首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endospores of proteolytic type B Clostridium botulinum TMW 2.357 and Bacillus amyloliquefaciens TMW 2.479 are currently described as the most high-pressure-resistant bacterial spores relevant to food intoxication and spoilage in combined pressure-temperature applications. The effects of combined pressure (0.1 to 1,400 MPa) and temperature (70 to 120 degrees C) treatments were determined for these spores. A process employing isothermal holding times was established to distinguish pressure from temperature effects. An increase in pressure (600 to 1,400 MPa) and an increase in temperature (90 to 110 degrees C) accelerated the inactivation of C. botulinum spores. However, incubation at 100 degrees C, 110 degrees C, or 120 degrees C with ambient pressure resulted in faster spore reduction than treatment with 600 or 800 MPa at the same temperature. This pressure-mediated spore protection was also observed at 120 degrees C and 800, 1,000, or 1,200 MPa with the more heat-tolerant B. amyloliquefaciens TMW 2.479 spores. Inactivation curves for both strains showed a pronounced pressure-dependent tailing, which indicates that a small fraction of the spore populations survives conditions of up to 120 degrees C and 1.4 GPa in isothermal treatments. Because of this tailing and the fact that pressure-temperature combinations stabilizing bacterial endospores vary from strain to strain, food safety must be ensured in case-by-case studies demonstrating inactivation or nongrowth of C. botulinum with realistic contamination rates in the respective pressurized food and equipment.  相似文献   

2.
The inactivation of bacterial endospores by hydrostatic pressure requires the combined application of heat and pressure. We have determined the resistance of spores of 14 food isolates and 5 laboratory strains of Bacillus subtilis, B. amyloliquefaciens, and B. licheniformis to treatments with pressure and temperature (200 to 800 MPa and 60 to 80°C) in mashed carrots. A large variation in the pressure resistance of spores was observed, and their reduction by treatments with 800 MPa and 70°C for 4 min ranged from more than 6 log units to no reduction. The sporulation conditions further influenced their pressure resistance. The loss of dipicolinic acid (DPA) from spores that varied in their pressure resistance was determined, and spore sublethal injury was assessed by determination of the detection times for individual spores. Treatment of spores with pressure and temperature resulted in DPA-free, phase-bright spores. These spores were sensitive to moderate heat and exhibited strongly increased detection times as judged by the time required for single spores to grow to visible turbidity of the growth medium. The role of DPA in heat and pressure resistance was further substantiated by the use of the DPA-deficient mutant strain B. subtilis CIP 76.26. Taken together, these results indicate that inactivation of spores by combined pressure and temperature processing is achieved by a two-stage mechanism that does not involve germination. At a pressure between 600 and 800 MPa and a temperature greater than 60°C, DPA is released predominantly by a physicochemical rather than a physiological process, and the DPA-free spores are inactivated by moderate heat independent of the pressure level. Relevant target organisms for pressure and temperature treatment of foods are proposed, namely, strains of B. amyloliquefaciens, which form highly pressure-resistant spores.  相似文献   

3.
High-pressure CO2 treatment has been studied as a promising method for inactivating bacterial spores. In the present study, we compared this method with other sterilization techniques, including heat and pressure treatment. Spores of Bacillus coagulans, Bacillus subtilis, Bacillus cereus, Bacillus licheniformis, and Geobacillus stearothermophilus were subjected to CO2 treatment at 30 MPa and 35°C, to high-hydrostatic-pressure treatment at 200 MPa and 65°C, or to heat treatment at 0.1 MPa and 85°C. All of the bacterial spores except the G. stearothermophilus spores were easily inactivated by the heat treatment. The highly heat- and pressure-resistant spores of G. stearothermophilus were not the most resistant to CO2 treatment. We also investigated the influence of temperature on CO2 inactivation of G. stearothermophilus. Treatment with CO2 and 30 MPa of pressure at 95°C for 120 min resulted in 5-log-order spore inactivation, whereas heat treatment at 95°C for 120 min and high-hydrostatic-pressure treatment at 30 MPa and 95°C for 120 min had little effect. The activation energy required for CO2 treatment of G. stearothermophilus spores was lower than the activation energy for heat or pressure treatment. Although heat was not necessary for inactivationby CO2 treatment of G. stearothermophilus spores, CO2 treatment at 95°C was more effective than treatment at 95°C alone.  相似文献   

