首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The production of ligninolytic enzymes (laccase and Mn-dependent peroxidase) by the white-rot fungus Pleurotus pulmonarius (FR.) Quélet was studied in solid-state cultures using agricultural and food wastes as substrate. The highest activities of laccase were found in wheat bran (2,860?±?250 U/L), pineapple peel (2,450?±?230 U/L), and orange bagasse (2,100?±?270 U/L) cultures, all of them at an initial moisture level of 85 %. The highest activities of Mn peroxidase were obtained in pineapple peel cultures (2,200?±?205 U/L) at an initial moisture level of 75 %. In general, the condition of high initial moisture level (80–90 %) was the best condition for laccase activity, while the best condition for Mn peroxidase activity was cultivation at low initial moisture (50–70 %). Cultures containing high Mn peroxidase activities were more efficient in the decolorization of the industrial dyes remazol brilliant blue R (RBBR), Congo red, methylene blue, and ethyl violet than those containing high laccase activity. Also, crude enzymatic extracts with high Mn peroxidase activity were more efficient in the in vitro decolorization of methylene blue, ethyl violet, and Congo red. The dye RBBR was efficiently decolorized by both crude extracts, rich in Mn peroxidase activity or rich in laccase activity.  相似文献   

2.
A Box-Wilson central composite design was applied to optimize copper, veratryl alcohol and l-asparagine concentrations for Trametes trogii (BAFC 212) ligninolytic enzyme production in submerged fermentation. Decolorization of different dyes (xylidine, malachite green, and anthraquinone blue) by the ligninolytic fluids from the cultures was compared. The addition of copper stimulated laccase and glyoxal oxidase production, but this response was influenced by the medium N-concentration, with improvement higher at low N-levels. The medium that supported the highest ligninolytic production (22.75 U/ml laccase, 0.34 U/ml manganese peroxidase, and 0.20 U/ml glyoxal oxidase) also showed the greatest ability to decolorize the dyes. Only glyoxal oxidase activity limited biodecoloration efficiency, suggesting the involvement of peroxidases in the process. The addition of 1-hydroxybenzotriazole (a known laccase mediator) to the ligninolytic fluids increased both their range and rate of decolorization. The cell-free supernatant did not decolorize xylidine, poly R-478, azure B, and malachite green as efficiently as the whole broth, but results were similar in the case of indigo carmine and remazol brilliant blue R. This indicates that the mycelial biomass may supply other intracellular or mycelial-bound enzymes, or factors necessary for the catalytic cycle of the enzymes. It also implies that this fungus implements different strategies to degrade dyes with diverse chemical structures.  相似文献   

3.
The decolorizing capacity of 26 white rot fungi from Argentina was investigated. Extracellular production of ligninolytic enzymes by mycelium growing on solid malt extract/glucose medium supplemented with different dyes (Malachite Green, Azure B, Poly R-478, Anthraquinone Blue, Congo Red and Xylidine), dye decolorization and the relationship between these two processes were studied. Only ten strains decolorized all the dyes, all ten strains produced laccase, lignin peroxidase and manganese peroxidase on solid medium. However, six of the strains could not decolorize any of the dyes; all six strains tested negative for lignin peroxidase, and produced less than 0.05 U/g agar of manganese peroxidase. Comparing the isolates with the well-known dye-degrader Phanerochaete chrysosporium, a new fungus was identified: Coriolus versicolor f. antarcticus, potentially a candidate for use in biodecoloration processes. Eighteen day-old cultures of this fungus were able to decolorize in an hour 28%, 30%, 43%, 88% and 98% of Xylidine (24 mg/l), Poly R-478 (75 mg/l), Remazol Brilliant Blue R (9 mg/l), Malachite Green (6 mg/l) and Indigo Carmine (23 mg/l), respectively. Laccase activity was 0.13 U/ml, but neither lignin peroxidase nor manganese peroxidase were detected in the extracellular fluids for that day of incubation.  相似文献   

