首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 117 毫秒
1.
Treatment of rodents with exogenous leptin increases SOCS-3 mRNA levels in the arcuate nucleus (ARC) and dorsomedial nucleus (DMN) of the hypothalamus. To determine if SOCS-3 gene activity in the hypothalamus could be influenced by changes in physiological levels of circulating leptin, we performed in situ hybridization (ISH) and immunostaining for SOCS-3 expression in fed vs. fasted (48 h) rats. The ARC and DMN were the only regions of the diencephalon that showed SOCS-3 ISH and the autoradiographic ISH signal for SOCS-3 mRNA was visibly less in the ARC and DMN of fasted rats. The ISH signal for SOCS-3 mRNA was decreased 70% in the ARC and 90% in the DMN (to background levels) when animals were fasted (P<0.01), consistent with decreased immunostaining for SOCS-3 protein observed in the fasted rats. Double fluorescence ISH (FISH) analyses showed colocalization of SOCS-3 mRNA with mRNAs for NPY and POMC in the ARC. These findings are consistent with increased leptin signaling to the NPY and POMC neurons in the ARC by physiological levels of circulating leptin during normal feeding. Therefore, changes in SOCS-3 mRNA levels in the ARC and DMN can be viewed as an indicator of relative physiological leptin signaling to the hypothalamus and also identify cells responding directly to leptin signaling through its cognate receptor.  相似文献   

2.
Otsuka Long-Evans Tokushima Fatty (OLETF) rats lacking CCK-A receptors are hyperphagic, obese, and diabetic. We have previously demonstrated that these rats have a peripheral satiety deficit resulting in increased meal size. To examine the potential role of hypothalamic pathways in the hyperphagia and obesity of OLETF rats, we compared patterns of hypothalamic neuropeptide Y (NPY), proopiomelanocortin (POMC), and leptin receptor mRNA expression in ad libitum-fed Long-Evans Tokushima (LETO) and OLETF rats and food-restricted OLETF rats that were pair-fed to the intake of LETO controls. Pair feeding OLETF rats prevented their increased body weight and elevated levels of plasma insulin and leptin and normalized their elevated POMC and decreased NPY mRNA expression in the arcuate nucleus. In contrast, NPY expression was upregulated in the dorsomedial hypothalamus (DMH) in pair-fed OLETF rats. A similar DMH NPY overexpression was evident in 5-wk-old preobese OLETF rats. These findings suggest a role for DMH NPY upregulation in the etiology of OLETF hyperphagia and obesity.  相似文献   

3.
We examined the expressions of the prepro-orexin gene in the lateral hypothalamic area (LHA), the genes of the neuropeptide Y (NPY) and proopiomelanocortin (POMC) in the arcuate nucleus (ARC), the orexin type 1 receptor (OX1R) gene in the ventromedial hypothalamic nucleus (VMH) and the orexin type 2 receptor (OX2R) gene in the paraventricular nucleus (PVN) in 6-, 12- and 18-week-old male lean (Fa/?) and obese (fa/fa) Zucker rats, using in situ hybridization histochemistry. The fa/fa rats showed hyperglycemia at 12- and 18-week-old. The prepro-orexin mRNA level in fa/fa rats at 18-week-old and the OX2R mRNA level in fa/fa rats at 12- and 18-week-old were significantly decreased compared to controls. The NPY mRNA levels in fa/fa rats at each time point were significantly increased compared to controls, but the POMC mRNA levels were decreased. Prepro-orexin and OX2R mRNA levels in fa/fa rats pretreated with insulin normalized to the levels found in Fa/? rats. These results suggest that the regulation of prepro-orexin gene expression might be independent of the regulation of the NPY and POMC genes in the ARC in fa/fa rats.  相似文献   

