首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 731 毫秒
1.
Summary The reasons underlying the initial increase and subsequent decrease in the amount of radioactivity in the receiver block at the apical end of a Zea root segment supplied with a basal donor block containing labelled IAA have been investigated.The phenomenon was observed in segments supplied with IAA-1-14C, IAA-2-14C and IAA-5-3H. An acropetal polarity in the movement of radioactivity into the receiver blocks was observed using donor blocks containing IAA-5-3H at concentrations as low as 10-10M.The decrease in the amount of radioactivity in the receiver block begins after 6–8 h of transport at 25° C, and is unaffected by renewal of the donor block every 2 h, or the presence of 2% sucrose in the donor and receiver blocks.The net export of radioactivity into the receiver block at the apical end of the segment virtually ceases after 6–8 h of transport at 25° C, and is not prolonged by the presence of 2% sucrose in the donor and receiver blocks. At 10° C, net export of radioactivity continues for at least the first 50 h of transport, and the amount of radioactivity in a continuously applied receiver block continues to increase over this period.Receiver blocks removed from the apical end of segments after 8 h of transport and placed on planchettes show little or no decrease in the amount of radioactivity they contain as a function of time, in marked contrast to those left in contact with the segment.There is a marked, and metabolically dependent, resorption of radioactivity from the receiver block at the apical end of the segment after about 8 h of transport at 25° C; most of the resorbed radioactivity remains in the apical 2–4 mm of the segment.There is a loss of radioactive CO2 from segments supplied with a basal donor block containing 10-6M IAA-1-14C at 25° C, the emission beginning after 6–8 h of transport. Segments similarly supplied with 10-6M IAA-2-14C did not begin to lose radioactive CO2 until after about 10–12 h of transport.The ability of the segments to transport radioactivity in a polar manner declines with time after they are excised from the root, regardless of whether their cut ends are kept in the intervening period in contact with plain agar blocks, or ones containing unlabelled IAA at 10-6M. By the 6th h after excision at 25° C no transport of radioactivity through the segments and into the receiver blocks could be detected in either the aropetal or basipetal direction.The decrease in radioactivity in the receiver block after transport periods of 6–8 h at 25° C is therefore due to (1) a cessation of net export of radioactivity into the block, and (2) the onset of a metabolically-dependent, net resorption of radioactivity. At this time substantial amounts of radioactive CO2 begin to be evolved from segments supplied with IAA-1-14C, whereas with IAA-2-14C radioactive CO2 is not evolved for a further 4–6 h.  相似文献   

2.
Summary Light promotes the net acropetal movement of 14C through 6-mm subapical segments of dark-grown roots of Zea mays supplied at their basal ends with 1 M IAA-1-14C in agar blocks. This promotion occurs only when the segments are irradiated during the transport period, and both red and blue light appear to be as effective as white light at the radiant flux densities used in this investigation. The promotion is not found if the segments are pretreated with light and then returned to darkness before the trasport of IAA-1-14C is determined. The very slight basipetal movement of 14C through the segments supplied with an apical source of IAA-1-14C is unaffected by light.Only one radioactive substance is found in the apical receiver blocks. This substance has an Rf virtually identical to those of the stock solution of IAA incorporated into the donor block and of unlabelled IAA. The movement of radioactivity into the receiver blocks through, the illuminated segments therefore appears to reflect the movement of IAA. Light thus increases the acropetal movement of IAA through the Zea root segment.The primary roots of Zea mays var. Giant Horse Tooth seedlings grown in total darkness do not exhibit a positive geotropic response. When the seed is orientated with the embryo uppermost the radicle grows out horizontally. On exposure to light, however, the roots bend down. This reaction appears about 3–9 hours after the onset of illumination, and white, red and blue light appear to be equally effective at the flux densities employed in this study. Green light in the spectral band between 510–530 nm did not appear to induce this positive geotropic responsiveness.  相似文献   

