首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expansion of mouse embryonic stem cells on microcarriers   总被引:1,自引:0,他引:1  
Embryonic stem (ES) cells have been shown to differentiate in vitro into a wide variety of cell types having significant potential for tissue regeneration. Therefore, the operational conditions for the ex vivo expansion and differentiation should be optimized for large-scale cultures. The expansion of mouse ES cells has been evaluated in static culture. However, in this system, culture parameters are difficult to monitor and scaling-up becomes time consuming. The use of stirred bioreactors facilitates the expansion of cells under controlled conditions but, for anchorage-dependent cells, a proper support is necessary. Cytodex-3, a microporous microcarrier made up of a dextran matrix with a collagen layer at the surface, was tested for its ability to support the expansion of the mouse S25 ES cell line in spinner flasks. The effect of inocula and microcarrier concentration on cell growth and metabolism were analyzed. Typically, after seeding, the cells exhibited a growth curve consisting of a short death or lag phase followed by an exponential phase leading to the maximum cell density of 2.5-3.9 x 10(6) cells/mL. Improved expansion was achieved using an inoculum of 5 x 10(4) cells/mL and a microcarrier concentration of 0.5 mg/mL. Medium replacement allowed the supply of the nutrients and the removal of waste products inhibiting cell growth, leading to the maintenance of the cultures in steady state for several days. These conditions favored the preservation of the S25 cells pluripotent state, as assessed by quantitative real-time PCR and immunostaining analysis.  相似文献   

2.
Beta-cell replacement therapy via islet transplantation has received renewed interest due to the recent improved success. In order to make such a therapy available to more than a few of the thousands of patients with diabetes, new sources of insulin-producing cells must be readily available. The most promising sources are stem cells, with efforts of deriving new beta-cells from both embryonic and adult stem cells. Several groups have reported generating insulin-producing cells from mouse embryonic stem cells. The strategies in the first two acclaimed reports were very different. One strategy, used by Soria's group, is gene trapping in which an introduced antibiotic resistance under the control of the insulin promoter allowed the selection of insulin-expressing cells that had spontaneously differentiated within embryoid bodies. Another strategy, used by McKay's group, manipulated culture conditions in a multistep protocol used for generating neural cells but with changed final conditions. Since these reports, there have been modifications of the protocols in efforts to improve the yields and maturity of the resulting cells. While it is unclear if the insulin-producing cells in any of these studies are truly mature beta-cells, these studies show the clear potential of embryonic stem cells and support optimism that similar results will be possible with human embryonic stem cells. We know that new beta-cells are generated throughout adult life, but the identity of adult pancreatic stem cells has been elusive. The potential for expansion and differentiation of pluripotent adult stem cells, whether from bone marrow or as non-pancreas tissue resident SP cells, is being explored but has not yet yielded insulin-producing tissue. In contrast, insulin-producing cells have been generated in vitro from adult pancreatic tissues. We have been examining the hypothesis that the functional source for new beta-cells in the adult pancreas are mature duct epithelial cells that have regressed or lost their mature phenotype after replication. Others have isolated putative stem cells from islets and ducts. For adult cells the issue of expansion as well as of differentiation is a question. The field of generating new beta-cells from stem cells, either embryonic or adult, is still in its infancy. Each new report has been met with a mixture of excitement and skepticism. With continued efforts and rigorous assessments, hopefully the potential of generating enough new beta-cells from stem cells will be realized.  相似文献   

3.
Glucagon-like peptide 1 (GLP-1) is an intestine-derived insulinotropic hormone that stimulates glucose-dependent insulin production and secretion from pancreatic beta-cells. Other recognized actions of GLP-1 are to suppress glucagon secretion and hepatic glucose output, delay gastric emptying, reduce food intake, and promote glucose disposal in peripheral tissues. All of these actions are potentially beneficial for the treatment of type 2 diabetes mellitus. Several GLP-1 agonists are in clinical trials for the treatment of diabetes. More recently, GLP-1 agonists have been shown to stimulate the growth and differentiation of pancreatic beta-cells, as well as to exert cytoprotective, antiapoptotic effects on beta-cells. Recent evidence indicates that GLP-1 agonists act on receptors on pancreas-derived stem/progenitor cells to prompt their differentiation into beta-cells. These new findings suggest an approach to create beta-cells in vitro by expanding stem/progenitor cells and then to convert them into beta-cells by treatment with GLP-1. Thus GLP-1 may be a means by which to create beta-cells ex vivo for transplantation into patients with insulinopenic type 1 diabetes and severe forms of type 2 diabetes.  相似文献   

