首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 950 毫秒
1.
An exhaustive qualitative and quantitative profiling of the photosynthetic glycerolipids in three strains of the marine diatom Skeletonema sp. was carried out by ultra performance liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry. In the diatom thylakoid membrane, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) account for about 45–70% and 5–15% of the total membrane lipids, respectively. The anionic sulfoquinovosyldiacylglycerol (SQDG) as well as the likewise anionic phosphatidylglycerol (PG) contribute between 10–40% and 4–10% each. The predominant species of MGDG were those with C16:3/C16:3, C20:5/16:1, and C20:5/C16:3. Three main molecular species of DGDG contained C20:5/C16:1, C20:5/C16:2, and C16:1/C16:1. The major molecular species of SQDG were those containing combinations of C14:0/C14:0, C14:0/C16:0, C14:0/C16:1, and C14:0/C16:3. All the PG classes contained the C18:1/C18:1 as the main molecular species. Based on the fatty acid species in sn-2 position, it is indicated that MGDG and DGDG are biosynthesized through prokaryotic pathway exclusively within the chloroplast, whereas PG and SQDG have a typical mixed biosynthetic pathway (both prokaryotic pathway and eukaryotic pathways). The chemical characteristics of photosynthetic glycerolipids related with ecological physiology are discussed.  相似文献   

2.
The lipid compositions, fatty acid compositions, positional distributions of fatty acids in glycerides, and molecular species of phospholipids of L. starkeyi, cultured in the glucose sufficient and the glucose deficient media were compared.

Under the glucose sufficient condition, the triglyceride content increased, accompanied by the remarkable increase of C16:0–C18:1–C18:0. The phospholipid content also increased with the variations of the compositions of molecular species in phosphatidylethanolamine and phosphatidylcholine.

Under the glucose deficient condition, the triglyceride content remarkably decreased, especially in C18:1–C18:1–C18:1. The compositions of phospholipid molecular species were considerably different from those of the glucose sufficient condition.  相似文献   

3.
The protein content of the filamentous Cladophora glomerata (L.) Kz., Ulothrix zonata (Web, & Mohr) Kz. and Spirogyra sp., collected from natural populations for 1 year, averaged 8.0–12.4% of the total dry weight; whereas, the corresponding levels of lipid, cellulose and ash were 11.9–16.1%, 10.0–17.8% and 14.6–24.0%, respectively. Mean values for carbohydrates, estimated by difference, ranged from 32.8 to 56.0%. The colonial Scenedesmus dimorphus (Turp.) Kz. and the unicellular Cosmarium laeve Rab., on the other hand, contained more protein, lipid and carbohydrate (estimated by difference) averaging 13–15.0%, 22.5–25.9% and 415–46.8%, respectively, and less cellulose (7.5–9.8%) and ash (8.2–9.8%). A consistent pattern of seasonal variation in the proximate composition was not normally evident for any species, reflecting the influence of several environmental parameters on the algae. Cladophora contained the greatest amount of phospholipid averaging; 10% by weight of total lipid with the smallest quantity (5%) in Scenedesmus. The predominant phospholipid fatty acid in all species was C18:1 followed by C18:2, C18:3 and C16:1 in Cladophora, Ulothrix and Spirogyra, and C16:1, C18:2 and C16:0 in Scenedesmus and Cosmarium. Oleic (C18:1) and hexadecanoic (C16:1) acids were predominant in the neutral lipids of all the algae, followed by C16:0, C18:2 and C18:3. The concentration of the different fatty acids of each Species varied considerably during the year with the proportion of C16:0 and C16:1, usually rising and that of C18:1 failing during the colder months.  相似文献   