4.
Chronic administration of sibutramine lowers body weight, presumably by altering brain monoamine metabolism. Here the effect of sibutramine on sympathoadrenal function (24-h urine norepinephrine and epinephrine levels) and arcuate nucleus (ARC) neuropeptide Y (NPY) and proopiomelanocortin (POMC) expression was assessed in diet-induced obese rats fed a low-fat diet. Chronic (10 wk) sibutramine [5 mg. kg(-1). day(-1) ip; rats fed ad libitum and injected with sibutramine (AS)] lowered body weight by 15% but only transiently (3-4 wk) reduced intake compared with vehicle-treated controls [rats fed chow ad libitum and injected with vehicle daily (AV)]. Other rats food restricted (RS) to 90% of the weight of AS rats and then given sibutramine restored their body weights to the level of AS rats when allowed libitum food intake. After reequilibration, RS rats were again energy restricted to reduce their weight to 90% of AS rats, and additional vehicle-treated rats (RV) were restricted to keep their body weights at the level of AS rats for 3 wk more. Terminally, total adipose depot weights and leptin levels paralleled body weights (AV > AS = RV > RS), although AS rats had heavier abdominal and lighter peripheral depots than RV rats of comparable body weights. Sibutramine treatment increased sympathetic activity, attenuated the increased ARC NPY, and decreased POMC mRNA levels induced by energy restriction in RV rats. Thus sibutramine lowered the defended body weight in association with compensatory changes in those central pathways involved in energy homeostasis.  相似文献   

5.
A Sahu  P S Kalra  S P Kalra 《Peptides》1988,9(1):83-86
We have studied the effects on neuropeptide Y (NPY) concentration in six hypothalamic nuclei, viz. medial preoptic area (MPOA), paraventricular nucleus (PVN), median eminence (ME), arcuate nucleus (ARC), ventromedial nucleus (VMN) and dorsomedial nucleus (DMN) of food deprivation (FD) for 2, 3, or 4 days or FD for 4 days followed by one day ad lib food intake (FI) in male rats. Hypothalamic nuclei were microdissected by the technique of Palkovits and processed for measurement of NPY immunoreactivity by RIA. NPY-like immunoreactivity in the ME, VMN and DMN was unaffected by FD or FI, but the remaining three nuclei--the ARC, MPOA and NPY--displayed a different pattern of changes in NPY levels in response to either FD or FD followed by FI. In the ARC, NPY levels rose significantly at day 3 and 4 after FD and remained elevated even after one day of FI. In the MPOA, while FD for 4 days had no effect, NPY concentration increased significantly in response to FI. In contrast, in the PVN, a site implicated in the control of feeding behavior, the NPY response to FD and FI was markedly different. FD elicited a gradual, time-related increase in NPY levels to reach highest concentration on day 4 and thereafter, following one day of FI, NPY levels fell dramatically to the range found in control satiated rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
During recovery from social stress in a visible burrow system (VBS), during which a dominance hierarchy is formed among the males, rats display hyperphagia and gain weight preferentially as visceral adipose tissue. By proportionally increasing visceral adiposity, social stress may contribute to the establishment of metabolic disorder. Amylin was administered to rats fed ad libitum during recovery from VBS stress in an attempt to prevent hyperphagia and the resultant gain in body weight and fat mass. Amylin treatment reduced food intake, weight gain, and accumulation of fat mass in male burrow rats, but not in male controls that spent time housed with a single female rather than in the VBS. Amylin did not alter neuropeptide Y (NPY), agouti-related peptide (AgRP), or proopiomelanocortin (POMC) mRNA expression in the arcuate nucleus of the hypothalamus as measured at the end of the recovery period, nor did it affect plasma corticosterone or leptin. Amylin exerted most of its effect on food intake during the first few days of recovery, possibly through antagonism of NPY and/or increasing leptin sensitivity. The potential for chronic social stress to contribute to metabolic disorder is diminished by amylin treatment, though the neuroendocrine mechanisms behind this effect remain elusive.  相似文献   