4.
Type 1 diabetes mellitus has received much attention recently as a potential target for the emerging science of stem cell medicine. In this autoimmune disease, the insulin-secreting beta-cells of the pancreas are selectively and irreversibly destroyed by autoimmune assault. Advances in islet transplantation procedures now mean that patients with the disease can be cured by transplantation of primary human islets of Langerhans. A major drawback in this therapy is the availability of donor islets, and the search for substitute transplant tissues has intensified in the last few years. This review will describe the essential requirements of a material designed as a replacement beta-cell and will look at the potential sources of such replacements. These include embryonic stem (ES) cells and multipotent adult stem/progenitor cells from a range of tissues including the pancreas, intestine, liver, bone marrow and brain. These stem cell populations will be evaluated and the different experimental approaches that have been employed to derive functional insulin-expressing cells will be discussed. The review will also look at the capability of human ES (hES) cells generated by somatic cell nuclear transfer and some adult stem cell populations such as bone marrow-derived stem cells, to offer autologous transplant material that would remove the need for immunosuppression. In patients with Type 1 diabetes, auto-reactive T-cells are programmed to recognise the insulin-producing beta-cells. As a result, for therapeutic replacement tissues, it may be more sensible to derive cells that behave like beta-cells but are immunologically distinct. Thus, the potential of cells derived from non-beta-cell origin to avoid the autoimmune response will also be discussed. Finally, the review will summarise the future prospects for stem cell therapies for diabetes and will highlight some of the problems that may be faced by researchers working in this area, such as malignancy, irreproducible differentiation strategies, immune-system rejection and social and ethical concerns over the use of hES cells.  相似文献   

5.
Though cardiac progenitor cells should be a suitable material for cardiac regeneration, efficient ways to induce cardiac progenitors from embryonic stem (ES) cells have not been established. Extending our systematic cardiovascular differentiation method of ES cells, here we show efficient and specific expansion of cardiomyocytes and highly cardiogenic progenitors from ES cells. An immunosuppressant, cyclosporin-A (CSA), showed a novel effect specifically acting on mesoderm cells to drastically increase cardiac progenitors as well as cardiomyocytes by 10-20 times. Approximately 200 cardiomyocytes could be induced from one mouse ES cell using this method. Expanded progenitors successfully integrated into scar tissue of infracted heart as cardiomyocytes after cell transplantation to rat myocardial infarction model. CSA elicited specific induction of cardiac lineage from mesoderm in a novel mesoderm-specific, NFAT independent fashion. This simple but efficient differentiation technology would be extended to induce pluripotent stem (iPS) cells and broadly contribute to cardiac regeneration.  相似文献   

6.
In view of the recent success in pancreatic islet transplantation, interest in treating diabetes by the delivery of insulin-producing beta-cells has been renewed. Because differentiated pancreatic beta-cells cannot be expanded significantly in vitro, beta-cell stem or progenitor cells are seen as a potential source for the preparation of transplantable insulin-producing tissue. In addition to embryonic stem (ES) cells, several potential adult islet/beta-cell progenitors, derived from pancreas, liver, and bone marrow, are being studied. To date, none of the candidate cells has been fully characterized or is clinically applicable, but pancreatic physiology makes the existence of one or more types of adult islet stem cells very likely. It also seems possible that pluripotential stem cells, derived from the bone marrow, contribute to adult islet neogenesis. In future studies, more stringent criteria should be met to clonally define adult islet/beta-cell progenitor cells. If this can be achieved, the utilization of these cells for the generation of insulin-producing beta-cells in vitro seems to be feasible in the near future.  相似文献   

7.
Identification and expansion of pancreatic stem/progenitor cells   总被引:4,自引:0,他引:4  
Pancreatic islet transplantation represents an attractive approach for the treatment of diabetes. However, the limited availability of donor islets has largely hampered this approach. In this respect, the use of alternative sources of islets such as the ex vivo expansion and differentiation of functional endocrine cells for treating diabetes has become the major focus of diabetes research. Adult pancreatic stem cells /progenitor cells have yet to be recognized because limited markers exist for their identification. While the pancreas has the capacity to regenerate under certain circumstances, questions where adult pancreatic stem/progenitor cells are localized, how they are regulated, and even if the pancreas harbors a stem cell population need to be resolved. In this article, we review the recent achievements both in the identification as well as in the expansion of pancreatic stem/progenitor cells.  相似文献   