4.
Eighteen fatty acids identified in the cuticle of three insect species representing differing susceptibilities to C. coronatus infection, were tested for effects on the in vitro growth and pathogenicity of the parasitic fungus. At all applied concentrations (0.1-0.0001% w/v) growth was inhibited by C16:0, C16:1, C18:0, C18:1, C18:2, C18:3, C20:0 and C20:1. At high concentrations spore germination was inhibited by C7:0, C8:0, C9:0, C10:0, C12:0, C18:2 and C18:3 and hyphal growth was merely retarded by C5:0, C6:0, C6:2, C14:0, C16:0, C16:1, C18:0, C18:1, C20:0 and C20:1. The presence of C15:0 at the 0.1% concentration stimulated growth of C. coronatus. Sporulation was inhibited by all concentrations of C16:0 and C18-20 fatty acids. Low concentrations of C5:0, C6:0, C6:2 and C7:0 enhanced sporulation. Fatty acids C5-12 as well as C18:3, C20:0 and C20:1 decreased the ability of fungal colonies to infect G. mellonella while C16:1 elevated it thus suggesting that C16:1 may stimulate production of enzymes involved in the host invasion. Toxicity of metabolites released into incubation medium decreased with varying degrees in the presence of C6:0, C6:2, C7:0, C9:0, C12:0, C16:1, C18:2, C18:3, C20:0 and C20:1; other fatty acids had no effect. Further work is needed to analyse the effects of exogenous fatty acids on the C. coronatus enzymes implicated in fungal pathogenicity as well as on the production of insecticidal metabolites.  相似文献   

5.
The fatty acid composition of the total lipid fractions of five different Leishmania organisms grown on Eagle's medium was determined by gas chromatography. The major fatty acids identified in the total lipid fractions of L. donovani, L. tropica major, L. tropica minor, L. tropica (England strain), and L. enriettii were C12:0, C13:0, C14:0, C15:0, C16:0, C17:0, C18:0, C18:1, C18:2, and C18:3. The statistical differences among the fatty acid methyl esters of different Leishmania organisms are discussed.Gas chromatographic analysis of the fatty acid methyl esters of the total lipid fractions of the original Eagle's medium and the media after harvesting of various Leishmania species revealed the presence of C18:3 fatty acid in the total lipid fraction of the medium of L. donovani and the complete absence of 18-carbon unsaturated fatty acids in the total lipid fraction of the medium of L. enriettii. The use of such differences in the differentiation of various Leishmania species is discussed.  相似文献   

6.
The monomeric composition of the suberins from 16 species of higher plants was determined by chromatographic methods following depolymerization of the isolated extractive-free cork layers with sodium methoxide-methanol. 1-Alkanols (mainly C18C28), alkanoic (mainly C16C30), α,ω-alkanedioic (mainly C16C24), ω-hydroxyalkanoic (mainly C16C21), dihydroxyhexadecanoic (mainly 10,16-dihydroxy- and 16-dihydroxyhexadecanoic), monohydroxyepoxyalkanoic (9,10-epoxy-18-hydroxyoctadecanoic), trihydroxyalkanoic (9,10, 18-trihydroxyoctadecanoic), epoxyalkanedioic (9,10-epoxyoctadecane-1,18-dioic) and dihydroxyalkanedioic (9,10-dihydroxyoctadecane-1 18-dioic) acids were detected in all species. The suberins differed from one another mainly in the relative proportions of these monomer classes and in the homologue content of their 1-alkanol, alkanoic, α,ω-alkanedioic and ω-hydroxyalkanoic acid fractions. C18 epoxy and vic-diol monomers were major components (32–59%) of half of the suberins examined (Quercus robur, Q. ilex, Q. suber, Fagus sylvatica, Castanea sativa, Betula pendula, Acer griseum, Fraxinus excelsior) where as ω-hydroxyalkanoic and α,ω-alkanedioic acids predominated in those that contained smaller quantities of such polar C18 monomers (Acer pseudoplatanus, Ribes nigrum, Euonymus alatus, Populus tremula, Solanum tuberosum, Sambucus nigra, Laburnum anagyroides, Cupressus leylandii). All species, however, contained substantial amounts (14–55 %) of ω-hydroxyalkanoic acids, the most common homologues being 18:1 (9) and 22: 0. The dominant α,ω-alkanedioic acid homologues were 16: 0 and 18: 1 (9) whereas 22: 0, 24: 0 and 26: 0, and 20: 0, 22: 0 and 24: 0 were usually the principal homologues in the 1-alkanol and alkanoic acid fractions, respectively. The most diagnostic feature of the suberins examined was the presence of monomers greater than C18 in chain length; most of the C16 and C18 monomers identified in the suberins also occur in plant cutins emphasizing the close chemical similarity between the two anatomical groups of lipid biopolymer.  相似文献   