3.
Veen H  Jacobs WP 《Plant physiology》1969,44(8):1157-1162
Transport and metabolism of IAA-1-14C in Coleus blumei Benth. was studied by means of a combination of liquid scintillation counting, autoradiography and thin-layer chromatography. Transport of IAA in petiole segments of increasing age (No. 2-8) was strictly polar in a basipetal direction. No acropetal movement occurred in either young or old tissues. The greatest amount, expressed as a percentage of the radioactivity lost from the donor block, was found in basal receivers on petiole number 2. There was gradually less transport in older segments. The recovery as a percentage of the radioactivity not accounted for by donor and receiver blocks, measured by counting the radioactivity in an acetonitrile-extract of petiole segments, was low: 25 to 50%. In this acetonitrile-soluble fraction evidence for different radioactive compounds was found, depending on the age of the tissue. A possible relationship between the amounts of auxin transported in the tissue and its corresponding metabolism is discussed.  相似文献   

4.
Several experiments have been performed to analyse the ABA effects on the basipetal transport of IAA-2-14C, using sections of epicotyls prepared from etiolated Lens seedlings. The sections were incubated in an ABA solution or ABA was applied in the donor blocks containing IAA. For each type of assay, the uptake (analyses of the donor blocks) and the movement of IAA-C14 (analyses of the receiver blocks) were inhibited by ABA. The distribution of continuous decrease of the radioactivity, along the sections' axis, showed a 14C level from the apical towards the basal segments. ABA caused a decrease in the 14C concentration for the total sections, but a relative increase for the basal segment. When ABA was applied simultaneously with IAA in the donor blocks, the transport velocity of IAA, through the sections, was not changed significantly, while an ABA pretreatment caused a significant decrease.  相似文献   

5.
The movement of IAA-14C through coleoptile segments of Avena and Zea has been investigated under aerobic and anaerobic conditions. The results are as follows: Zea. Using a 5-mm segment and a 2-hour transport period anaerobic conditions reduced the total uptake of 14C from an apical donor by 74% and the proportion of the total found in the receiving block by at least 45%. Anaerobic conditions reduced total uptake from a basal donor by 58% but no 14C reached the apical receiving block in either air or N2. Uptake from apical and basal donor blocks in N2 is closely similar.

The presence of 14C in the basal receiving blocks, and its absence in the apical receiving blocks, in N2 suggests that even in anaerobic conditions movement of IAA is polarized basipetally, although the movement occurs at only a fraction of the rate found in air.

Anaerobic conditions induced a similar reduction in basipetal movement of IAA in upper and lower 5-mm segments taken from the apical 10 mm of a Zea coleoptile.

Using 10-mm Zea segments no 14C was recovered in the receiving blocks at the basal end of the segment after 2 and 4 hours in N2 whereas large amounts were recovered in air.

Avena: Using 5-mm segments and a 2-hour transport period the total uptake of 14C from an apical donor is reduced by 83%. Movement of 14C into the basal donor is totally inhibited in N2. Total uptake of 14C from a basal donor is reduced by 61% in nitrogen and no 14C reached the apical receiving blocks regardless of the atmospheric conditions.

A time course for the movement of 14C into the basal and apical receiving blocks through 5-mm segments showed that in air the amount in the basal receivers increased for 4 hours and then remained approximately uniform. In N2 no significant 14C reached the receivers until 6 to 8 hours after the application of donors but even then the amounts were about 12 to 14% of that in aerobic receivers. Movement of 14C into apical receivers was similar in air and in nitrogen and even after 6 to 8 hours the amount of radioactivity barely reached significant levels.

  相似文献   

6.
The effects of temperature on the polar movement of IAA through6-mm and 12-mm segments of Zea mays roots have been investigatedover the range from 1 to 50°C. At all temperatures an acropetal polar movement of IAA predominated,although at low temperatures and at 50°C the 6-mm segmentsshowed a transient basipetal polarity, before the persistentacropetal polarity developed. At 1°C the differences betweenacropetal and basipetal movement of IAA were less distinct thanat the other temperatures. There is, however, a marked metabolically-dependentacropetal movement of IAA through the tissues at 1°C, becausewhen the segments were deprived of oxygen the acropetal movementwas severely reduced while the basipetal movement was reducedto a smaller extent. At 1°C and at 5°C there was alwaysa persistent basipetal polarity of IAA movement through 6-mmand 12-mm segments under anaerobic conditions. The velocity of acropetal movement (mm h–1) was the samethrough the 6-mm and the 12-mm segments and was markedly affectedby temperature. It increased from 1°C to a maximum valueof 8 mm h–1 at 31°C and then decreased again at 40and 50°C. The velocity of basipetal movement could be assessedonly at 1 and 5°C at which temperatures it was greater thanthe velocity of acropetal movement, and virtually independentof segment length. The acropetal flux of IAA (cpm h–1) was much less through12-mm segments than through 6-mm segments. For both lengthsof segment, however, the flux showed a complex relationshipwith ambient temperature, increasing from 1°C to a maximumat 10–15°C, declining to a minimum value at 31°Cand then rising again at 40 and 50°C. The basipetal fluxof IAA could be astimated only at 1 and 5°C at which itwas very much smaller than the acropetal flux. The amount of IAA in the receiver blocks increased linearlywith time at the lower temperatures. At temperatures withinthe range 15°C to about 31°C, however, the amount ofIAA in the receiver blocks began to decline if the transportperiods exceeded a certain length. The time at which this declinein the IAA in the receiver block began was related to the ambienttemperature. Chromatographic analysis indicated one radioactive substancein receiver blocks at the apical end of segments supplied withIAA-1-14C at the basal end after transport periods of 6 h at25°C, and 72 h at 5°C. The Rf of this substance wasclosely similar to that of the radioactive IAA supplied in thedonor blocks.  相似文献   