4.
The ability of a Brazilian strain ofPleurotus pulmonarius to decolorize structurally different synthetic dyes (including azo, triphenylmethane, heterocyclic and polymeric dyes) was investigated in solid and submerged cultures. Both were able to decolorize completely or partially 8 of 10 dyes (Amido Black, Congo Red, Trypan Blue, Methyl Green, Remazol Brilliant Blue R, Methyl Violet, Ethyl Violet, Brilliant Cresyl Blue). No decolorization of Methylene Blue and Poly R 478 was observed. Of the four phenol-oxidizing enzymes tested in culture filtrates (lignin peroxidase, manganese peroxidase, aryl alcohol oxidase, laccase),P. pulmonarius produced only laccase. Both laccase activity and dye decolorization were related to glucose and ammonium starvation or to induction by ferulic acid. The decolorizationin vivo was tested using three dyes — Remazol Brilliant Blue R, Trypan Blue and Methyl Green. All of them were completely decolorized by crude extracellular extracts. Decolorization and laccase activity were equally affected by pH and temperature. Laccase can thus be considered to be the major enzyme involved in the ability ofP. pulmonarius to decolorize industrial dyes.  相似文献   

5.
尚晓静  张富美  程伟  苏莉  侯瑞 《菌物学报》2020,39(8):1580-1592
通过对兔眼蓝莓幼果组织中分离得到的内生真菌G18进行形态特征、ITS序列和系统进化分析鉴定菌株G18为裂褶菌Schizophyllum commune。同时,对菌株G18产生的3种木质素降解酶进行监测,发现G18菌株可以分泌漆酶、木质素过氧化物酶和锰过氧化物酶。为明确裂褶菌G18对染料的脱色能力,利用裂褶菌G18对固体条件下8种染料进行脱色能力的检测,筛选出较易脱色的染料后,对该染料的脱色条件进行优化。结果表明,裂褶菌G18对8种染料均可以脱色,对孔雀石绿染料的脱色效果最好。裂褶菌G18对孔雀石绿的脱色优化结果为pH 7.0、20.0g/L淀粉、1.0g/L尿素、1.0g/L硫酸锌、接菌量9片(d=5.0mm)。  相似文献   

6.
White rot fungi were collected from Chirinda and Chimanimani hardwood forests in Zimbabwe and studied with respect to growth temperature optima and dye decolorization. Temperature optima were found to vary (between 25-37 degrees C) amongst the isolates. The isolates were screened for their ability to degrade the polymeric dyes; blue dextran and Poly R478 and the triphenylmethane dyes; cresol red, crystal violet and bromophenol blue. Semi-quantitative determination of the hydrolytic enzyme activities possessed by the white rot fungi was determined using the API ZYM system. Lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase activities in the fungi were also determined. No LiP was detected in any of the isolates but all isolates showed manganese peroxidase and laccase activities. Time related decolorization studies and optimum pH determinations for Poly R478 degradation by the isolates were carried out in liquid cultures. The most significant rates of Poly R478 decolorization in liquid cultures were found with the following isolates: Trametes cingulata, Trametes versicolor, Trametes pocas, DSPM95 (a species to be identified), Datronia concentrica and Pycnoporus sanguineus.  相似文献   

7.
The ligninolytic enzyme system of Phanerochaete chrysosporium decolorizes several recalcitrant dyes. Three isolated lignin peroxidase isoenzymes (LiP 4.65, LiP 4.15, and LiP 3.85) were compared as decolorizers with the crude enzyme system from the culture medium. LiP 4.65 (H2), LiP 4.15 (H7), and LiP 3.85 (H8) were purified by chromatofocusing, and their kinetic parameters were found to be similar. Ten different types of dyes, including azo, triphenyl methane, heterocyclic, and polymeric dyes, were treated by the crude enzyme preparation. Most of the dyes lost over 75% of their color; only Congo red, Poly R-478, and Poly T-128 were decolorized less than the others, 54, 46, and 48%, respectively. Five different dyes were tested for decolorization by the three purified isoenzymes. The ability of the isoenzymes to decolorize the dyes in the presence of veratryl alcohol was generally comparable to that of the crude enzyme preparation, suggesting that lignin peroxidase plays a major role in the decolorization and that manganese peroxidase is not required to start the degradation of these dyes. In the absence of veratryl alcohol, the decolorization activity of the isoenzymes was in most cases dramatically reduced. However, LiP 3.85 was still able to decolorize 20% of methylene blue and methyl orange and as much as 60% of toluidine blue O, suggesting that at least some dyes can function as substrates for isoenzyme LiP 3.85 but not to the same extent for LiP 4.15 or LiP 4.65. Thus, the isoenzymes have different specificities towards dyes as substrates.  相似文献   