7.
Qualitative and quantitative profiles of phospholipids, neutral lipids, and fatty acid composition in Cr. neoformans during the growth phase were investigated in relation to pyrophosphatidic acid. A marked increase of the total lipid content, which depended on the accumulation of triglyceride in yeast cells with the growth, was observed. The total phospholipid contents in yeast cells remained almostly constant during the exponential phase and slightly decreased in the stationary phase. The major phospholipids of this yeast were phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, and cardiolipin, the next groups being pyrophosphatidic acid, phosphatidic acid, lysophos-phatidylcholine, and unidentified components. The amounts of phosphatidylcholine, phosphatidylinositol, and cardiolipin were fairly constant throughout the growth phase, but the amount of phosphatidylethanolamine increased and that of phosphatidylserine decreased with progressive growth. The pyrophosphatidic acid contents were 0.9~0.7% for total phospholipid during the growth phase. The major fatty acids of pyrophosphatidic acid were C16:0, C18:1, and C18:2 acids. The changing patterns of fatty acid composition in pyrophosphatidic acid through the growth phase closely resembled that of phosphatidic acid, which contained larger amounts of C18:1 acid (35~45%) than C16:0 acid (30~25%) and C18:2 acid (30~25%). Phosphatidylserine and phosphatidylinositol contained considerable amounts of saturated fatty acid (C16:0 acid, more than 55%). On the other hand, phosphatidylcholine, phosphatidylethanolamine, and cardiolipin contained extremely large amounts of unsaturated fatty acid (C18:1 and C18:2 acid, 85ç90%).  相似文献   

8.
An alga known as “Nannochloropsis”, isolated from a prawn farm in Hainan, China, has been critically investigated and identified as Chlorella, a member of the Chlorophyceae based on fatty acid composition, ultrastructure, and 18S rDNA. Cells of this alga were spherical, measured by 1–6 μm in diameter and were enclosed in thin walls of approximately 0.04 μm thickness. They contained several small mitochondria, two to three thylakoids and had no vacuoles. There were many pyrenoids in the algal cells and their thylakoid lamellae were sparse and not translucent. Many lipid droplets were present in the cytoplasm. The total lipid content of this alga was 3% per gram dry weight and its major fatty acids were C16:0, C18:0, C18:1, C18:2, C18:3 and C20:0. Eicosapentaenoic acid (C20:5, EPA) was not detected. The length of its 18S rDNA sequence was 1,712 bp. 18S rDNA sequence analyses indicated that this alga was a species of Chlorella.  相似文献   

9.
The oleaginous yeast Rhodotorula glutinis has been known to be a potential feedstock for lipid production. In the present study, we investigated the enhancement of expression of malic enzyme (ME; NADP+ dependent; EC 1.1.1.40) from Mucor circinelloides as a strategy to improve lipid content inside the yeast cells. The 26S rDNA and 5.8S rDNA gene fragments isolated from Rhodotorula glutinis were used for homologous integration of ME gene into R. glutinis chromosome under the control of the constitutively highly expressed gene phosphoglycerate kinase 1 to achieve stable expression. We demonstrated that by increasing the expression of the foreign ME gene in R. glutinis, we successfully improved the lipid content by more than twofold. At the end of lipid accumulation phrase (96 h) in the transformants, activity of ME was increased by twofold and lipid content of the yeast cells was increased from 18.74 % of the biomass to 39.35 %. Simultaneously, there were no significant differences in fatty acid profiles between the wild-type strain and the recombinant strain. Over 94 % of total fatty acids were C16:0, C18:0, C16:1, C18:1, and C18:2. Our results indicated that heterologous expression of NADP+-dependent ME involved in fatty acid biosynthesis indeed increased the lipid accumulation in the oleaginous yeast R. glutinis.  相似文献   

10.
The intensitive investigations on the lipid profile of Thiobacillus ferrooxidans at various culture ages suggest some correlations of the lipid constitutents with the membrane-bound iron oxidation system. Phosphatidic acid, phosphatidyl serine and phosphatidyl ethanolamine were the major polar components; hydrocarbon, triglyceride and diglyceride were the main neutral components. Major fatty acids were C16:0, C16:1, C16:3, C18:1, C18:3, C22:1 while C20:1, C20:2, C12:0, C14:2, C18:0, C18:2, C20:0, C22:0 were found in trace amounts which also depended upon the phase of the growth. One lipoamino acid was identified as ornithine lipid in the polar fraction. Each and every component varied to some extent at different growth phasesindicating relationship of these lipids to the iron oxidation system of the strain.  相似文献   