7.
The polar movement of IAA has been examined in 5-mm root segments of Brassica oleracea and Helianthus annum. The movement was studied partly with IAA-1-14C and partly with IAA-5-3H. In both plants a slight acropetal flux of 14C and IAA-3H was found through the segments. The recovered radioactivity in the agar receiver blocks and in the receiver end of the segments increased as a function of time. A large portion of the applied IAA was converted on the cut surfaces and in the tissues of the segments. Chromatographic analysis indicated different destruction products when estimated by scintillation counting and by spraying with in-dole reagent (DMCA). Chromatograms run in isopropanol: ammonia: water, 8:1:1, yielded three different substances, one spot near the starting line and one near the front, neither of which has been identified. Finally there was a spot with Rf 0.4–0.6, probably representing IAA.  相似文献   

8.
Summary The basipetal movement of IAA in 5-mm Zea coleoptile segments is drastically reduced under anaerobic conditions, but it remains greater than acropetal movement which is closely similar in the presence and absence of oxygen. The polarity of IAA movement has thus been confirmed in Zea coleoptile segments which have been deprived of oxygen. This net polar flux is dependent upon anaerobic metabolism since it is abolished in the presence of the metabolic inhibitiors sodium fluoride and iodoacetic acid.Acropetal movement of IAA is unaffected by the presence of sodium fluoride in air or anaerobic conditions. Uptake of IAA from a basal donor is not affected by sodium fluoride in air, but under anaerobic conditions the inhibitor decreased uptake by approximately 13%.Under anaerobic conditions both inhibitors reduce basipetal movement of IAA to the level of acropetal movement, and both decrease the total uptake of IAA from an apical donor by up to 30–45%. Under aerobic conditions sodium fluoride has no marked effect upon either the uptake of IAA from an apical donor or the basipetal movement of IAA by the segments. On the other hand, iodoacetic acid greatly decreased the uptake of IAA by the segments in air, but the same fraction of the total IAA taken up was recovered in the receiving block in the presence and absence of the inhibitor.This research was supported by Grant Number 83/6 to Professor M. B. Wilkins from the U. K. Agricultural Research Council.  相似文献   

9.
Summary An acropetal polarisation of the movement of 2,4-dichlorophenoxy acetic acid (2,4-D) through subapical segments of Pisum seedling primary roots has been monitored throughout a 60 h transport period in darkness at 25° C using [1-14C]2,4-D and [2-14C]2,4-D. Uptake of 2,4-D does not proceed at a constant rate; periods in which the amount of 14C in the root segments and receiver blocks increases rapidly are followed by periods in which the amount of radioactivity remains relatively constant or declines slightly. These oscillations do not appear to be related to the time of day at which the experiments are begun or ended. Immobilisation and degradation of 2,4-D during transport in the segments seems to be low. Replacement of [1-14C]2,4-D donor blocks after 25 h by blocks containing unlabelled 2,4-D results in continued transport of the compound into receiver blocks, with only small amounts of 14C remaining in the root tissues. Radioactivity is also exported from the segments into the blocks used to replace the donor blocks, with larger amounts being exported into the blocks applied to the apical ends than into those applied to the basal ends of the segments. This radioactivity may be taken-up again by the segments but more 14C is exported into these blocks towards the end of the experiments. The possibility of regular oscillations in uptake and movement of 2,4-D in Pisum root segments is discussed.  相似文献   

