首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyploidy in angiosperms is frequently associated with an increase in self-compatibility. Self-fertilization can enhance polyploid establishment, and theory predicts reduced inbreeding depression in polyploids relative to diploids. Therefore, we may expect mating systems that promote self-fertilization or mixed-mating in polyploid species. However, few studies have measured polyploid mating systems and inbreeding depression. We report the outcrossing rate and inbreeding depression for Campanula americana, a self-compatible protandrous herb. Allozyme genotypes suggest that C. americana is an autotetraploid with tetrasomic inheritance. We found that the multilocus outcrossing rate, t(m)=0.938, did not differ from unity. This result was unexpected since previous work demonstrated that pollinators frequently move from male- to female-phase flowers on the same plant, that is, geitonogamy. Self and outcross pollinations were conducted for three populations. Offspring were germinated in controlled conditions and grown to maturity in pots in nature. Inbreeding depression was not significant for most seed and germination characters. However, all later life traits except flowering date differed between inbred and outcrossed individuals resulting in a 26% reduction in cumulative fitness for inbred plants. Limited early- and moderate later-life inbreeding depression suggest that it is buffered by the higher levels of heterozygosity found in an autotetraploid. C. americana appears to have a flexible mating system where within flower protandry and/or cryptic self-incompatibility result in a high outcrossing rate when pollinators are abundant, but self-compatibility and limited inbreeding depression maintain reproductive success when mates are limited.  相似文献   

2.
We investigated the reproductive ecology of an endangered alpine species, Eryngium alpinum L., to determine its selfing rate and to propose possible mechanisms that may shape its breeding system. Whereas pollinators' foraging behavior suggested a high potential for geitonogamy (70% of the flights occur within plants), microsatellite analyses of seed progenies demonstrated that plants are primarily outcrossing (outcrossing rate [tm] = 0.65, 0.96, and 1 in three populations). Given the relatively long pollen viability (at least 4-5 d) and the high number of simultaneously opened flowers on each plant, protandry is not sufficient to eliminate selfing. Second, controlled crosses demonstrated not only auto-fertility, but also partial self-incompatibility. Partial self-incompatibility is probably due to the competitive advantage of cross vs. self-pollen, and, together with protandry, could lead the species to selfing as a reproductive assurance. These results are encouraging for the maintenance of large populations. However, higher selfing was observed in a small population that could suffer inbreeding depression, as observed on experimentally selfed seeds. Thus, these populations should be carefully monitored. Finally, this study shows how molecular markers and field experiments may complement each other in our reaching a global understanding of mating patterns.  相似文献   

3.
Does the mode of self-pollination affect the evolutionarily stable allocation to male vs. female function? We distinguish the following scenarios. (1) An ‘autogamous’ species, in which selfing occurs within the flower prior to opening. The pollen used in selfing is a constant fraction of all pollen grains produced. (2) A species with ‘abiotic pollination’, in which selfing occurs when pollen dispersed in one flower lands on the stigma of a nearby flower on the same plant (geitonogamy). The selfing rate increases with male allocation but a higher selfing rate does not mean a reduced export of pollen. (3) An ‘animal-pollinated’ species with geitonogamous selfing. Here the selfing rate also increases with male allocation, but pollen export to other plants in the population is a decelerating function of the number of simultaneously open flowers. In all three models selfing selects for increased female allocation. For model 3 this contradicts the general opinion that geitonogamous selfing does not affect evolutionarily stable allocations. In all models, the parent benefits more from a female-biased allocation than any other individual in the population. In addition, in models 2 and 3, greater male allocation results in more local mate competition. In model 3 and in model 2 with low levels of inbreeding depression, hermaphroditism is evolutionarily stable. In model 2 with high inbreeding depression, the population converges to a fitness minimum for the relative allocation to male function. In this case the fitness set is bowed inwards, corresponding with accelerating fitness gain curves. If the selfing rate increases with plant size, this is a sufficient condition for size-dependent sex allocation (more allocation towards seeds in large plants) to evolve. We discuss our results in relation to size-dependent sex allocation in plants and in relation to the evolution of dioecy.  相似文献   