11.
Human meibum was targetly analyzed for the presence of intact wax esters (WEs) and related compounds by means of reverse-phase HPLC in combination with ion trap mass spectrometry. The major detected WEs were based on C18:n (n = 1–4) unsaturated FAs ranking in the following order of abundance: C18:1>C18:2>C18:3>C18:4. The major fatty alcohols (FAls) found in WE were of saturated nature and varied from C18:0 to C28:0. The three most abundant species were C18:1-FA esters of C24:0, C25:0, and C26:0-FAl. Typically, a major compound based on C18:1-FA and a saturated FAl was accompanied by a few related compounds based on a C18:2, C18:3, and C18:4-FA. Contrary to previous reports, no epoxy-WEs or epoxy-FAs were detected in fresh and 1-year-old meibum samples. More than 20 (O-acyl)-ω-hydroxy-FAs (OAHFAs) were observed. The main detected OAHFAs were based on very long-chain ω-hydroxy-FA (C30:1, C32:1, and C34:1) acylated through their ω-hydroxyls by a C18:1-FA. Due to their amphiphilic anionogenic nature, OAHFAs may be responsible for stabilization of the tear film lipid layer by creating an interface between the vast pool of strictly nonpolar lipids of meibum (WEs, cholesteryl esters, etc.) and the aqueous subphase beneath it, a role previously attributed to phospholipids.  相似文献   

12.
The effects of pressure and temperature on the fatty acid composition in a barotolerant deep-sea bacterium that had branched-chain fatty acids were examined. The major fatty acids of the strain at atmospheric pressure were iso-C15:0, C16:1, iso-C17:0, and iso-C17:1. As the growth pressure increased, the proportion of unsaturated fatty acid increased because of an increase in the proportion of iso-C17:1. On the other hand, as the growth temperature decreased, the proportion of unsaturated fatty acid increased because of the increase in the proportion of C16:1 and C18:1.  相似文献   

13.
Summary Molecular species profiles were determined for both phosphatidylcholine (PC) and phosphatidylethanolamine (PE) of mitochondrial and microsomal membrane fractions from liver tissue of thermally-acclimated rainbow trout,Salmo gairdneri. The predominant molecular species of PC were 16:0/22:6, 16:0/18:1, 16:0/20:3 and 16:0/22:5, whereas predominant molecular species of PE were 18:1/20:4, 14:0/16:0, 18:0/22:6 and 18:1/22:6. PE possessed short chain saturates (primarily 14:0/16:0) and monoenes (primarily 14:0/16:1) not present in PC and larger proportions of polyunsaturated (18:0/22:6, 18:0/22:5 and 18:1/22:6. and diunsaturated molecular species than PC. Differences between membrane fractions were most evident in warm (20°C)-acclimated trout. Mitochondria contained higher proportions of long-chain, polyunsaturated molecular species of PE, but less of the corresponding species of PC than other membrane fractions. Rankings based on unsaturation index were accordingly: mitochondria heavy microsomes>light microsomes for PE, but heavy microsomes>light microsomes>-mitochondria for PC. Mitochondria were notable for high proportions of diunsaturated molecular species of both phosphatides. Growth at cold temperatures (5°C) was generally associated with a replacement of shorter chain mono- and dienoic molecular species (16:0/18:1, 16:1/18:1, 14:0/16:2 and 18:1/18:1 in the case of PC and 14:0/16:1, 14:0/16:2 and 16:1/18:1 for PE), and occasionally saturates, with long-chain, polyunsaturated molecular species (for PC, C36–38: 16:0/22:6, 16:1/22:6, 16:0/20:3 and 16:0/20:5; for PE, C38–40: 18:1/20:4, 16:1/22:6, 18:0/20:5, 18:2/20:4, 18:0/22:5 and 18:0/22:6). However, compositions of mitochondrial PE and PC from heavy microsomes were not significantly influenced by acclimation temperature. The role of phospholipase A2, in addition to other metabolic processes, in mediating these changes is discussed.Abbreviations ACL average chain length - UI unsaturation index  相似文献   