10.
The movement of auxin through tendril segments of Passiflora caerulca L. has been investigated using IAA-2-14C. It has been shown that (1) flux of IAA through the segments is strongly polarized basipetally: (2) the amount of 14C recovered in the basal receiver blocks increases linearly within a transport period of 6 h; (3) velocity of basipetal transport is 14.5 mm h?1; (4) at least 70% of the radioactivity in the receiver blocks is confined to the IAA molecule: approximately 55% of 14C from methanolic extracts of the segments is IAA: (5) at low temperatures (2–4°C) the basipetal transport is abolished; (6) white light promotes basipetal transport, and this effect is abolished in a CO2-free atmosphere; (7) no difference could be detected in 14C content between dorsal and ventral halves of tendril segments nor among individual dorsal and ventral receiver blocks.  相似文献   

11.
The influence of gamma radiation on the polarity of IAA translocation was investigated. Pieces of apple tree shoots, taken from 3-year-old trees, were irradiated in a dark irradiation chamber BK-60Co source, 10 kCi. Doses from 20 to 150 krad were given. Strips of bark were peeled off both irradiated and control shoots. The middle parts of the bark strips were placed on agar blocks loaded with IAA-1-14C. The radioactivity of basal and acropetal segments was determined after about 20 h and results expressed as polarity quotient. It has been shown that irradiation with 20 krad (200 Gy) decreases the polarity quotient remarkably (polarity quotient of control equals 7; for 20 krad—2.9; 100 krad—1.6). The decrease in polarity results from inhibition of the basipetal translocation of IAA. Irradiated tissue shows a decrease in IAA uptake. Possible mechanisms of gamma irradiation effects on polar translocation of IAA are discussed.  相似文献   

12.
Summary The movement of IAA has been investigated in roots of dark-grown seedlings of Zea mays using IAA-I-14C.With 6-mm segments excised 1 mm below the apex of the root it has been shown that: (a) There is a strictly acropetal flux of IAA through the tissues, the amount of IAA found in an apical receiving block increasing almost linearly with increasing transport period up to about 6–7 hours, but thereafter declining for at least a further 18 hours. The onset of this decline appears to be dependent upon the concentration of IAA in the donor block. (b) The amount of IAA recovered in the apical receiving block increases with increasing concentration of IAA in the donor block over the range from 0.1–10 M, with transport periods of both 4 and 9 hours. (c) The radioactivity in the receiving block is confined to the IAA molecule. (d) The orientation of the segment with respect to gravity did not significantly affect the acropetal polar flux of IAA in the tissue.With non-decapitated 7-mm root apices it has been found that the presence of the apex has no effect on the strictly acropetal flux of IAA in the tissues, but that it entirely prevented the emergence of IAA into an apical receiving block.  相似文献   

13.
Wilkins MB  Whyte P 《Plant physiology》1968,43(9):1435-1442
The lateral movement of IAA in coleoptiles of Zea mays has been investigated under aerobic and anaerobic conditions. The IAA-1-14C was supplied asymmetrically to the apical end of the segment. The results were as follows: A) In air more 14C was found in the lower half of horizontal segments supplied with an upper donor than in the half opposite the donor in vertical segments. The enhanced lateral movement of 14C in geotropically stimulated segments of corn coleoptiles under aerobic conditions has thus been confirmed. B) This increased lateral movement of 14C in geotropically stimulated segments is greatly reduced, but is not completely abolished, under anaerobic conditions. C) The lateral movement of 14C in vertical segments is significantly less under anaerobic conditions than in air. D) Under anaerobic conditions, the lateral movement of 14C in horizontal segments can be reduced to the level found in vertical segments by pre-soaking the tissue in a 1 mm solution of the metabolic inhibitor sodium fluoride for 2 hours. The inhibitor has no effect on lateral movement of 14C in vertical anaerobic segments. E) In air, sodium fluoride has no effect on the lateral movement of 14C in either vertical or horizontal segments.  相似文献   