7.
8.
LAUTERIO, THOMAS J., MICHAEL J. DAVIES, MARK DEANGELO, MICHAEL PEYSER, AND JAMES LEE. Neuropeptide Y expression and endogenous leptin concentrations in a dietary model of obesity. Obes Res. Objective: To determine how leptin concentrations and neuropeptide (NPY) are regulated in a model of dietary obesity in relation to relative growth (RG) and relative food consumption (RFC). Research Methods and Procedures: Sprague—Dawley rats were fed a moderately high-fat diet for 14 weeks over which time animals diverged into obesity-prone (OP) and obesity-resistant (OR) populations. RG rates and RFC were calculated weekly. Following the study, an adiposity index was calculated and arcuate nucleus (ARC) NPY expression was determined by in situ hybridization (ISH) or ribonuclease protection (RPA) assays. Results: Body weights were greater in OP rats after 2 weeks on the diet compared to OR rats and remained different throughout the study. RG and RFC were greater in OP rats compared to OR rats only during the first 2 weeks of the study. Leptin concentrations rose in both groups during the experiment, but the increase was greater in OP rats than in OR rats. Insulin changes paralleled those for leptin. ARC NPY mRNA expression was not different between OP and OR rats as measured by ISH and RPA. Discussion: Although NPY expression has been reported to be different initially in OP and OR rats, this difference dissipates following divergence of body weight. RFC and RG data suggest the initial NPY elevation may contribute to increased weight gain of OP rats during the first 2 weeks of the diet. Higher relative leptin concentrations in OP rats may be necessary to normalize differences in adiposity and apparent leptin and insulin resistance of OP rats.  相似文献   

9.
10.
11.
Functional significance of neural projections from the hypothalamic dorsomedial nucleus (DMN) to the paraventricular nucleus (PVN) was investigated using surgical lesion of the central part of the DMN. Under basal conditions, DMN lesion resulted in a decrease in magnocellular vasopressin (AVP) mRNA levels in the PVN, rise in pituitary proopiomelancortin (POMC) mRNA concentrations and elevated plasma corticosterone levels. Corticotropin-releasing hormone (CRH) mRNA levels remained unaffected. In sham operated animals, osmotic stress induced by hypertonic saline injection failed to modify AVP mRNA, but increased CRH and POMC mRNA levels and peripheral hormone release. The rise in CRH mRNA levels after osmotic stress was potentiated in DMN lesioned animals. Thus, the DMN participates in the control of hypothalamic peptide gene expression and pituitary adrenocorticotropic function.  相似文献   

12.
Calorie restriction (CR) has been demonstrated to alter cytokine levels; however, its potential to modify sickness behavior (fever, anorexia, cachexia) has not. The effect of CR on sickness behavior was examined in male C57BL/6J mice fed ad libitum or restricted 25% (CR25%) or restricted 50% (CR50%) in food intake for 28 days and injected with 50 μg/kg of LPS on day 29. Changes in body temperature, locomotor activity, body weight, and food intake were determined. A separate cohort of mice were fed ad libitum or CR50% for 28 days, and hypothalamic mRNA expression of inhibitory factor κB-α (IκB-α), cyclooxygenase-2 (COX-2), prostaglandin E(2) (PGE(2)), suppressor of cytokine signaling 3 (SOCS3), IL-10, neuropeptide Y (NPY), leptin, proopiomelanocortin (POMC), and corticotrophin-releasing hormone (CRH) were determined at 0, 2, and 4 h post-LPS. CR50% mice did not develop fevers, whereas the CR25% mice displayed a fever shorter in duration but with the same peak as the controls. Both CR25% and CR50% mice showed no sign of anorexia and reduced cachexia after LPS administration. Hypothalamic mRNA expression of NPY and CRH were both increased by severalfold in CR50% animals preinjection compared with controls. The CR50% mice did not demonstrate the expected rise in hypothalamic mRNA expression of COX-2, microsomal prostaglandin E synthase-1, POMC, or CRH 2 h post-LPS, and leptin expression was decreased at this time point. Increases in SOCS3, IL-10, and IκB-α expression in CR50% animals were enhanced compared with ad libitum-fed controls at 4 h post-LPS. CR results in a suppression of sickness behavior in a dose-dependent manner, which may be due to CR attenuating proinflammatory pathways and enhancing anti-inflammatory pathways.  相似文献   

13.
Objective: Chronic central administration of neuropeptide Y (NPY) has dramatic effects on energy balance; however, the exact role of the hypothalamic paraventricular nucleus (PVN) in this is unknown. The aim of this study was to further unravel the contribution of NPY signaling in the PVN to energy balance. Research Methods and Procedures: Recombinant adeno‐associated viral particles containing NPY (rAAV‐NPY) were injected in the rat brain with coordinates targeted at the PVN. For three weeks, body weight, food intake, endocrine parameters, body temperature, and locomotor activity were measured. Furthermore, effects on insulin sensitivity and expression of NPY, agouti‐related protein (AgRP), and pro‐opiomelanocortin in the arcuate nucleus were studied. Results: Food intake was increased specifically in the light period, and dark phase body temperature and locomotor activity were reduced. This resulted in obesity characterized by increased fat mass; elevated plasma insulin, leptin, and adiponectin; decreased AgRP expression in the arcuate nucleus; and decreased insulin sensitivity; whereas plasma corticosterone was unaffected. Discussion: These data suggest that increased NPY expression targeted at the PVN is sufficient to induce obesity. Interestingly, plasma concentrations of leptin and insulin were elevated before a rise in food intake, which suggests that NPY in the PVN influences leptin and insulin secretion independently from food intake. This strengthens the role of the PVN in regulation of energy balance by NPY.  相似文献   