14.
A Gram-negative, rod-shaped, non-spore-forming aerobic bacterium, motile with a single polar flagellum, strain JLT2005T, was isolated from surface seawater collected from the East China Sea and formed ivory white colonies on a rich organic medium. The strain was positive for catalase, oxidase, and urease. It grew in the presence of 0–12 % (w/v) NaCl (optimum 5 %), at 20–35 °C (optimum 25 °C), or at pH 6–10 (optimum pH 9). The major fatty acids (>10 %) were C18:1ω7c, C19:0ω8c cyclo, C16:0, and C18:0. The major polar lipids were phosphatidylglycerol, diphosphatidylglycerol, and five unidentified glycolipids. Ubiquinone-10 and Ubiquinone-11 were present as the major quinones. The DNA G+C content was 74.3 mol%. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain JLT2005T belongs to the genus Pelagibacterium in the family Hyphomicrobiaceae, class Alphaproteobacteria. The closest neighbors were Pelagibacterium halotolerans B2T (98.7 % similarity) and Pelagibacterium luteolum 1_C16_27T (97.1 % similarity). DNA–DNA relatedness values of strain JLT2005T with P. halotolerans B2T and with P. luteolum 1_C16_27T were 31.6 and 25 %. Evidence from genotypic, chemotaxonomic, and phenotypic data shows that strain JLT2005T represents a novel species of the genus Pelagibacterium, for which the name Pelagibacterium nitratireducens sp. nov is proposed. The type strain is JLT2005T (=CGMCC 1.10829T =JCM 17767T).  相似文献   

15.
A Gram-positive, coccoid bacterial isolate (02-St-019/1T), forming beige pigmented colonies was obtained from an indoor air sample. Based on 16S rRNA gene sequence similarity studies it was determined that this isolate 02-St-019/1T belonged to the genus Kytococcus, showing sequence similarties of 98.6% to Kytococcus schroeteri DSM 13884T and 98.3% to Kytococcus sedentarius DSM 20547T, respectively. The diagnostic diaminoacid of the peptidoglycan was lysine, cell wall sugars were ribose and xylose. The major menaquinones detected were MK-7 and MK-8. The polar lipid profile consisted of the major phospholipids diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylserine and phosphatidylinositol mannoside. Fatty acid patterns were composed of major amounts of the iso- and anteiso-branched fatty acids anteiso C17:0, iso C15:0 and iso C17:0 and unsaturated fatty acids (C17:1 ω8c, iso C17:1 ω9c, and C17:1 ω8c) with smaller amounts of the straight-chain fatty acids C15:0, C16:0 and C17:0. The results of DNA–DNA hybridizations and physiological and biochemical tests clearly allowed a genotypic and phenotypic differentiation of strain 02-St-019/1T from the two described Kytococcus species. On the basis of these results a novel species to be named Kytococcus aerolatus sp. nov., is proposed, with the type strain 02-St-019/1T (=DSM 22179T=CCM 7639T).  相似文献   