8.
Trametes pubescens and Pleurotus ostreatus, immobilized on polyurethane foam cubes in bioreactors, were used to decolorize three industrial and model dyes at concentrations of 200, 1000 and 2000 ppm. Five sequential cycles were run for each dye and fungus. The activity of laccase, Mn-dependent and independent peroxidases, lignin peroxidase, and aryl-alcohol oxidase were daily monitored during the cycles and the toxicity of media containing 1000 and 2000 ppm of each dye was assessed by the Lemna minor (duckweed) ecotoxicity test. Both fungi were able to efficiently decolorize all dyes even at the highest concentration, and the duckweed test showed a significant reduction (p 相似文献   

9.
Dye decolorization capacity of two white-rot fungi, Irpex lacteus and Phanerochaete chrysosporium, was compared in N-limited liquid cultures. The agitated cultures showed lower ability to decolorize azo dyes Reactive Orange 16 and Naphthol Blue Black than static cultures. Similar effect was also observed with other structurally different synthetic dyes. The effect of surfactants on the decolorization process is discussed. A significant increase in the Reactive Orange 16 decolorization by the agitated I. lacteus cultures was observed after adding 0.1% Tween 80, following a higher Mn-dependent peroxidase production. The in vitro dye decolorization using the purified enzyme proved its decolorization ability.  相似文献   

10.
细菌脱色酶TpmD对三苯基甲烷类染料脱色的酶学特性研究   总被引:2,自引:1,他引:1  
从嗜水气单胞菌DN322中分离纯化出能够对三苯基甲烷类染料结晶紫、碱性品红、灿烂绿及孔雀绿进行有效脱色的脱色酶,命名为TpmD。该酶的亚基分子量为29.4kDa,等电点为5.6。该酶催化上述4种三苯基甲烷类染料脱色反应的适合温度为40~60℃,适合pH范围为5.5~9.0。动力学参数测定结果显示TpmD对结晶紫、碱性品红、灿烂绿及孔雀绿的Km值分别为24.3、40.65、4.2、68.5μmol-1.L-1,Vmax值分别为19.6、74.1、82.8、115.6μmol.L-1.s-1。结晶紫为该酶的最适反应底物。TpmD催化的脱色反应依懒于NADH/NADPH及分子氧的存在,显示该酶属于NADH/NADPH依赖型的氧化酶类。这是国内外首次关于细菌中三苯基甲烷类染料脱色酶酶学性质的描述。  相似文献   

11.
Synthetic textile dyes are among the most dangerous chemical pollutants released in industrial wastewater streams. Recognizing the importance of reducing the environmental impact of these dyes, the ability of the white rot fungus Phanerochaete chrysosporium to decolorize various textile dyes was investigated. This fungus decolorized 6 of the 14 structurally diverse dyes with varying efficiency (between 14% and 52%). There was no discernable pattern of decolorization even among dyes of the same chemical class, suggesting that attack on the dyes is relatively non-specific. Among the three dyes which showed >40% decolorization, Victoria Blue B (VB) was chosen for further analysis because the ability of the fungus to decolorize VB was nearly independent over a relatively broad concentration range. Blocking lignin peroxidase (LiP) and manganese peroxidase (MnP) production by the fungus did not substantially affect VB decolorization. Inhibition of laccase production by adding various inhibitors to shaken cultures reduced VB decolorization significantly suggesting a role for laccase in VB decolorization. When sodium azide and aminotriazole were used to inhibit endogenous catalase and cytochrome P-450 oxygenase activities, there was 100% and 70% reduction in VB decolorization, respectively. Adding benzoate to trap hydrogen peroxide-derived hydroxyl radicals resulted in 50% decolorization of VB. Boiling the extracellular fluid (ECF) for 30 min resulted in approximately 50% reduction in VB decolorization. Collectively, these data suggest that laccase, and/or oxygenase/oxidase and a heat-stable non-enzymatic factor, but not Lip and MnP, play a role in VB decolorization by P. chrysosporium.  相似文献   

