首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cepA putative gene encoding a cellobiose phosphorylase of Thermotoga maritima MSB8 was cloned, expressed in Escherichia coli BL21-codonplus-RIL and characterized in detail. The maximal enzyme activity was observed at pH 6.2 and 80°C. The energy of activation was 74 kJ/mol. The enzyme was stable for 30 min at 70°C in the pH range of 6-8. The enzyme phosphorolyzed cellobiose in an random-ordered bi bi mechanism with the random binding of cellobiose and phosphate followed by the ordered release of D-glucose and α-D-glucose-1-phosphate. The K m for cellobiose and phosphate were 0.29 and 0.15 mM respectively, and the k cat was 5.4 s-1. In the synthetic reaction, D-glucose, D-mannose, 2-deoxy-D-glucose, D-glucosamine, D-xylose, and 6-deoxy-D-glucose were found to act as glucosyl acceptors. Methyl-β-D-glucoside also acted as a substrate for the enzyme and is reported here for the first time as a substrate for cellobiose phosphorylases. D-Xylose had the highest (40 s-1) k cat followed by 6-deoxy-D-glucose (17 s-1) and 2-deoxy-D-glucose (16 s-1). The natural substrate, D-glucose with the k cat of 8.0 s-1 had the highest (1.1×104 M-1 s-1) k cat/K m compared with other glucosyl acceptors. D-Glucose, a substrate of cellobiose phosphorylase, acted as a competitive inhibitor of the other substrate, α-D-glucose-1-phosphate, at higher concentrations.  相似文献   

2.
D-Galacturonic acid reductase, a key enzyme in ascorbate biosynthesis, was purified to homogeneity from Euglena gracilis. The enzyme was a monomer with a molecular mass of 38–39 kDa, as judged by SDS–PAGE and gel filtration. Apparently it utilized NADPH with a Km value of 62.5±4.5 μM and uronic acids, such as D-galacturonic acid (Km=3.79±0.5 mM) and D-glucuronic acid (Km=4.67±0.6 mM). It failed to catalyze the reverse reaction with L-galactonic acid and NADP+. The optimal pH for the reduction of D-galacturonic acid was 7.2. The enzyme was activated 45.6% by 0.1 mM H2O2, suggesting that enzyme activity is regulated by cellular redox status. No feedback regulation of the enzyme activity by L-galactono-1,4-lactone or ascorbate was observed. N-terminal amino acid sequence analysis revealed that the enzyme is closely related to the malate dehydrogenase families.  相似文献   

3.
A simple procedure is described to obtain D- and L-allothreonine (D- and L-aThr). A mixture of N-acetyl-D-allothreonine (Ac-D-aThr) and N-acetyl-L-threonine (Ac-L-Thr) was converted to a mixture of their ammonium salts and then treated with ethanol to precipitate ammonium N-acetyl-L-threoninate (Ac-L-Thr·NH3) as the less-soluble diastereoisomeric salt. After separating Ac-L-Thr·NH3 by filtration, Ac-D-aThr obtained from the filtrate was hydrolyzed in hydrochloric acid to give D-aThr of 80% de, recrystallized from water to give D-aThr of >99% de. L-aThr was obtained from a mixture of the ammonium salts of Ac-L-aThr and Ac-D-Thr in a similar manner.  相似文献   

4.
Delipidated cell walls from Aureobasidium pullulans were fractionated systematically.

The cell surface heteropolysaccharide contains D-mannose, D-galactose, D-glucose, and D-glucuronic acid (ratio, 8.5:3.9:1.0:1.0). It consists of a backbone of (1→6)-α-linked D-mannose residues, some of which are substituted at O-3 with single or β-(1→6)-linked D-galactofuranosyl side chains, some terminated with a D-glucuronic acid residue, and also with single residues of D-glucopyranose, D-galactopyranose, and D-mannopyranose.

This glucurono-gluco-galactomannan interacted with antiserum against Elsinoe leucospila, which also reacted with its galactomannan, indicating that both polysaccharides contain a common epitope, i.e., at least terminal β-galactofuranosyl groups and also possibly internal β-(1→6)-linked galactofuranose residues.

It was further separated by DEAE-Sephacel column chromatography to gluco-galactomannan and glucurono-gluco-galactomannan.