16.
Lactobacilli are dominant in zha-chili. This study provides a taxonomic characterization of five bacterial strains isolated from zha-chili in China. The cells were Gram-positive, facultative anaerobic, non-spore-forming, flagella-free, catalase-negative, heterofermentative, pentose-fermenting, and gamma-aminobutyric acid (GABA)-producing rods. For HBUAS51241T, HBUAS51329, and HBUAS51416, C16:0, C18:1 ω9c and C19:0 iso were the predominant cellular fatty acids; diphosphatidylglycerol (DPG), phosphatidylglycerol (DP), glycolipids (GL), and glycolipids (AL) were the major phospholipids. While for HBUAS51383T and HBUAS58055, C16:0, C18:1 ω9c, C19:0 cyclo ω8c were the predominant cellular fatty acids; DPG, DP, GL, and AL were the major phospholipids. Strains HBUAS51241T, HBUAS51329, and HBUAS51416 showed 98.1–99.1% 16S rRNA gene sequence similarity, 80.2–81.4% ANI, 87.7–90.0% AAI, and 23.8–32.8% digital DDH to their closest related type strains Levilactobacillus hammesii DSM 16381T, Levilactobacillus parabrevis ATCC 53295T, and Levilactobacillus fuyuanensis 244-4T. Strains HBUAS51383T and HBUAS58055 showed 98.7–99.5% 16S rRNA gene sequence similarity, 75.4–81.4% ANI, 75.5–89.1% AAI, and 19.7–24.0% digital DDH to their closest related type strains Secundilactobacillus silagincola IWT5T, Secundilactobacillus silagei JCM 19001T, Secundilactobacillus pentosiphilus IWT25T, Secundilactobacillus mixtipabuli IWT30T, Secundilactobacillus odoratitofui DSM 19909T, and Secundilactobacillus similis DSM 23365T. The central carbon metabolism pathways for the five strains were summarizeded. Based on the phenotypic, chemotaxonomic, and genomic data, we propose two novel species Levilactobacillus tujiorum sp. nov. whose type strain is HBUAS51241T (=GDMCC 1.3022T = JCM 35241T), and Secundilactobacillus angelensis sp. nov. whose type strain is HBUAS51383T (=GDMCC 1.3021T = JCM 35209T).  相似文献   

17.
  1. Endomycopsis vernalis was cultivated on media with different N supply: series A 1%, series B 0,125% asparagine. Sonified cells were extracted and yielded 14.3% (A) and 65.3 (B) total lipids/non lipid dry matter respectively.
  2. Neutral and complex lipids were separated by rubber membrane dialysis. There is no difference in the percentage of complex lipids of both series. The increase of lipids in cells grown on low N level is due to a higher content of neutral lipids.
  3. Components of the neutral lipids, analysed by DC, were diglycerides, triglycerides, free and esterified ergosterol. Their percentage is influenced by the nutritional conditions. There is a significant increase of triglycerides and of sterol esters in the high lipid cells of series B.
  4. Methyl esters of component fatty acids of glycerides and sterol esters were analyzed by GLC. Saturated acids C14, C15, C16, C17, C18, monoenic acids C16 and C18, linoleic and linolenic acids were found to be present. Major acids were in all cases 18:1 (17–57%), 18:2 (18–50%) and 16:0 (10–18%). Linolenic acid is higher in di-and triglycerides of low lipid cells of series A than in high lipid cells of series B. Both qualitative and quantitative differences of fatty acids were found in sterol esters of series A and B respectively.
  5. The major components of complex lipids, identified by DC and isolated by CC, in both series, were phosphatidyl choline (A:36.5, B:41.0%) and phosphatidyl ethanolamine (A:24.9, B:20.5%) in addition to small amounts of lysophosphatidyl choline, lysophosphatidyl ethanolamine, phosphatidyl serine, monophosphoinositide, diphosphatidyl glycerol and, possibly cerebroside like substances.
  6. Methyl esters of the fatty acids of phosphatidyl choline and ethanolamine from both series were determined by GLC. In all samples 16:0, 18:0, 18:1, 18:2 and 18:3 acids were present besides of traces of 16:1 and 17:0. In contrast to neutral lipids the major acid of phospholipids is linoleic (53–58%), followed by oleic (8–24%) and linolenic acid (1–18%). The percentages of palmitic (4–8%) and stearic acids (tr.-1%) are small. Low lipid cells of series A differ from high lipid cells of series B by an increase of linolenic, and a decrease of linoleic acids, both in phosphatidyl choline and phosphatidyl ethanolamine.
  相似文献   