8.
The identification of secreted factors that can selectively stimulate the generation of insulin producing beta-cells from stem and/or progenitor cells represent a significant step in the development of stem cell-based beta-cell replacement therapy. By elucidating the molecular mechanisms that regulate the generation of beta-cells during normal pancreatic development such putative factors may be identified. In the mouse, beta-cells increase markedly in numbers from embryonic day (e) 14.5 and onwards, but the extra-cellular signal(s) that promotes the selective generation of beta-cells at these stages remains to be identified. Here we show that the retinoic acid (RA) synthesizing enzyme Raldh1 is expressed in developing mouse and human pancreas at stages when beta-cells are generated. We also provide evidence that RA induces the generation of Ngn3(+) endocrine progenitor cells and stimulates their further differentiation into beta-cells by activating a program of cell differentiation that recapitulates the normal temporal program of beta-cell differentiation.  相似文献   

9.
10.
Generation of insulin-expressing cells from mouse embryonic stem cells   总被引:6,自引:0,他引:6  
The therapeutic potential of transplantation of insulin-secreting pancreatic beta-cells has stimulated interest in using pluripotent embryonic stem (ES) cells as a starting material from which to generate insulin secreting cells in vitro. Mature beta-cells are endodermal in origin so most reported differentiation protocols rely on the identification of endoderm-specific markers. However, endoderm development is an early event in embryogenesis that produces cells destined for the gut and associated organs in the embryo, and for the development of extra-embryonic structures such as the yolk sac. We have demonstrated that mouse ES cells readily differentiate into extra-embryonic endoderm in vitro, and that these cell populations express the insulin gene and other functional elements associated with beta-cells. We suggest that the insulin-expressing cells generated in this and other studies are not authentic pancreatic beta-cells, but may be of extra-embryonic endodermal origin.  相似文献   

11.
The basic helix-loop-helix protein Neurogenin3 specifies precursor cells of the endocrine pancreas during embryonic development, and is thought to be absent postnatally. We have studied Ngn3 expression during in vitro generation of beta-cells from adult rat exocrine pancreas tissue treated with epidermal growth factor and leukaemia inhibitory factor. This treatment induced a transient expression of both Ngn3 and its upstream activator hepatocyte nuclear factor 6. Inhibition of EGF and LIF signalling by pharmacological antagonists of the JAK2/STAT3 pathway, or knockdown of Ngn3 by RNA interference prevented the generation of new insulin-positive cells. This study demonstrates that in vitro growth factor stimulation can induce recapitulation of an embryonic endocrine differentiation pathway in adult dedifferentiated exocrine cells. This could prove to be important for understanding the mechanism of beta-cell regeneration and for therapeutic ex vivo neogenesis of beta cells.  相似文献   

12.
Regeneration therapy of pancreatic beta cells: towards a cure for diabetes?   总被引:5,自引:0,他引:5  
Regeneration therapy is an approach which could potentially move us towards a cure for type 1 diabetes. It is classified into three categories: (1) In vitro regeneration therapy using transplanted cultured cells, including ES cells, pancreatic stem cells, and beta-cell lines, in conjunction with immunosuppressive therapy or immunoisolation. (2) In ex vivo regeneration therapy, patients' own cells, such as bone marrow stem cells, are transiently removed and induced to differentiate into beta cells in vitro. At present, however, insulin-producing cells cannot be generated from bone marrow stem cells. (3) In in vivo regeneration therapy, impaired tissues regenerate from patients' own cells in vivo. beta-Cell neogenesis from non-beta-cells and beta-cell proliferation in vivo have been considered, particularly as regeneration therapies for type 2 diabetes. Regeneration therapy of pancreatic beta cells can be combined with various other therapeutic strategies, including islet transplantation, cell-based therapy, gene therapy, and drug therapy to promote beta-cell proliferation and neogenesis, and it is hoped that these strategies will, in the future, provide a cure for diabetes.  相似文献   