The alkali-extracted β-D-glucan was purified by DEAE-cellulose chromatography to afford two antitumor-active (1→3)-β-D-glucans. One of the glucans (Mr, 1–2 × 105) was a O-6-branched (1→3)-β-D-glucan with a single β-D-glucosyl residue, d.b., 1/7, and the other (Mr, 3.5–4.5 × 105) had similar branched structure, but having d.b., 1/5. Side chains of both glucans contain small proportions of β-(1→6)-and β-(1→4)-D-glucosidic linkages.  相似文献   

5.
Alcaligenes xylosoxydans subsp. xylosoxydans A-6 (Alcaligenes A-6) produced N-acyl-D-aspartate amidohydrolase (D-AAase) in the presence of N-acetyl-D-aspartate as an inducer. The enzyme was purified to homogeneity. The enzyme had a molecular mass of 56 kDa and was shown by sodium dodecyl sulfate (SDS)–polyacrylamide gel electrophoresis (PAGE) to be a monomer. The isoelectric point was 4.8. The enzyme had maximal activity at pH 7.5 to 8.0 and 50°C, and was stable at pH 8.0 and up to 45°C. N-Formyl (Km=12.5 mM), N-acetyl (Km=2.52 mM), N-propionyl (Km=0.194 mM), N-butyryl (Km=0.033 mM), and N-glycyl (Km =1.11 mM) derivatives of D-aspartate were hydrolyzed, but N-carbobenzoyl-D-aspartate, N-acetyl-L-aspartate, and N-acetyl-D-glutamate were not substrates. The enzyme was inhibited by both divalent cations (Hg2+, Ni2+, Cu2+) and thiol reagents (N-ethylmaleimide, iodoacetic acid, dithiothreitol, and p-chloromercuribenzoic acid). The N-terminal amino acid sequence and amino acid composition were analyzed.  相似文献   

6.
Unlabeled D- and L-alanine were racemized in deuterium oxide with an alanine racemase of Bacillus stearothermophilus at saturated concentration of substrate, and various p2H and temperature. Samples of the solution were taken at intervals, and all alanine isomers in the samples were transformed into a mixture of diastereomeric derivatives of methyl N-(–)-camphanylalaninate. Their ratio was measured on a GC-Mass, and the relative rate was calculated at the initial stage of the reaction. There was little difference in the decrease rate of the optical rotation between the enantiomers. Internal proton-transfer to the antipode was almost zero for either substrate. The α-hydrogen was abstracted 1.2–2.3 times faster from D-alanine than from L-alanine. D-Alanine gave an almost even mixture of deuterium labeled D- and L-alanine, while L-alanine gave a mixture of labeled D- and L-alanine at a ratio of 3:1. These results suggest the racemase builds two different bases in the active site. The base for D-alanine may be closer to the enzyme surface, and that for L-alanine inside.  相似文献   

7.
L-Tartrate in wines and grapes was enzymatically quantified by using the secondary activity of D-malate dehydrogenase (D-MDH). NADH formed by the D-MDH reaction was monitored spectrophotometrically. Under the optimal conditions, L-tartrate (a 1.0 mM sample solution) was fully oxidized by D-MDH in 30 min. A linear relationship was obtained between the absorbance difference and the L-tartrate concentration in the range of a 0.02-1.0 mM sample solution with a correlation coefficient of 0.9991. The relative standard deviation from ten measurements was 1.71% at the 1.0 mM sample solution level. The proposed method was compared with HPLC, and the values determined by both methods were in good agreement.  相似文献   

8.
[13C]Formaldehyde was selectively incorporated into the C-1 position of D-fructose 6-phosphate by condensation with D-ribulose 5-phosphate catalyzed by a partially purified enzyme system for formaldehyde fixation in Methylomonas aminofaciens 77a. Much of the [1-13C]D-fructose 6-phosphate produced in this reaction was converted to [1-13C]D-glucose 6-phosphate by the addition of glucose-6-phosphate isomerase. A fed-batch reaction with periodic additions of the substrates afforded 56.2 g/liter D-glucose 6-phosphate and 26.8g/liter D-fructose 6-phosphate. When [13C]methanol was used as the C1-donor, the yield of [1-13C]D-glucose 6-phosphate was high when alcohol oxidase was added. The optimum conditions for sugar phosphate production in the fed-batch reaction gave 45.6g/liter [1-13C]D-glucose 6-phosphate and 16.4g/liter [1-13C]D-fructose 6-phosphate in 165min. The molar yield of the total sugar phosphates to methanol added was 95%. The addition of H2O2 and catalase to the reaction system supplied molecular oxygen for methanol oxidation to formaldehyde by alcohol oxidase.  相似文献   

