g fraction approximately 2-fold in protein, approximately 2-fold in specific activity of retinal reduction, and approximately 4-fold in retinal reductase units compared to controls, and caused a 50% decrease in liver retinol. An increase in both reductase specific activity and units indicates that clofibrate/PPAR alpha induced expression of retinal-reducing enzymes(s), in addition to increasing reductase(s) content. We expressed a cDNA from the NCBI data bank that encodes a peroxisome short-chain dehydrogenase/reductase. The enzyme, mouse retinal reductase (RRD, also known as human 2,4-dienoyl-CoA reductase), reduces all-trans-retinal [V(m) = 40 nmol min(-1) (mg of protein)(-1); K(0.5) = 2.3 microM] and has 4- and 60-fold less activity with 13-cis-retinal and 9-cis-retinal, respectively. Recombinant RRD functions with both unbound and CRBP(I) (cellular retinol-binding protein)-bound retinal, but apo-CRBP(I) inhibits the reductase. RRD mRNA expression was initiated on embryo day 7. Most adult tissues assayed expressed the mRNA. Liver, kidney, and heart had the most intense expression, with much less intense expression in brain, spleen, and lung. Clofibrate feeding increased the amount of RRD protein in the 16,000 g fraction of liver, consistent with the clofibrate-induced increase in reductase activity. These data relate retinoid metabolism, PPAR alpha, peroxisomes, and RRD, and are consistent with a further function of CRBP(I) in retinoid metabolism.  相似文献   

16.
The effects of feeding the peroxisome proliferators ciprofibrate (a hypolipidaemic analogue of clofibrate) or POCA (2-[5-(4-chlorophenyl)pentyl]oxirane-2-carboxylate) (an inhibitor of CPT I) to rats for 5 days on the distribution of carnitine and acylcarnitine esters between liver, plasma and muscle and on hepatic CoA concentrations (free and acylated) and activities of carnitine acetyltransferase and acyl-CoA hydrolases were determined. Ciprofibrate and POCA increased hepatic [total CoA] by 2 and 2.5 times respectively, and [total carnitine] by 4.4 and 1.9 times respectively, but decreased plasma [carnitine] by 36-46%. POCA had no effect on either urinary excretion of acylcarnitine esters or [acylcarnitine] in skeletal muscle. By contrast, ciprofibrate decreased [acylcarnitine] and [total carnitine] in muscle. In liver, ciprofibrate increased the [carnitine]/[CoA] ratio and caused a larger increase in [acylcarnitine] (7-fold) than in [carnitine] (4-fold), thereby increasing the [short-chain acylcarnitine]/[carnitine] ratio. POCA did not affect the [carnitine]/[CoA] and the [short-chain acylcarnitine]/[carnitine] ratios, but it decreased the [long-chain acylcarnitine]/[carnitine] ratio. Ciprofibrate and POCA increased the activities of acyl-CoA hydrolases, and carnitine acetyltransferase activity was increased 28-fold and 6-fold by ciprofibrate and POCA respectively. In cultures of hepatocytes, ciprofibrate caused similar changes in enzyme activity to those observed in vivo, although [carnitine] decreased with time. The results suggest that: (1) the reactions catalysed by the short-chain carnitine acyltransferases, but not by the carnitine palmitoyltransferases, are near equilibrium in liver both before and after modification of metabolism by administration of ciprofibrate or POCA; (2) the increase in hepatic [carnitine] after ciprofibrate or POCA feeding can be explained by redistribution of carnitine between tissues; (3) the activity of carnitine acetyltransferase and [total carnitine] in liver are closely related.  相似文献   

17.
Total RNAs from the livers of rats treated with clofibrate and partially hydrogenated marine oil (PHMO) were translated in a reticulocyte-lysate cell-free protein-synthesizing system. In clofibrate-treated rats, mRNA activity for acyl-CoA oxidase (AO), the rate-limiting enzyme of the peroxisomal beta-oxidation system, was increased markedly compared with the control, whereas the increase was less than 2-fold in PHMO-treated rats. When rats were treated with both clofibrate and PHMO in vivo, an additional increase in the hepatic AO activity was observed compared with either treatment alone, suggesting that increases in the activities of peroxisomal beta-oxidation in the rats treated with clofibrate and PHMO are based on two distinct mechanisms.  相似文献   

18.
1. Fat feeding (soybean oil or erucic acid-rich rape-seed oil) enhance after 2 to 7 days the palmitoyl-CoA hydrolase activity in the heart of weanling rats in a degree dependent on the content of fat in the diet. 2. The rise in enzyme activity between the 7th and 14th day of feeding, observed only in rats fed on rape-seed oil, coincides with the decrease in lipid infiltration in the heart. 3. The obtained results suggest that palmitoyl-CoA hydrolase may control in the heart the amount of acyl-CoA thioesters in the cell, thus decreasing the lipidosis induced by eurcic acid.  相似文献   

19.
Oscar R. Fuentes 《Life sciences》1978,23(20):2039-2044
The effects of a fat-supplemented diet and clofibrate (ethylchlorophenoxyisobutirate) upon serum lipids and liver catalase activity were studied in male rats. A butter-supplemented diet produced a striking increase of serum triglycerides but did not affect the liver catalase activity. Cholesterol (1%, w/w), added to the butter supplemented diet markedly increased liver catalase activity. This diet produced a hypercholesterolemic state higher than that induced by a butter-supplemented diet only, although the hypertriglyceridemic effect was less pronounced. Clofibrate given a butter-supplemented diet produced a marked increase of liver catalase activity (about four-fold). When clofibrate is administered with the cholesterol-supplemented diet, the increment observed in the liver catalase activity was the same as that induced with the cholesterol supplemented diet alone. Clofibrate, in either lipid-rich diet, failed to induce a hypocholesterolemic response, although a clear hypotrigliceridemic effect was evident. This effect appears to be potentiated with clofibrate and the cholesterol supplemented diet. Thus the increment in liver catalase activity induced by dietary cholesterol and clofibrate seems to be related to a hypotriglyceridemic effect which gives support to a role of liver peroxisomes in lipid metabolism. The role that liver catalase would play, in this regard, remains unclear from these results.  相似文献   

20.
Digitonin permeabilization of hepatocytes from control and clofibrate-treated (0.5% by mass, 10 days) male C57bl/6 mice was used to study the intracellular distributions of soluble ('cytosolic') epoxide hydrolase and of catalase. The following conclusions were drawn. (1) About 60% of the total soluble epoxide hydrolase activity in control mouse hepatocytes is situated in the cytosol. (2) The rest is not mitochondrial, but probably peroxisomal. (3) Of the total catalase activity in control mouse hepatocytes, 5-10% is found in the cytosol. (4) Treatment of mice with clofibrate increases the total hepatocyte activity of soluble epoxide hydrolase 4-fold, but does not influence the relative distribution of this enzyme between cytosol and peroxisomes. (5) The total catalase activity is increased 3.5-fold by clofibrate treatment and 15-35% of this activity is shifted from the peroxisomes to the cytosol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号