12.
吕俊  于存 《菌物学报》2019,38(6):993-1002
白囊耙齿菌Irpex lacteus是分离自倒木上的一株可以分泌漆酶和锰过氧化物酶的白腐真菌。利用I. lacteus对固体条件下的活性黑、活性红、结晶紫、茜素红和孔雀石绿进行脱色能力的检测,通过单因素和正交试验优化I. lacteus对茜素红的脱色条件,并以3种作物发芽率为指标测定茜素红被I. lacteus脱色前后的毒性变化。结果显示,I. lacteus对5种染料均可脱色,其中对茜素红染料的脱色更为彻底;单因素和正交试验优化I. lacteus对茜素红的脱色条件为:pH 7.0、葡萄糖10.0g/L、硫酸铵0.66g/L、接种量2片(Φ=8.0mm)、100.0mL三角瓶装液20.0mL,优化条件下I. lacteus对茜素红脱色10d时的脱色率为88.26%,与未优化前的脱色率相比提高了60.50%;茜素红染料被I. lacteus脱色前后毒性大小排序为:染料原液>染料脱色后>PDB培养基处理,表明茜素红染料存在一定的毒性,I. lacteus脱色茜素红后可以使其毒性减弱。通过本研究,为I. lacteus在茜素红等染料废水脱色以及降低染料废水毒性方面的应用奠定基础。  相似文献   

13.
In this study, salt fractionated bitter gourd (Momordica charantia) peroxidase was used for the decolorization of water-insoluble disperse dyes; Disperse Red 17 and Disperse Brown 1. Effect of nine different redox mediators; bromophenol, 2,4-dichlorophenol, guaiacol, 1-hydroxybenzotriazole, m-cresol, quinol, syringaldehyde, violuric acid, and vanillin on decolorization of disperse dyes by bitter gourd peroxidase has been investigated. Among these redox mediators, 1-hydroxybenzotriazole was the most effective mediator for decolorization of both the dyes by peroxidase. Bitter gourd peroxidase (0.36 U/mL) could decolorize Disperse Red 17 maximally 90% in the presence of 0.1 mM 1-hydroxybenzotriazole while Disperse Brown 1 was decolorized 65% in the presence of 0.2 mM 1-hydroxybenzotriazole. Maximum decolorization of these dyes was obtained within 1 h of incubation at pH 3.0 and temperature 40°C. The application of such enzyme plus redox mediator systems may be extendable to other recalcitrant and water insoluble synthetic dyes using novel redox mediators and peroxidases from other new and cheaper sources.  相似文献   

14.
Abstract

The unique property of biochar, synthesized from a green seaweed (Ulva lactuca), to remediate complex Remazol dye bearing wastewater was investigated. Preliminary trials were targeted to explore the remediation capacity of biochar towards each of Remazol dyes (Remazol brilliant blue R (RBBR), Remazol brilliant orange 3R (RBO3R), Remazol brilliant violet 5R (RBV5R), and Remazol Black B (RBB)) in single-solute system. The results show that equilibrium pH played a vital part with maximum sorption observed at pH 2.0. The isotherm experiments confirmed that biochar exhibited high uptakes of 0.301, 0.292, 0.265, and 0.224?mmol/g for RBO3R, RBBR, RBV5R, and RBB, respectively. Due to the presence of multiple dyes as well as high concentration of auxiliary chemicals, the performance of biochar to remediate Remazol effluent was inhibited markedly compared to single solute systems. Nevertheless, the dye removal efficiency was above 77.5% and the decolorization rate was high with more than 95% of total dye decolorization completed within 240?min. Our results provide novel insights into the potential of biochar to remove Remazol dyes from complex dye wastewaters.  相似文献   

15.
During dye decoloration by Trametes versicolor ATCC 20869 in modified Kirk’s medium, manganese peroxidase (MnP) and laccase were produced, but not lignin peroxidase, cellobiose dehydrogenase or manganese-independent peroxidase. Purified MnP decolorized azo dyes [amaranth, reactive black 5 (RB5) and Cibacron brilliant yellow] in Mn2+-dependent reactions but did not decolorize an anthraquinone dye [Remazol brilliant blue R (RBBR)]. However, the purified laccase decolorized RBBR five to ten times faster than the azo dyes and the addition of a redox mediator, 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), did not alter decoloration rates. Amaranth and RB5 were decolorized the most rapidly by MnP since they have a hydroxyl group in an ortho position and a sulfonate group in the meta position relative to the azo bond. During a typical batch decoloration with the fungal culture, the ratio of laccase:MnP was 10:1 to 20:1 (based on enzyme activity) and increased to greater than 30:1 after decoloration was complete. Since MnP decolorized amaranth about 30 times more rapidly than laccase per unit of enzyme activity, MnP should have contributed more to decoloration than laccase in batch cultures.  相似文献   