14.
Veen H  Jacobs WP 《Plant physiology》1969,44(9):1277-1284
To see if polar movement was typical of growth-regulators other than auxins, the movement of adenine-8-14C and of kinetin-8-14C was studied in segments cut from petioles of increasing age. No polarity was found. In time-course experiments lasting 24 hr, kinetin showed a progressive increase of radioactivity in receiver blocks, while adenine showed a maximum at 8 hr with a decline thereafter. More kinetin moved through older segments than through younger ones. There was no difference in net loss as far as the position of the donor block is concerned. However, the loss of radioactivity from adenine donor blocks was much higher than the loss of radioactivity from kinetin donor blocks.  相似文献   

15.
The transport of radiolabeled indoleacetic acid (IAA), and some of its conjugates, was investigated in nodal stem segments of Phaseolus vulgaris L. Donor agar blocks containing either [2-acetyl-14C]-IAA; [2-acetyl-14C]-indole-3-acetyl-L-aspartate (IAAsp); [2-acetyl-14C]-indole-3-acetyl-L-glycine (IAGly); or [2-acetyl-14C]-indole-3-acetyl-L-alanine (IAAla) were placed on either the apical or basal cut surface of stem segments each bearing an axillary bud at the midline. In some experiments, a receiver block was placed on the end opposite to the donor. After transport was terminated, the segments were divided into five equal sections plus the bud, and the radioactivity of donors, receivers and each part of the stem segment was counted.For all four substances tested, the amount of 14C transported to the axillary bud from the base was the same or greater than that from the apical end. After basipetal transport, the distribution of 14C in the segment declined sharply from apex to base. The inverse was true for acropetal transport. Transport for the three IAA conjugates did not differ substantially from each other.The IAA transport inhibitor, N-1-naphthylphthalamic acid (NPA), inhibited basipetal 14C-IAA transport to the base of the stem segment but did not alter substantially the amount of 14C-IAA recovered from the bud. Transport of 14C-IAA from the apical end to all parts of the stem segment declined when the base of the section was treated with nonradioactive IAA. Taken together with data presented in the accompanying article [Tamas et al. (1989) Plant Growth Regul 8: 165–183], these results suggest that the transport of IAA plays a role in axillary bud growth regulation, but its effect does not depend on the accumulation of IAA in the axillary bud itself.  相似文献   

16.
Shaw  Stanley  Gardner  Gary  Wilkins  Malcolm B. 《Planta》1973,115(2):97-111
Summary Movement of IAA was studied in excised coleoptile apices and whole seedlings of Zea mays L. and Avena sativa L. during geotropic stimulation. A micropipette technique permitted the application of [5-3H]IAA at predetermined points on the coleoptiles with minimal tissue damage.When [5-3H]IAA was applied to the upper side of a horizontal excised Zea coleoptile, about 60% of the recoverable radioactivity had moved into the lower half after 2 h. In contrast, when application was made to the lower side of a horizontal excised coleoptile, only 4% of the radioactivity migrated to the upper half. There was, thus, a net downward movement of 56%. Similar patterns of distribution were found for radioactivity in both the tissue and the basal receiver blocks. In horizontal shoot tissues of intact Zea seedlings a net downward movement of about 30% of the recoverable radioactivity occurred after 1 h of geotropic stimulation. Comparable experiments with Avena indicated a net downward movement of 6–12% in excised apices of coleoptiles and in the intact shoot. In both Zea and Avena chromatographic analyses of tissue and receiver blocks indicated that the movement of radioactivity reflected that of IAA.In Zea coleoptiles, the lateral migration of radioactivity after 2 h was 3 to 4 times greater in the apical tissues than in the basal tissues. A significant net downward movement of radioactivity was detected after 10 min of geotropic stimulation in the extreme apex of Zea coleoptiles but not in the more basal regions.These experiments show that downward lateral transport of IAA occurs in intact shoots of Zea and Avena seedlings upon geotropic stimulation. Lateral transport of IAA had previously been demonstrated only in sub-apical segments of Zea coleoptiles.  相似文献   

17.
The movement of IAA through 6-mm segments excised 1 mm, 7 mm,and 13 mm behind the apex of the primary root of Zea mays seedlingshas been investigated at temperatures between 10 and 25°C. In all segments, and at all temperatures, the movement of IAAwas polarized acropetally, more IAA being found in apical receiverblocks than in basal ones after transport periods of up to 24h. The amounts of IAA which moved acropetally through a segmentdecreased as the segment was taken at an increasing distancebehind the root apex. Similarly, at least after transport periodsof 8 h, more IAA moved basipetally through the apical segmentthan through the basal ones. At 10°C the velocity of acropetal movement was similar inall three segments, but the acropetbut the acropetal flux wasgreatest in the apical segment and smallest in the most basalone. The same situation appears to exist at the other temperatures. The flux and velocity of the acropetal movement of IAA througha 6-mm segment taken 7 mm behind the apex of the root were similarto those previously reported for the acropetal movement througha 12-mm segment excised 1 mm behind the apex. The smaller amountsof IAA which move acropetally through longer root segments aretherefore attributable to a limitation of the flux in the mostbasal regions of the segment.  相似文献   