4.
Inbreeding is a major component of the mating system in populations of many plants and animals, particularly hermaphroditic species. In flowering plants, inbreeding can occur through self-pollination within flowers (autogamy), self-pollination between flowers on the same plant (geitonogamy), or cross-pollination between closely related individuals (biparental inbreeding). We performed a floral emasculation experiment in 10 populations of Aquilegia canadensis (Ranunculaceae) and used allozyme markers to estimate the relative contribution of each mode of inbreeding to the mating system. We also examined how these modes of inbreeding were influenced by aspects of population structure and floral morphology and display predicted to affect the mating system. All populations engaged in substantial inbreeding. On average, only 25% of seed was produced by outcrossing (range among populations = 9-37%), which correlated positively with both population size (r = +0.61) and density (r = +0.64). Inbreeding occurred through autogamy and biparental inbreeding, and the relative contribution of each was highly variable among populations. Estimates of geitonogamy were not significantly greater than zero in any population. We detected substantial biparental inbreeding (mean = 14% of seeds, range = 4-24%) by estimating apparent selfing in emasculated plants with no opportunity for true selfing. This mode of inbreeding correlated negatively with population size (r = -0.87) and positively with canopy cover (r = +0.90), suggesting that population characteristics that increase outcross pollen transfer reduce biparental inbreeding. Autogamy was the largest component of the mating system in all populations (mean = 58%, range = 37-84%) and, as expected, was lowest in populations with the most herkogamous flowers (r = -0.59). Although autogamy provides reproductive assurance in natural populations of A. canadensis, it discounts ovules from making superior outcrossed seed. Hence, high autogamy in these populations seems disadvantageous, and therefore it is difficult to explain the extensive variation in herkogamy observed both among and especially within populations.  相似文献   

5.
We inferred Lloyd's modes of selfing in a natural population of the common monkeyflower, Mimulus guttatus. Estimates were obtained using floral manipulations combined with seed counts and isozyme analyses of selfing rates. Of the 25% selfing estimated from isozyme markers, about one-half was competing, about one-third was geitonogamous, and at least one-fifth (perhaps twice this) was due to biparental inbreeding. Estimates of prior and delayed selfing were small and did not significantly differ from zero. These results were obtained using plants with the characteristic pair of open flowers at an inflorescence node. The second-opening flower showed twice the rate of selfing, presumably because of protogynous-based geitonogamy differences. Solitary-flowered plants, which have smaller flowers but no geitonogamy, showed about 50% selfing, consisting of about equal components of competing selfing and biparental inbreeding. While geitonogamy and biparental inbreeding might be unavoidable by-products of adaptations for outcrossing, competing selfing is subject to more direct natural selection and warrants adaptive explanations.  相似文献   

6.
Comparisons of the causes and consequences of cross- and self-fertilization have dominated research on plant mating since Darwin's seminal work on plant reproduction. Here, I provide examples of these accomplishments, but also illustrate new approaches that emphasize the role of floral design and display in pollen dispersal and fitness gain through male function. Wide variation in outcrossing rate characterizes animal-pollinated plants. In species with large floral displays, part of the selfing component of mixed mating can arise from geitonogamy and be maladaptive because of strong inbreeding depression and pollen discounting. Floral strategies that separate the benefits of floral display from the mating costs associated with geitonogamy can resolve these conflicts by reducing lost mating opportunities through male function. The results from experiments with marker genes and floral manipulations provide evidence for the function of herkogamy and dichogamy in reducing self-pollination and promoting pollen dispersal. Evidence is also presented indicating that increased selfing resulting from changes to floral design, or geitonogamy in large clones, can act as a stimulus for the evolution of dioecy. The scope of future research on mating strategies needs to be broadened to include investigations of functional links among flowers, inflorescences and plant architecture within the framework of life-history evolution.  相似文献   