16.
选用杭州竹林土壤分离并筛选能够降解多种类型染料的真菌。经大量筛选发现一株编号为1302BG的真菌能够在固体培养基上分解所测试的全部9种染料(苯胺蓝、刚果红、橙黄G、甲基红、甲基橙、结晶紫、酸性品红、番红花红、碱性品红、甲基紫)。经形态学和分子生物学方法鉴定, 该菌1302BG为冷杉附毛孔菌(Trichaptum abietinum)。在液体培养基中研究了pH、温度、碳源、氮源、碳氮源组合、碳氮源浓度等参数对该菌脱色效果的影响, 以寻找最适最经济的脱色条件。在液体培养基中研究表明, 冷杉附毛孔菌1302BG既能在酸性又能在碱性条件下有效分解2种测试染料(酸性品红和刚果红)。该真菌能以仅含有0.5 g/L淀粉和0.05 g/L硫酸铵的经济、环境友好的培养基为底物, 能在灭菌和非灭菌(自然)的条件下高效脱色, 在24 h内对2种染料的脱色率均在90%以上。紫外/可见光谱及微核试验分析显示, 该菌脱色主要是以生物降解为主, 2种染料经该菌分解后的毒性也同时大大降低。这些优异特点显示了该菌具有非常广阔的工业染料废水处理应用潜力。  相似文献   

17.
张富美  侯瑞 《菌物学报》2019,38(9):1527-1537
本研究从未成熟的有机蓝莓表皮分离、纯化得到一株白腐真菌G11,通过对菌株G11的形态特征、ITS序列同源性比对以及系统发育分析,鉴定菌株G11为一株烟管孔菌Bjerkandera adusta。菌株G11可以产生木质素过氧化物酶、漆酶和锰过氧化物酶等木质素降解酶。菌株G11对8种不同染料的脱色效果显示其对活性染料的脱色效果最好,脱色率达到90%所需时间最短。以菌株G11为研究对象,研究其对不同浓度的活性黑和活性红的脱色能力,结果表明:菌株G11对活性红和活性黑具有显著的脱色能力。在脱色15d时,菌株G11对浓度为10、50、100、250、500mg/L活性红的脱色率分别为99%、98%、95%、94%和92%;对浓度为10、50、100、250、500mg/L活性黑的脱色率分别为98%、97%、95%、93%和90%。  相似文献   

18.
Phloroglucinol, thymol, and violuric acid (VIO) were selected as laccase mediators after screening 14 different compounds with indigo carmine (indigoid dye) as a substrate. With the presence of these three mediators, a nearly complete decolorization (90-100%) was attained in 1 h. Thus, these three compounds were used as mediators for the decolorization of other four dyes. The results indicated that VIO was effective mediator in decolorization of Remazol brilliant blue R (RBBR, anthraquinoid dye) and Coomassie brilliant blue G-250 (CBB, triphenylmethane dyes), and Acid red (diazo dye). In presence of VIO, the four dyes described above attained 70% decolorization. Thymol was able to mediate decolorization of RBBR and Azure A (heterocyclic dye). Phloroglucinol has no mediating capability in decolorization of the four dyes analyzed. Mediator concentration, pH, and copper ion have an effect on the decolorization of the RBBR. Our data suggested that the decolorization capabilities of laccase/mediator system were related to the types of mediator, the dye structure and decolorization condition.  相似文献   

19.
An anamorphic Bjerkandera adusta CCBAS 930 strain isolated from soil was found to decolorize two anthraquinonic dyes: Remazol Brilliant Blue R and Poly R-478. The reduction in the level of phenolic compounds in liquid B. adusta cultures containing RBBR and Poly R-478 was correlated with decolorization of studied dyes, which suggested their biodegradation. It was shown that this process was coupled with induction of secondary metabolism (idiophase) and peak peroxidase activity in culture medium, and the appearance of aerial mycelium. Decolorization of dyes depended on the presence of glucose (cometabolism).  相似文献   

20.
The white rot fungus Irpex lacteus is able to decolorize such synthetic dyes as Reactive Orange 16 and Remazol Brilliant Blue R. Here, we demonstrate that this type of dye decolorization is mainly related to a laccase-like enzyme activity associated with fungal mycelium. In its bound form, the enzyme detected showed a pH optimum of 3.0 for the oxidation of ABTS, DMP and guaiacol, and a pH of 7.0 for syringaldazine. The highest enzymatic activity was obtained with ABTS as substrate. Enzyme activity was fully inhibited with 50mM NaN(3). Depending on the chemical structure of dyes, redox mediators had a positive effect on the dye decolorization by fungal mycelium. Enzyme isolated from fungal mycelium was able to decolorize synthetic dyes in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号