9.
Four fractions of a water-insoluble α-(1→3)-D-glucan GL extracted from fruiting bodies of Ganoderma lucidum were dissolved in 0.25 M LiCl/DMSO, and then reacted with sulfur trioxide-pyridine complex at 80°C to synthesize a series of water-soluble sulfated derivatives S-GL. The degree of substitution of DS was measured by using IR infrared spectra, elemental analysis, and 13C NMR to be 1.2-1.6 in the non-selective sulfation. Weight-average molecular weight Mw and intrinsic viscosity [η] of the sulfated derivatives S-GL were measured by multi-angle laser light scattering and viscometry. The Mw value (2.4×104) of sulfated glucan S-GL-1 was much lower than that (44.5×104) of original α-(1→3)-D-glucan GL-1. The Mark-Houwink equation and average value of characteristic ratio C for the S-GL in 0.2 M NaCl aqueous solution at 25°C were found to be: [η]=1.32×10-3Mw1.06 (cm3 g-1) and 16, respectively, in the Mw range from 1.1×104 to 2.4×104. It indicated that the sulfated derivatives of the α-(1→3)-D-glucan in the aqueous solution behave as an expanded chain, owing to intramolecular hydrogen bonding or interaction between charge groups. Interestingly, two sulfated derivatives synthesized from the α-(1→3)-D-glucan and curdlan, a β-(1→3)-D-glucan, all had significant higher antitumor activity against Ehrlich ascites carcinoma (EAC) than the originals. The effect of expanded chains of the sulfated glucan in the aqueous solution on the improvement of the antitumor activity could not be negligible.  相似文献   

10.
Pyridoxine (vitamin B6) in Rhizobium is synthesized from 1-deoxy-D-xylulose and 4-hydroxy-L-threonine. To define the pathway enzymatically, we established an enzyme reaction system with a crude enzyme solution of R. meliloti IFO14782. The enzyme reaction system required NAD+, NADP+, and ATP as coenzymes, and differed from the E. coli enzyme reaction system comprising PdxA and PdxJ proteins, which requires only NAD+ for formation of pyridoxine 5′-phosphate from 1-deoxy-D-xylulose 5-phosphate and 4-(phosphohydroxy)-L-threonine.  相似文献   

11.
Biotransformations of phenylpropanoids such as cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid were investigated with plant-cultured cells of Eucalyptus perriniana. The plant-cultured cells of E. perriniana converted cinnamic acid into cinnamic acid β-D-glucopyranosyl ester, p-coumaric acid, and 4-O-β-D-glucopyranosylcoumaric acid. p-Coumaric acid was converted into 4-O-β-D-glucopyranosylcoumaric acid, p-coumaric acid β-D-glucopyranosyl ester, 4-O-β-D-glucopyranosylcoumaric acid β-D-glucopyranosyl ester, a new compound, caffeic acid, and 3-O-β-D-glucopyranosylcaffeic acid. On the other hand, incubation of caffeic acid with cultured E. perriniana cells gave 3-O-β-D-glucopyranosylcaffeic acid, 3-O-(6-O-β-D-glucopyranosyl)-β-D-glucopyranosylcaffeic acid, a new compound, 3-O-β-D-glucopyranosylcaffeic acid β-D-glucopyranosyl ester, 4-O-β-D-glucopyranosylcaffeic acid, 4-O-β-D-glucopyranosylcaffeic acid β-D-glucopyranosyl ester, ferulic acid, and 4-O-β-D-glucopyranosylferulic acid. 4-O-β-D-Glucopyranosylferulic acid, ferulic acid β-D-glucopyranosyl ester, and 4-O-β-D-glucopyranosylferulic acid β-D-glucopyranosyl ester were isolated from E. perriniana cells treated with ferulic acid.  相似文献   

12.
D-Lactate dehydrogenase (D-LDH) from Pediococcus pentosaceus ATCC 25745 was found to produce D-3-phenyllactic acid from phenylpyruvate. The optimum pH and temperature for enzyme activity were pH 5.5 and 45 °C. The Michaelis-Menten constant (K m), turnover number (k cat), and catalytic efficiency (k cat?K m) values for the substrate phenylpyruvate were estimated to be 1.73 mmol/L, 173 s?1, and 100 (mmol/L)?1 s?1 respectively.  相似文献   