7.
夏枯草交配系统对花特征和访花频率差异的影响 植物花特征和传粉者的访问次数与交配系统类型密切相关。唇形科植物夏枯草(Prunella vulgaris)存 在两种植株类型,分别为柱头伸出花冠和柱头在花冠内部的植株,而且两种植株的比例在不同种群中存在差异。本研究选择柱头伸出花冠外植株占绝大多数、柱头伸出花冠外植株占多数和柱头在花冠内部植株占多数的3个种群,通过比较每个种群中两种植株类型的开花物候、花形态特征、昆虫访问频率、自交能力、传粉者对结实的贡献以及近交衰退的水平,以检验花特征和传粉者访问次数与交配系统类型的关系。研究结果表明,与柱头在花冠内部的植株相比,柱头伸出花冠外的植株具有更大和更多的花,产生更多的花粉和花蜜,具有更高的访花频率,并主要通过异交产生种子。在种群水平,柱头伸出花冠外的植株占多数种群的访花频率显著高于柱头在花冠内部植株占多数的访花频率。柱头在花冠内部的植株比柱头伸出花冠外的植株具有更强的自动自交能力,在传粉者缺乏时为其提供了繁殖保障,但繁殖保障和异交率在不同种群中差异不显著,表明较低的昆虫访问能够满足夏枯草的授粉需求以产生种子,这可能与夏枯草较少的胚珠数量(每朵花仅有4个胚珠)有关。柱头在花冠内部植株的近交衰退水平低于柱头伸出花冠外植株的近交衰退水平,但两种植株类型的近交衰退水平均低于0.5,说明近交衰退不足以阻止该物种中自交的进化。综上所述,柱头在花冠内部的植株能够通过自交为夏枯草提供繁殖保障,而柱头伸出花冠外的植株能够利用昆虫传粉确保异交,表明混合交配系统在该物种中是一个稳定的状态。  相似文献   

8.
The majority of plant species and many animals are hermaphrodites, with individuals expressing both female and male function. Although hermaphrodites can potentially reproduce by self‐fertilization, they have a high prevalence of outcrossing. The genetic advantages of outcrossing are described by two hypotheses: avoidance of inbreeding depression because selfing leads to immediate expression of recessive deleterious mutations, and release from drift load because self‐fertilization leads to long‐term accumulation of deleterious mutations due to genetic drift and, eventually, to extinction. I tested both hypotheses by experimentally crossing Arabidopsis lyrata plants (self‐pollinated, cross‐pollinated within the population, or cross‐pollinated between populations) and measuring offspring performance over 3 years. There were 18 source populations, each of which was either predominantly outcrossing, mixed mating, or predominantly selfing. Contrary to predictions, outcrossing populations had low inbreeding depression, which equaled that of selfing populations, challenging the central role of inbreeding depression in mating system shifts. However, plants from selfing populations showed the greatest increase in fitness when crossed with plants from other populations, reflecting higher drift load. The results support the hypothesis that extinction by mutational meltdown is why selfing hermaphroditic taxa are rare, despite their frequent appearance over evolutionary time.  相似文献   

9.
Mutations that alter the morphology of floral displays (e.g., flower size) or plant development can change multiple functions simultaneously, such as pollen export and selfing rate. Given the effect of these various traits on fitness, pleiotropy may alter the evolution of both mating systems and floral displays, two characters with high diversity among angiosperms. The influence of viability selection on mating system evolution has not been studied theoretically. We model plant mating system evolution when a single locus simultaneously affects the selfing rate, pollen export, and viability. We assume frequency-independent mating, so our model characterizes prior selfing. Pleiotropy between increased viability and selfing rate reduces opportunities for the evolution of pure outcrossing, can favor complete selfing despite high inbreeding depression, and notably, can cause the evolution of mixed mating despite very high inbreeding depression. These results highlight the importance of pleiotropy for mating system evolution and suggest that selection by nonpollinating agents may help explain mixed mating, particularly in species with very high inbreeding depression.  相似文献   

10.
Inbreeding depression is the reduction in offspring fitness associated with inbreeding and is thought to be one of the primary forces selecting against the evolution of self-fertilization. Studies suggest that most inbreeding depression is caused by the expression of recessive deleterious alleles in homozygotes whose frequency increases as a result of self-fertilization or mating among relatives. This process leads to the selective elimination of deleterious alleles such that highly selfing species may show remarkably little inbreeding depression. Genome duplication (polyploidy) has also been hypothesized to influence levels of inbreeding depression, with polyploids expected to exhibit less inbreeding depression than diploids. We studied levels of inbreeding depression in allotetraploid and diploid species of Clarkia (Onagraceae) that vary in mating system (each cytotype was represented by an outcrossing and a selfing species). The outcrossing species exhibited more inbreeding depression than the selfing species for most fitness components and for two different measures of cumulative fitness. In contrast, though inbreeding depression was generally lower for the polyploid species than for the diploid species, the difference was statistically significant only for flower number and one of the two measures of cumulative fitness. Further, we detected no significant interaction between mating system and ploidy in determining inbreeding depression. In sum, our results suggest that a taxon's current mating system is more important than ploidy in influencing levels of inbreeding depression in natural populations of these annual plants.  相似文献   