18.
A Gram-negative, non-motile, rod shaped, and orange-pigmented chemoheterotrophic bacterium, strain MS-31T was isolated from the marine sponge Hymeniacidon flavia, collected from near Jeju Island, Korea. The Strain MS-31T was subjected to a polyphasic taxonomic study. The phylogenetic analysis based on the 16S rRNA gene sequences revealed that the novel isolate could be affiliated within the genus Sphingomonas. The strain MS-31T showed 95.6% of 16S rRNA gene sequence similarity with the most closely related species Sphingomonas koreensis JSS26T. The DNA G+C content of the strain MS-31T was 69.4 mol%. The major isoprenoid quinone was ubiqunone 10 and predominant cellular fatty acids were summed feature 7 (comprising C18:1 ω7c, C18:1 Ω9t and/or C18:1 ωl2t, 39.7%), C16:0 (16.3%), C14:0 2OH (15.9%) and summed feature 3 (comprising C16:1 ω7c and/or C15:0 iso 2OH, 11.7%). The polar lipids were sphingoglycolipid, phosphatidyletha-nolamine, phosphatidylglycerol, diphosphatidylglycerol and unidentified glycolipid. Based on the evidence from the polyphasic taxonomic study, the strain should be classified as a new species of the genus Sphingomonas. As a result, the name Sphingomonas jejuensis sp. nov. (type strain MS-31T =KCTC 23321T =NBRC 107775T) is proposed.  相似文献   

19.
A Gram-stain negative, motile, rod-shaped bacterium, designated strain WM-2T, was isolated from a forest soil in Sihui City, South China, and characterized by means of a polyphasic approach. Growth occurred with 0–5 % (w/v) NaCl (optimum 0–1 %) and at pH 5.0–10.5 (optimum pH 8.5) and 4–40 °C (optimum 30 °C) in Luria–Bertani medium. Comparative 16S rRNA gene sequence analyses showed that strain WM-2T is a member of the genus Pseudomonas and most closely related to P. guguanensis, P. oleovorans subsp. lubricantis, P. toyotomiensis, P. alcaliphila and P. mendocina with 97.1–96.6 % sequence similarities. In terms of gyrB and rpoB gene sequences, strain WM-2T showed the highest similarity with the type strains of the species P. toyotomiensis and P. alcaliphila. The DNA–DNA relatedness values of strain WM-2T with P. guguanensis and P. oleovorans subsp. lubricantis was 48.7 and 37.2 %, respectively. Chemotaxonomic characteristics (the main ubiquinone Q-9, major fatty acids C18:1 ω7c/C18:1 ω6c, C16:0 and C16:1 ω7c/C16:1 ω6c and DNA G+C content 65.2 ± 0.7 mol%) were similar to those of members of the genus Pseudomonas. Polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unknown aminophospholipid, an unknown phospholipid and five unknown lipids. According to the results of polyphasic analyses, strain WM-2T represents a novel species in the genus Pseudomonas, for which the name Pseudomonas sihuiensis sp. nov. is proposed. The type strain is WM-2T (=KCTC 32246T=CGMCC 1.12407T).  相似文献   

20.
Two Gram-staining-negative, moderately halophilic bacteria, strains M1-18T and L1-16, were isolated from a saltern located in Huelva (Spain). They were motile, strictly aerobic rods, growing in the presence of 3–25% (w/v) NaCl (optimal growth at 7.5–10% [w/v] NaCl), between pH 4.0 and 9.0 (optimal at pH 6.0–7.0) and at temperatures between 15 and 40 °C (optimal at 37 °C). Phylogenetic analysis based on 16S rRNA gene sequence comparison showed that both strains showed the higher similarity values with Chromohalobacter israelensis ATCC 43985T (95.2–94.8%) and Chromohalobacter salexigens DSM 3043T (95.0–94.9%), and similarity values lower than 94.6% with other species of the genera Chromohalobacter, Kushneria, Cobetia or Halomonas. Multilocus sequence analysis (MLSA) based on the partial sequences of atpA, rpoD and secA housekeeping genes indicated that the new isolates formed an independent and monophyletic branch that was related to the peripheral genera of the family Halomonadaceae, Halotalea, Carnimonas and Zymobacter, supporting their placement as a new genus of the Halomonadaceae. The DNA–DNA hybridization between both strains was 82%, whereas the values between strain M1-18T and the most closely related species of Chromohalobacter and Kushneria were equal or lower to 48%. The major cellular fatty acids were C18:1ω7c/C18:1ω6c, C16:0, and C16:1ω7c/C16:1ω6c, a profile that differentiate this new taxon from species of the related genera. We propose the placement of both strains as a novel genus and species, within the family Halomonadaceae, with the name Larsenia salina gen. nov., sp. nov. The type strain is M1-18T (= CCM 8464 = CECT 8192T = IBRC-M 10767T = LMG 27461T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号