13.
β-N-Acetyl-D-hexosaminidase was isolated from the mid-gut gland of Patinopecten yessoensis. The enzyme was purifted by making an acetone-dried preparation of the mid-gut gland, extracting with 50 mM citrate-phosphate buffer (pH 4.0) (about 13% of the extracted proteins was β-N-acetyl-D-hexosaminidase), ammonium sulfate fractionation, and column chromatographies on CM-Sepharose and DEAE-Sepharose. The purifted β-N-acetyl-D-hexosaminidase was homogeneous on SDS–PAGE, and sufficiently free from other exo-type glycosidases. The molecular weight was 56,000 by SDS–PAGE. The enzyme hydrolyzed both p-nitrophenyl β-N-acetyl-D-glucosaminide and p-nitrophenyl β-N-acetyl-D-galactosaminide. For p-nitrophenyl β-N-acetyl-D-glucosaminide, the pH optimum was 3.7, the optimum temperature was 45°C, and the Km was 0.24 mM. For p-nitrophenyl β-N-acetyl-D-galactosaminide, these were pH 3.4, 45°C, and 0.15 mM, respectively. The enzyme liberated non-reducing terminal β-Iinked N-acetyl-D-glucosamine or N-acetyl-D-galactosamine from various 2-aminopyridyl derivatives of oligosaccharides of N-glycan or glycolipid type except of GM2-tetrasaccharide. As the enzyme was stable around pH 3.5–5.5, it may be useful for long time reactions around the optimum pH.  相似文献   

14.
The transglucosidation reaction of brewer’s yeast α-glucosidase was examined under the co-existence of l-sorbose and phenyl-α-glucoside. As the transglucosidation products, three kinds of new disaccharide were chromatographically isolated. It was presumed that these disaccharides consisting of d-glucose and l-sorbose were 1-O-α-d-glucopyranosyl-l-sorbose ([α]D+89.0), 3-O-α-d-glucopyranosyl-l-sorbose ([α]D+69.1) and 4-O-α-d-glucopyranosyl-l-sorbose ([α]D+81.0). The principal product formed in the enzyme reaction was 1-O-α-d-glucopyranosyl-l-sorbose.  相似文献   

15.
α-D-Xylosidase II activity from Aspergillus flavus MO-5 was increased roughly 5- to 10-fold by use of xylose instead of methyl α-D-xylopyranoside (α-MX) as a carbon source.

The enzyme was purified to an electrophoretically pure state by successive chromatography on Q-Sepharose, Phenyl Superose, PL-SAX, and TSK-gel G3000SWXL. The purified enzyme hydrolyzed isoprimeverose [α-D-xylopyranosyl-(1→6)-D-glucopyranose] and p-nitrophenyl α-D-xylopyranoside (α-p-NPX), but not α-MX or xyloglucan oligosaccharide. The apparent Km and Vmax of the enzyme for α-p-NPX and isoprimeverose were 0.97 mM and 28.0 µmol/min/mg protein, and 47.62 mM and 2.0 µmol/min/mg protein, respectively. This enzyme had an apparent molecular weight of 67,000 by SDS-polyacrylamide gel electrophoresis and 180,000 by gel filtration chromatography (TSK-gel G3000SWXL).

The enzyme showed the highest activity at pH 6.0 and 40°C, and was stable in the pH range from 6.0 to 7.0 and at the temperatures up to 40°C. The activity was inhibited by Cu2+, Zn2+, Hg2+, p-CMB, SDS, Fe3+, and N-ethylmaleimide.

This enzyme had nothing in common with α-D-xylosidase I and four α-D-xylosidases reported already.  相似文献   

16.
The seco C-nucleosides 3-(1,2,3,4,5-penta-O-acetyl-D-gluco- and D- galacto-pentitol-1-yl)-1H-1,2,4-triazoles (8 and 9) were obtained in a one pot by deamination and dethiolation of 4-amino-3-(D-gluco- and D-galacto-pentitol-1-yl)-5-mercapto-1,2,4-triazoles (1 and 2), respectively, using sodium nitrite in orthophosphoric acid and subsequent acetylation. Condensation of 1, 2, and 4-amino-3-(D-glycero-D-gulo-hexitol-1-yl)-5-mercapto-1,2,4-triazole (12) with phenacylbromide (11) afforded the corresponding 3-(D-gluco-, D-galacto-pentitol-1-yl) and 3-(D-glycero-D-gulo-hexitol-1-yl)-6-phenyl-7H-1,2,4- triazolo[3,4-b][1,3,4] thiadiazines (15, 16, and 17). Acetylation of 15–17 gave the penta- and hexa-O-acetyl derivatives 18–20, respectively. The structures were confirmed by using 1H, 13C, and 2D NMR spectra, DQFCOSY, HMQC, and HMBC experiments. The favored conformational structures were deduced from the vicinal coupling constants of the protons.  相似文献   