11.
Floral display size represents a tradeoff between the benefits of increased pollinator visitation and the quantity of pollen received vs. the costs of increased self-pollination and reduced pollination quality. Plants with large floral displays often are more attractive to pollinators, but pollinators visit more flowers per plant. Intraplant foraging movements should increase self-pollination through geitonogamy, lowering outcrossing rates in large plants. Local genetic structure should also increase inbreeding and decrease outcrossing estimates, if pollinators move between neighboring, related plants. These predictions were tested in a population of larkspurs (Delphinium barbeyi) in Colorado. Allozymes were used to estimate outcrossing rates of plants varying in display size. Floral displays varied widely (2-1400 flowers; 1-26 inflorescences per plant), and outcrossing rate decreased significantly with increasing display size. Large, multistalked plants self over twice as frequently as single-stalked plants (46 vs. 21%). Local population structure is significant, and biparental inbreeding depresses outcrossing in plants surrounded by genetically similar neighbors. Protandry, coupled with stereotypical bottom-up pollinator foraging, reduces self-fertilization by autogamy or geitonogamy within inflorescences. Selfing is predominantly (>60%) by geitonogamy between inflorescences in large plants. Geitonogamy may be a significant cost to plants with large floral displays if inbreeding depression and/or pollen and ovule discounting results. If so, floral display size, particularly inflorescence number, may be under contrasting selection for pollination quantity vs. quality.  相似文献   

12.
The amounts of inbreeding depression upon selfing and of heterosis upon outcrossing determine the strength of selection on the selfing rate in a population when this evolves polygenically by small steps. Genetic models are constructed which allow inbreeding depression to change with the mean selfing rate in a population by incorporating both mutation to recessive and partially dominant lethal and sublethal alleles at many loci and mutation in quantitative characters under stabilizing selection. The models help to explain observations of high inbreeding depression (> 50%) upon selfing in primarily outcrossing populations, as well as considerable heterosis upon outcrossing in primarily selfing populations. Predominant selfing and predominant outcrossing are found to be alternative stable states of the mating system in most plant populations. Which of these stable states a species approaches depends on the history of its population structure and the magnitude of effect of genes influencing the selfing rate.  相似文献   

13.
Predominantly outcrossing plant species are expected to accumulate recessive deleterious mutations, which can be purged when in a homozygous state following selfing. Individuals may vary in their genetic load because of different selfing histories, which could lead to differences in inbreeding depression among families. Lineage-dependent inbreeding depression can appear in gynodioecious species if obligatory outcrossed females are more likely to produce female offspring and if partially selfing hermaphrodites are more likely to produce hermaphrodites. We investigated inbreeding depression at the zygote, seed, and germination stages in the gynomonoecious-gynodioecious Dianthus sylvestris, including pure-sexed plants and a mixed morph. We performed hand-pollinations on 56 plants, belonging to the three morphs, each receiving 2-3 cross treatments (out-, sib- and self-pollination) on multiple flowers. Effects of cross treatments varied among stages and influenced seed provisioning, with sibling competition mainly occurring within outcrossed fruits. We found significant inbreeding depression for seed mass and germination and cumulative early inbreeding depression varied greatly among families. Among sex morphs, we found that females and hermaphrodites differed in biparental inbreeding depression, whereas uniparental was similar for all. Significant inbreeding depression levels may play a role in female maintenance in this species, and individual variation in association with sex-lineages proclivity is discussed.  相似文献   