14.
Neuropeptide Y (NPY) is one the most potent orexigenic peptides found in the brain. It stimulates food intake with a preferential effect on carbohydrate intake. It decreases latency to eat, increases motivation to eat and delays satiety by augmenting meal size. The effects on feeding are mediated through at least two receptors, the Y1 and Y5 receptors. The NPY system for feeding regulation is mostly located in the hypothalamus. It is formed of the arcuate nucleus (ARC), where the peptide is synthesized, and the paraventricular (PVN), dorsomedial (DMN) and ventromedial (VMN) nuclei and perifornical area where it is active. This activity is modulated by the hindbrain and limbic structures. It is dependent on energy availability, e.g. upregulation with food deprivation or restriction, and return to baseline with refeeding. It is also sensitive to diet composition with variable effects of carbohydrates and fats. Leptin signalling and glucose sensing which are directly linked to diet type are the most important factors involved in its regulation. Absence of leptin signalling in obesity models due to gene mutation either at the receptor level, as in the Zucker rat, the Koletsky rat or the db/db mouse, or at the peptide level, as in ob/ob mouse, is associated with increased mRNA abundance, peptide content and/or release in the ARC or PVN. Other genetic obesity models, such as the Otsuka-Long-Evans-Tokushima Fatty rat, the agouti mouse or the tubby mouse, are characterized by a diminution in NPY expression in the ARC nucleus and by a significant increase in the DMN. Further studies are necessary to determine the exact role of NPY in these latter models. Long-term exposure to high-fat or high-energy palatable diets leads to the development of adiposity and is associated with a decrease in hypothalamic NPY content or expression, consistent with the existence of a counter-regulatory mechanism to diminish energy intake and limit obesity development. On the other hand, an overactive NPY system (increased mRNA expression in the ARC associated with an upregulation of the receptors) is characteristic of rats or rodent strains sensitive to dietary-induced obesity. Finally, NPY appears to play an important role in body weight and feeding regulation, and while it does not constitute the only target for drug treatment of obesity, it may nevertheless provide a useful target in conjunction with others.  相似文献   

15.
Reduced central leptin sensitivity in rats with diet-induced obesity   总被引:1,自引:0,他引:1  
On low-fat chow diet, rats prone to diet-induced obesity (DIO) have increased arcuate nucleus neuropeptide Y (NPY) expression but similar leptin levels compared with diet-resistant (DR) rats (19). Here, body weight and leptin levels rose in DIO rats, and they defended their higher body weight after only 1 wk on a 31% fat high-energy (HE) diet. However, DIO NPY expression did not fall to DR levels until 4 wk when plasma leptin was 168% of DR levels. When switched to chow, DIO rats lost carcass fat (18). By 10 wk, leptin levels fell to 148% and NPY expression again rose to 150% of DR levels. During 4 wk of food restriction, DIO leptin fell by approximately 50% while NPY increased by 30%. While both returned to control levels by 8 wk, DIO rats still regained all lost weight when fed ad libitum. Finally, the anorexic effect of intracerebroventricular leptin (10 microg) was inversely correlated with subsequent 3-wk weight gain on HE diet. Thus NPY expression and food intake are less sensitive to the leptin's suppressive effects in DIO rats. While this may predispose them to develop DIO, it does not fully explain their defense of a higher body weight on HE diet.  相似文献   