13.
Mbd3 is a core component of the NuRD (Nucleosome Remodeling and Histone Deacetylation) co-repressor complex, and NuRD-mediated silencing has been implicated in cell fate decisions in a number of contexts. Mbd3-deficient embryonic stem (ES) cells made by gene targeting are viable but fail to form a stable NuRD complex, are severely compromised in the ability to differentiate, and show LIF-independent self-renewal. Mbd3 is known to be essential for postimplantation embryogenesis in mice, but the function of Mbd3 in vivo has not previously been addressed. Here we show that the inner cell mass (ICM) of Mbd3-deficient blastocysts fails to develop into mature epiblast after implantation. Unlike Mbd3-null ES cells, Mbd3-deficient ICMs grown ex vivo fail to expand their Oct4-positive, pluripotent cell population despite producing robust endoderm outgrowths. Additionally, we identify a set of genes showing stage-specific expression in ICM cells during preimplantation development, and show that Mbd3 is required for proper gene expression patterns in pre- and peri-implantation embryos and in ES cells. These results demonstrate the importance of Mbd3/NuRD for the development of pluripotent cells in vivo and for their ex vivo progression into embryonic stem cells, and highlight the differences between ES cells and the ICM cells from which they are derived.  相似文献   

14.
Since the first successful cord blood transplant was performed in 1988 there has been a gradual increase in the use of cord blood for hemopoietic stem cell transplantation. Worldwide, over 8,000 unrelated cord blood transplants have been performed with the majority being for children with hemopoietic malignancies. Transplantation for adults has increased but is limited by the low number of nucleated cells and CD34(+) cells within a single cord blood collection. Cord blood hemopoietic stem cells are more primitive than their adult counterparts and have high proliferative potential. Cord blood ex vivo expansion is designed to improve transplant outcomes by increasing the number of hemopoietic stem cells with long term repopulating potential and their differentiated progeny. However, despite a large amount of research activity during the last decade, this aim has not been realized. Herein we discuss the rationale for this approach; culture methods for ex vivo expansion, ways to assess the functional capacity of ex vivo generated hemopoietic stem cells and clinical outcomes following transplantation with ex vivo expanded cord blood.  相似文献   

15.
Pluripotent mouse embryonic stem (ES) cells multiply in simple monoculture by symmetrical divisions. In vivo, however, stem cells are generally thought to depend on specialised cellular microenvironments and to undergo predominantly asymmetric divisions. Ex vivo expansion of pure populations of tissue stem cells has proven elusive. Neural progenitor cells are propagated in combination with differentiating progeny in floating clusters called neurospheres. The proportion of stem cells in neurospheres is low, however, and they cannot be directly observed or interrogated. Here we demonstrate that the complex neurosphere environment is dispensable for stem cell maintenance, and that the combination of fibroblast growth factor 2 (FGF-2) and epidermal growth factor (EGF) is sufficient for derivation and continuous expansion by symmetrical division of pure cultures of neural stem (NS) cells. NS cells were derived first from mouse ES cells. Neural lineage induction was followed by growth factor addition in basal culture media. In the presence of only EGF and FGF-2, resulting NS cells proliferate continuously, are diploid, and clonogenic. After prolonged expansion, they remain able to differentiate efficiently into neurons and astrocytes in vitro and upon transplantation into the adult brain. Colonies generated from single NS cells all produce neurons upon growth factor withdrawal. NS cells uniformly express morphological, cell biological, and molecular features of radial glia, developmental precursors of neurons and glia. Consistent with this profile, adherent NS cell lines can readily be established from foetal mouse brain. Similar NS cells can be generated from human ES cells and human foetal brain. The extrinsic factors EGF plus FGF-2 are sufficient to sustain pure symmetrical self-renewing divisions of NS cells. The resultant cultures constitute the first known example of tissue-specific stem cells that can be propagated without accompanying differentiation. These homogenous cultures will enable delineation of molecular mechanisms that define a tissue-specific stem cell and allow direct comparison with pluripotent ES cells.  相似文献   