14.
There is a long-recognized association in plants between small stature and selfing, and large stature and outcrossing. Inbreeding depression is central to several hypotheses for this association, but differences in the evolutionary dynamics of inbreeding depression associated with differences in stature are rarely considered. Here, we propose and test the Phi model of plant mating system evolution, which assumes that the per-generation mutation rate of a plant is a function of the number of mitoses (Phi) that occur from zygote to gamete, and predicts fundamental differences between low-Phi (small-statured) and high-Phi (large-statured) plants in the outcomes of the joint evolution of outcrossing rate and inbreeding depression. Using a large dataset of published population genetic studies of angiosperms and conifers, we compute fitted values of inbreeding depression and deleterious mutation rates for small- and large-statured plants. Consistent with our Phi model, we find that populations of small-statured plants exhibit a range of mating systems, significantly lower mutation rates, and intermediate inbreeding depression, while large-statured plants exhibit very high mutation rates and the maximum inbreeding depression of unity. These results indicate that (i) inbred progeny typically observed in large-statured plant populations are completely lost prior to maturity in nearly all populations; (ii) evolutionary shifts from outcrossing to selfing are generally not possible in large-statured species, rather, large-statured species are more likely to evolve mating systems that avoid selfing such as self-incompatibility and dioecy; (iii) destabilization of the mating system-high selfing rate with high-inbreeding depression-might be a common occurrence in large-statured species; and (iv) large-statured species in fragmented populations might be at higher risk of extinction than previously thought. Our results help to unify and simplify a large and diverse field of research, and serve to emphasize the importance that developmental and genetic constraints play in the evolution of plant mating systems.  相似文献   

15.
Inbreeding depression is a reduction of fitness in the progeny of closely related individuals and its effects are assigned to selfing or biparental inbreeding. Vriesea gigantea is a self‐compatible bromeliad species distributed in the Brazilian Atlantic rainforest and habitat destruction and fragmentation and collection have decreased the natural populations. We aim to describe the occurrence of inbreeding depression (δ) in three natural populations of V. gigantea and to correlate this phenomenon with previous studies of fertility, genetic diversity, population genetic structure, gene flow, mating system and seed dispersal in this species. Fifty‐four adult plants were sampled and 108 flowers were used for pollination treatments (selfing, outcrossing and control). For adult plants, we analysed plant and inflorescence height, flower numbers and seed set. In the progenies, evaluated parameters included seed germination and seedling survival rate. The results indicated low to moderate levels of inbreeding depression in V. gigantea (δ = 0.02 to 0.39), in agreement with molecular data from a previous study. Vriesea gigantea populations tolerate some degree of inbreeding, which is consistent with previous results on fertility, mating system, genetic diversity and gene flow. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 169 , 312–319.  相似文献   

16.
The influence of enantiostyly (reciprocal segregation of anthers and stigmas to different sides of the flower) on outcrossing rate was examined in Chamaecrista fasciculata (Leguminosae). I hypothesized that enantiostyly has not evolved to increase the female component of outcrossing and actually acts to increase the selling rate through geitonogamy. To quantify the role of enantiostyly to outcrossing, plants of known isozyme genotype were manipulated to be either completely left- or right-styled (nonenantiostylous) or to have equal numbers of left- and right-styled flowers (enantiostylous). Flower number was varied to quantify any interaction between floral display size and enantiostyly on outcrossing rate. These “target” plants were surrounded by unmanipulated plants homozygous for the alternative allele. Outcrossing rates of the target plants were determined by scoring the presence or absence of heterozygotes. The contribution of enantiostyly to geitonogamy may be reduced if pollinators discriminate among the floral types. Thus, observations of pollinator movement between flowers on the same plant were made to determine if pollinators discriminate between the floral types. Although pollinators moved randomly between flower types, outcrossing rate was only marginally effected by the presence of enantiostyly. Enantiostylous plants outcrossed at a slightly lower rate than nonenantiostylous plants only when the opportunity for geitonogamy was great. These results suggest that the contribution of enantiostyly to selling is minimal.  相似文献   