18.
Calcium flux in sunflower (Helianthus annuus L. cv Russian mammoth) hypocotyl was measured with a Ca2+ electrode as the increase or decrease in Ca2+ in an aqueous solution (10 micromolar CaCl2) in contact with either the basal or apical end of 20 millimeter segments. Ca2+ efflux was significantly higher at the apical end compared with the basal end; this apparent polarity was maintained even when the segments were inverted. No significant difference was observed in the cation exchange capacity of apical and basal cell walls that could explain the difference in Ca2+ efflux at opposite ends of the hypocotyl segment. The presence of exogenous indoleacetic acid (IAA) in the segment medium resulted in the promotion of both Ca2+ efflux and segment elongation. However, osmotic inhibition of the IAA-induced elongation did not result in inhibiting the IAA-induced Ca2+ efflux. Ca2+ efflux was inhibited by cyanide. Lowering the temperature from 25°C also caused the gradual reduction of Ca2+ efflux; at 5°C the hypocotyl segments showed a net absorption of Ca2+ from the segment medium. These findings support the suggestion that: (a) the observed Ca2+ efflux in hypocotyl segments is probably the manifestation of the system which maintains the transmembrane Ca2+ gradient at the cellular level. (b) The acropetal polarity of Ca2+ efflux may be the result of the involvement of Ca2+ in the basipetal transport of IAA.  相似文献   

19.
The uptake of exogenously applied indoleacetic acid (IAA) by light grown stems of bean (Phaseolus vulgaris L. cv. Red kidney) and pea (Pisum sativum L. cv. Alaska) was examined. The IAA was labeled in the 1 and 2 side chain positions with 14C and the 5 ring position with 3H. The distribution of label in the sections was analyzed by recording the elution into water, ethanol and 1.0 N NaOH, and the amount in the insoluble residue also recorded. Total uptake consisted of a rapid uptake for about 1 h followed by continued uptake at a slower rate for 24 h to give a radioactive concentration in the tissues four to five times, that of the external solution. Most of the radioactivity was initially extractable by water, later by ethanol. With IAA-2-14C there was a slow increase in radioactivity in NaOH and residue fractions but with IAA-1-14C most of the radioactivity was present in insoluble residue at times longer than 3 h. From the different residue patterns estimates of the extent of decarboxylation of the IAA were made. The radioactivity in the tissues was largely IAA after 1 h and the content increased until 6 h but there after there was little further increase. The water fraction initially contained the most IAA but by 24 h most IAA was found in the NaOH fraction in bean and the ethanol fraction in pea. The NaOH fraction was the only fraction in which the IAA content continually increased.  相似文献   

20.
The polarity of movement of gibberellin through sections cut from near the root tips of Zea mays L. was studied, using methods like those we previously used in roots for auxin and in petioles for auxins, cytokinins, and gibberellic acid (GA-3). One μg GA-3 was added in a donor agar block and gibberellin activity in the receiver agar at the opposite end of the section was measured directly with a modified barley endosperm bioassay. The movement of gibberellin was away from the root tip (basipetal) and thus opposite in direction to the polarity of auxin through such root sections. The time-course of basipetal movement was dissimilar to that for gibberellin or auxin movement through petiole sections. It took 14-18 hr for gibberellin activity equivalent to 6 ng GA-3 to collect in the basal receivers on roots. Apical receivers showed activity equivalent to 1.6 ng GA-3 at 14-18 hr. Less than 0.01 ng equivalent GA-3 was collected from sections to which GA-3 was not added, so the 6 and 1.6 ng were almost entirely due to the added GA-3. These general conclusions were confirmed with an experiment using 14C-GA-3. A decline in activity in receivers was found in some experiments at 18 hr, paralleling earlier results with GA-3, IAA, and adenine in petioles and IAA in roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号