16.
17.
Imada C  Hasumura M  Nawa K 《Cytokine》2005,31(6):447-453
Large ex vivo expansion of hematopoietic stem cells (HSCs) sufficient for use in clinical applications has not been achieved, although the influence of some cytokines including SCF, IL-11, Flt3-L, and TPO for this purpose has been reported. We present evidence for an indirect effect of macrophage colony-stimulating factor (M-CSF) on expansion of murine HSCs. Fresh Lin(-/low) cells were isolated from Ly5.1 mouse bone marrow and cultured with or without M-CSF in the presence of SCF + IL-11 + Flt3-L or SCF + IL-11 + TPO for 6 days. The expanded cells were harvested and transplanted into lethally irradiated Ly5.2 recipients with competitor cells. Culture of Lin(-/low) cells with M-CSF significantly enhanced long-term engraftment. When the more enriched HSC populations of Lin(-/low) c-Kit(+) Sca-1(+) cells were used as a source of HSCs, such a promotive effect was not observed, in agreement with negative expression of the M-CSF receptor (c-Fms). However, co-culture with Lin(-/low) c-Fms(+) resulted in a significant increase of long-term engraftment. These results suggested that M-CSF is an indirect stimulator for ex vivo expansion of HSCs in the presence of SCF, IL-11, Flt3-L, and TPO. These observations provide new directions for ex vivo expansion and insight into new engraftment regulation through M-CSF signaling.  相似文献   

18.

Background

Cord blood (CB) is a promising source for hematopoietic stem cell transplantations. The limitation of cell dose associated with this source has prompted the ex vivo expansion of hematopoietic stem and progenitor cells (HSPCs). However, the expansion procedure is known to exhaust the stem cell pool causing cellular defects that promote apoptosis and disrupt homing to the bone marrow. The role of apoptotic machinery in the regulation of stem cell compartment has been speculated in mouse hematopoietic and embryonic systems. We have consistently observed an increase in apoptosis in the cord blood derived CD34+ cells cultured with cytokines compared to their freshly isolated counterpart. The present study was undertaken to assess whether pharmacological inhibition of apoptosis could improve the outcome of expansion.

Methodology/Principal Findings

CB CD34+ cells were expanded with cytokines in the presence or absence of cell permeable inhibitors of caspases and calpains; zVADfmk and zLLYfmk respectively. A novel role of apoptotic protease inhibitors was observed in increasing the CD34+ cell content of the graft during ex vivo expansion. This was further reflected in improved in vitro functional aspects of the HSPCs; a higher clonogenicity and long term culture initiating potential. These cells sustained superior long term engraftment and an efficient regeneration of major lympho-myeloid lineages in the bone marrow of NOD/SCID mouse compared to the cells expanded with growth factors alone.

Conclusion/Significance

Our data show that, use of either zVADfmk or zLLYfmk in the culture medium improves expansion of CD34+ cells. The strategy protects stem cell pool and committed progenitors, and improves their in vitro functionality and in vivo engraftment. This observation may complement the existing protocols used in the manipulation of hematopoietic cells for therapeutic purposes. These findings may have an impact in the CB transplant procedures involving a combined infusion of unmanipulated and expanded grafts.  相似文献   

19.
Hematopoietic growth factors in autologous transplantation   总被引:1,自引:0,他引:1  
Hematopoietic growth factors (HGFs) sustain the survival, proliferation and differentiation of hematopoietic stem cells and some functions of mature blood cells. In man several HGFs have been characterised and cloned so far, and this has allowed investigators to confer the rationale for the clinical application of these molecules in hematology and oncology. In particular G-CSF and GM-CSF are currently utilised to abrogate the hematological toxicity of chemotherapy for standard and dose-intensified therapy, neutropenia following bone marrow and peripheral blood stem cell transplantation. Moreover there has recently been great interest in the ex vivo expansion of hematopoietic stem and progenitor cells for a variety of applications, such as in vitro tumor cell purging or for reducing the volume of blood processed by the leukapheresis. Several combinations of HGFs have been described to sustain the ex vivo survival and proliferation of these cells disclosing new opportunities in the field of stem cells transplants.  相似文献   

20.
Current therapies for type 1 diabetes, including fastidious blood glucose monitoring and multiple daily insulin injections, are not sufficient to prevent complications of the disease. Though pancreas and possibly islet transplantation can prevent the progression of complications, the scarcity of donor organs limits widespread application of these approaches. Understanding the mechanisms of beta-cell mass expansion as well as the means to exploit these pathways has enabled researchers to develop new strategies to expand and maintain islet cell mass. Potential new therapeutic avenues include ex vivo islet expansion and improved viability of islets prior to implantation, as well as the endogenous expansion of beta-cell mass within the diabetic patient. Islet neogenesis, through stem cell activation and/or transdifferentiation of mature fully differentiated cells, has been proposed as a means of beta-cell mass expansion. Finally, any successful new therapy for type 1 diabetes via beta-cell mass expansion will require prevention of beta-cell death and maintenance of long-term endocrine function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号