17.
β-N-Acetvlhexosaminidase (EC 3.2.1.52) was purified from the liver of a prawn, Penaeus japonicus, by ammonium sulfate fractionation and chromatography with Sephadex G-100, hydroxylapatite, DEAE-Cellulofine, and Cellulofine GCL-2000-m. The purified enzyme showed a single band keeping the potential activity on both native PAGE and SDS–PAGE. The apparent molecular weight was 64,000 and 110,000 by SDS–PAGE and gel filtration, respectively. The pI was less than 3.2 by chromatofocusing. The aminoterminal amino acid sequence was NH2-Thr-Leu-Pro-Pro-Pro-Trp-Gly-Trp-Ala-?-Asp-Gln-Gly-VaI-?-Val-Lys-Gly-Glu-Pro-. The optimum pH and temperature were 5.0 to 5.5 and 50°C, respectively. The enzyme was stable from pH 4 to 11, and below 55°C. It was 39% inhibited by 10mM HgCl2.

Steady-state kinetic analysis was done with the purified enzyme using N-acetylchitooligosaccharides (GlcNAcn, n = 2 to 6) and p-nitrophenyl N-acetylchitooligosaccharides (pNp-β-GlcNAcn, n= 1 to 3) as the substrates. The enzyme hydrolyzed all of these substrates to release monomeric GlcNAc from the non-reducing end of the substrate. The parameters of Km and kcat at 25°C and pH 5.5 were 0.137 mM and 598s–1 for pNp-β-GlcNAc, 0.117 mM and 298s–1 for GlcNAc2, 0.055 mM and 96.4s–1 for GlcNAc3, 0.044 mM and 30.1 s–1 for GlcNAc4, 0.045 mM and 14.7 s–1 for GlcNAc5, and 0.047 mM and 8.3 s–1 for GlcNAc6, respectively. These results suggest that this β-N-acetylhexosaminidase is an exo-type hydrolytic enzyme involved in chitin degradation, and prefers the shorter substrates.  相似文献   

18.
D-Galactosyl-β1→4-L-rhamnose (GalRha) was produced enzymatically from 1.1 M sucrose and 1.0 M L-rhamnose by the concomitant actions of four enzymes (sucrose phosphorylase, UDP-glucose-hexose 1-phosphate uridylyltransferase, UDP-glucose 4-epimerase, and D-galactosyl-β1→4-L-rhamnose phosphorylase) in the presence of 1.0 mM UDP-glucose and 30 mM inorganic phosphate. The accumulation of GalRha in 1 liter of the reaction mixture reached 230 g (the reaction yield was 71% from L-rhamnose). Sucrose and fructose in the reaction mixture were removed by yeast treatment, but isolation of GalRha by crystallization after yeast treatment was unsuccessful. Finally, 49 g of GalRha was isolated from part of the reaction mixture with yeast treatment by gel-filtration chromatography.  相似文献   

19.
Purified recombinant sorbose dehydrogenase from Sinorhizobium sp. 97507 exhibited high reactivity for 1,5-anhydro-d-glucitol (1,5-AG) and l-sorbose, but little activity for the other sugars or sugar alcohols tested. Kinetic analysis revealed that its catalytic efficiency (kcat/Km) for l-sorbose and 1,5-AG is 1.8 × 102 and 1.5 × 102 s?1·M?1, respectively.  相似文献   

20.
Synthetic D- and L-amino acid type cationic 9-mer peptides (all sequences were synthesized as D- or L-amino acids) derived from the active sites of insect defensins were tested for their ability to modify the growth of blood-stream form African trypanosomes in vitro. One of them, the D-type peptide A (RLYLRIGRR-NH2), irreversibly suppressed proliferation of the Trypanosoma brucei brucei GUTat3.1 parasite. The presence of negatively charged phosphatidylserine on the surface of the parasites was demonstrated, suggesting electrostatic interaction between the peptide and the phospholipids. Furthermore, this peptide was found to alter trypanosome membrane-potentials significantly, an effect apparently due to the removal of the parasite’s plasma membrane. The potential toxic effects of D-peptide A on mammalian cells was assessed using human brain microvascular endothelial cells. Only minor effects were found when the endothelial cells were exposed for 16 h to peptide concentrations of less than 200 μM. These findings suggest that insect defensin-based peptides represent a potentially new class of membrane-disrupting trypanocidal drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号