16.
《FEBS letters》2014,588(23):4404-4412
Intracerebroventricular injection of oxytocin (Oxt), a neuropeptide produced in hypothalamic paraventricular (PVN) and supraoptic nuclei (SON), melanocortin-dependently suppresses feeding. However, the underlying neuronal pathway is unclear. This study aimed to determine whether Oxt regulates propiomelanocortin (POMC) neurons in the arcuate nucleus (ARC) of the hypothalamus. Intra-ARC injection of Oxt decreased food intake. Oxt increased cytosolic Ca2+ in POMC neurons isolated from ARC. ARC POMC neurons expressed Oxt receptors and were contacted by Oxt terminals. Retrograde tracer study revealed the projection of PVN and SON Oxt neurons to ARC. These results demonstrate the novel oxytocinergic signaling from PVN/SON to ARC POMC, possibly regulating feeding.  相似文献   

17.
Recent studies have reinforced the view that the lateral hypothalamic area (LHA) regulates food intake and body weight. We identified leptin-sensitive neurons in the arcuate nucleus of the hypothalamus (Arc) that innervate the LHA using retrograde tracing with leptin administration. We found that retrogradely labeled cells in the Arc contained neuropeptide Y (NPY) mRNA or proopiomelanocortin (POMC) mRNA. Following leptin administration, NPY cells in the Arc did not express Fos but expressed suppressor of cytokine signaling-3 (SOCS-3) mRNA. In contrast, leptin induced both Fos and SOCS-3 expression in POMC neurons, many of which also innervated the LHA. These findings suggest that leptin directly and differentially engages NPY and POMC neurons that project to the LHA, linking circulating leptin and neurons that regulate feeding behavior and body weight homeostasis.  相似文献   

18.
Although acute food deprivation and chronic food restriction both result in body weight loss, they produce different metabolic states. To evaluate how these two treatments affect hypothalamic peptide systems involved in energy homeostasis, we compared patterns of hypothalamic neuropeptide Y (NPY), agouti-related protein (AgRP), proopiomelanocotin (POMC), and leptin receptor gene expression in acutely food-deprived and chronically food-restricted rats. Both acute food deprivation and chronic food restriction reduced body weight and circulating leptin levels and resulted in increased arcuate NPY and decreased arcuate POMC gene expression. Arcuate AgRP mRNA levels were only elevated in acutely deprived rats. NPY gene expression was increased in the compact subregion of the dorsomedial hypothalamus (DMH) in response to chronic food restriction, but not in response to acute food deprivation. Leptin receptor expression was not affected by either treatment. Double in situ hybridization histochemistry revealed that, in contrast to the situation in the arcuate nucleus, NPY and leptin receptor mRNA-expressing neurons were not colocalized in the DMH. Together, these data suggest that arcuate and DMH NPY gene expression are differentially regulated. DMH NPY-expressing neurons do not appear to be under the direct control of leptin signaling.  相似文献   

19.
Objective: To model how consuming a low‐carbohydrate (LC) diet influences food intake and body weight. Research Methods and Procedures: Food intake and body weight were monitored in rats with access to chow (CH), LC‐high‐fat (HF), or HF diets. After 8 weeks, rats received intracerebroventricular injections of a melanocortin agonist (melanotan‐II) and antagonist (SHU9119), and feeding responses were measured. At sacrifice, plasma hormones and hypothalamic expression of mRNA for proopiomelanocortin (POMC), melanocortin‐4 receptor, neuropeptide Y (NPY), and agouti related protein (AgRP) were assessed. A second set of rats had access to diet (chow or LC‐HF) for 4 weeks followed by 24 h food deprivation on two occasions, after which food intake and hypothalamic POMC, NPY, and AgRP mRNA expression were measured. Results: HF rats consumed more food and gained more weight than rats on CH or LC‐HF diets. Despite similar intakes and weight gains, LC‐HF rats had increased adiposity relative to CH rats. LC‐HF rats were more sensitive to melanotan‐II and less sensitive to SHU9119. LC‐HF rats had increased plasma leptin and ghrelin levels and decreased insulin levels, and patterns of NPY and POMC mRNA expression were consistent with those of food‐deprived rats. LC‐HF rats did not show rebound hyperphagia after food deprivation, and levels NPY, POMC, and AgRP mRNA expression were not affected by deprivation. Discussion: Our results demonstrate that an LC diet influences multiple systems involved in the controls of food intake and body weight. These data also suggest that maintenance on an LC‐HF diet affects food intake by reducing compensatory responses to food deprivation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号