17.
田昊  廖万金 《生物多样性》2018,26(5):468-185
克隆植物与其传粉者的相互作用是植物繁殖生态学的重要研究领域之一。植物克隆生长与有性繁殖通常相伴进行, 往往产生较大的花展示与复杂的克隆空间结构, 通过传粉过程对有性繁殖过程产生影响, 共同决定植物的适合度。本文回顾了克隆生长对被子植物传粉过程影响的国内外研究进展, 从植物克隆大小、花资源空间配置、克隆构型与种群遗传结构四个方面讨论了克隆生长对传粉过程的影响及其生态学与进化生物学意义。早期研究预期, 随着克隆增大, 同株异花授粉水平增加, 因而通过增大自交率或花粉阻塞效应降低植物的适合度。但是, 后来的一些模拟与野外实验研究发现, 传粉者在同一克隆内访问的花数量并不会随克隆增大而一直增加, 访花行为也主要发生在分株内; 而且分子标记的自交率组分分析也表明自交主要发生在分株内。另一方面, 人工模型模拟以及传粉者访问行为研究表明, 当花朵数量相同时, 与所有花集中生长在同一分株上相比, 将花朵分散在多个分株上的克隆生长方式不会增加, 反而降低了同株异花授粉的发生水平。如果花序内花雌雄同熟, 花朵同时提供与接收花粉, 克隆生长会使植物接收到更高比例的异交花粉, 在提高后代质量的同时不增加同株异花授粉概率。这是从传粉生物学角度对植物克隆生长习性进化的一个全新的解释。今后, 克隆植物传粉生物学研究需要针对传粉者与克隆生长之间的相互作用建立理论模型, 探究克隆大小、克隆构型、花资源空间配置模式对传粉者访问频率和行为、花粉散布、交配格局的影响。同时, 需要在自然种群中, 尤其是克隆与非克隆的近缘类群、同一物种克隆与非克隆种群开展比较研究, 利用更高效的分子标记来研究克隆生长的生态与进化意义。  相似文献   

18.
S. T. Schultz  J. H. Willis 《Genetics》1995,141(3):1209-1223
We use mutation-selection recursion models to evaluate the relative contributions of mutation and inbreeding history to variation among individuals in inbreeding depression and the ability of experiments to detect associations between individual inbreeding depression and mating system genotypes within populations. Poisson mutation to deleterious additive or recessive alleles generally produces far more variation among individuals in inbreeding depression than variation in history of inbreeding, regardless of selfing rate. Moreover, variation in inbreeding depression can be higher in a completely outcrossing or selfing population than in a mixed-mating population. In an initially random mating population, the spread of a dominant selfing modifier with no pleiotropic effects on male outcross success causes a measurable increase in inbreeding depression variation if its selfing rate is large and inbreeding depression is caused by recessive lethals. This increase is observable during a short period as the modifier spreads rapidly to fixation. If the modifier alters selfing rate only slightly, it fails to spread or causes no measurable increase in inbreeding depression variance. These results suggest that genetic associations between mating loci and inbreeding depression loci could be difficult to demonstrate within populations and observable only transiently during rapid evolution to a substantially new selfing rate.  相似文献   

19.
Many angiosperms prevent inbreeding through a self‐incompatibility (SI) system, but the loss of SI has been frequent in their evolutionary history. The loss of SI may often lead to an increase in the selfing rate, with the purging of inbreeding depression and the ultimate evolution of a selfing syndrome, where plants have smaller flowers with reduced pollen and nectar production. In this study, we used approximate Bayesian computation (ABC) to estimate the timing of divergence between populations of the plant Linaria cavanillesii that differ in SI status and in which SI is associated with low inbreeding depression but not with a transition to full selfing or a selfing syndrome. Our analysis suggests that the mixed‐mating self‐compatible (SC) population may have begun to diverge from the SI populations around 2810 generation ago, a period perhaps too short for the evolution of a selfing syndrome. We conjecture that the SC population of L. cavanillesii is at an intermediate stage of transition between outcrossing and selfing.  相似文献   

20.
The yellow-flowered monkshood Aconitum lycoctonum has variable degrees of inbreeding among populations, despite being primarily bee-pollinated. Here we examined the pollination ecology of A. lycoctonum . We investigated pollinator community and frequency in four populations at two altitudes over two years. We found that flowers were more often visited at low elevation than at high elevation. However, because flowers lived longer at high elevation than at low elevation, and plants at high elevation had more flowers than at low elevation, the overall chance of a plant being visited may be greater at high elevation. Breeding system experiments showed that at least some populations of A. lycoctonum were self-compatible and also were not completely protandrous. Thus selfing, especially by geitonogamous pollen, will be common if pollinators often visit several flowers within a plant, as we found to be true for the main pollinator (bumblebees) of A. lycoctonum . Although the stereotypical behavior of bees is to move upwards, 17% of the within-plant movements of the main pollinator ( Bombus gerstaeckeri ) were downwards, i.e. from a male-phased to a female-phased flower because the flowers open from the bottom to the top of the plant. Other pollinators of A. lycoctonum moved less often within plants. We conclude that in addition to differences in self-compatibility, differences in pollinator abundance and behavior could have led to variation in the realized mating system in different A. lycoctonum populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号