4.
Spores of Bacillus anthracis are known to be extremely resistant to heat treatment, irradiation, desiccation, and disinfectants. To determine inactivation kinetics of spores by high pressure, B. anthracis spores of a Sterne strain-derived mutant deficient in the production of the toxin components (strain RP42) were exposed to pressures ranging from 280 to 500 MPa for 10 min to 6 h, combined with temperatures ranging from 20 to 75°C. The combination of heat and pressure resulted in complete destruction of B. anthracis spores, with a D value (exposure time for 90% inactivation of the spore population) of approximately 4 min after pressurization at 500 MPa and 75°C, compared to 160 min at 500 MPa and 20°C and 348 min at atmospheric pressure (0.1 MPa) and 75°C. The use of high pressure for spore inactivation represents a considerable improvement over other available methods of spore inactivation and could be of interest for antigenic spore preparation.  相似文献   

5.
The synergistic effects of high hydrostatic pressure (HHP), mild heating, and amino acids on the germination of Clostridium sporogenes spores were examined by determining the number of surviving spores that returned to vegetative growth after pasteurization following these treatments. Pressurization at 200 MPa at a temperature higher than 40°C and treatment with some of the 19 l-amino acids at 10 mM or higher synergistically facilitated germination. When one of these factors was omitted, the level of germination was insignificant. Pressures of 100 and 400 MPa were less effective than 200 MPa. The spores were effectively inactivated by between 1.8 and 4.8 logs by pasteurization at 80°C after pressurization at 200 MPa at 45°C for 120 min with one of the amino acids with moderate hydrophobicity, such as Leu, Phe, Cys Met, Ala, Gly, or Ser. However, other amino acids showed poor inactivation effects of less than 0.9 logs. Spores in solutions containing 80 mM of either Leu, Phe, Cys, Met, Ala, Gly, or Ser were successfully inactivated by pasteurization by more than 5.4 logs after pressurization at 200 MPa at 70°C for 15 to 120 min. Ala and Met reduced the spore viability by 2.8 and 1.8 logs, respectively, by pasteurization at a concentration of 1 mM under 200 MPa at 70°C. These results indicate that germination of the spores is facilitated by a combination of high hydrostatic pressure, mild heating, and amino acids.  相似文献   

6.
Thermal inactivation of nonproteolytic Clostridium botulinum type E spores was investigated in rainbow trout and whitefish media at 75 to 93°C. Lysozyme was applied in the recovery of spores, yielding biphasic thermal destruction curves. Approximately 0.1% of the spores were permeable to lysozyme, showing an increased measured heat resistance. Decimal reduction times for the heat-resistant spore fraction in rainbow trout medium were 255, 98, and 4.2 min at 75, 85, and 93°C, respectively, and those in whitefish medium were 55 and 7.1 min at 81 and 90°C, respectively. The z values were 10.4°C in trout medium and 10.1°C in whitefish medium. Commercial hot-smoking processes employed in five Finnish fish-smoking companies provided reduction in the numbers of spores of nonproteolytic C. botulinum of less than 103. An inoculated-pack study revealed that a time-temperature combination of 42 min at 85°C (fish surface temperature) with >70% relative humidity (RH) prevented growth from 106 spores in vacuum-packaged hot-smoked rainbow trout fillets and whole whitefish stored for 5 weeks at 8°C. In Finland it is recommended that hot-smoked fish be stored at or below 3°C, further extending product safety. However, heating whitefish for 44 min at 85°C with 10% RH resulted in growth and toxicity in 5 weeks at 8°C. Moist heat thus enhanced spore thermal inactivation and is essential to an effective process. The sensory qualities of safely processed and more lightly processed whitefish were similar, while differences between the sensory qualities of safely processed and lightly processes rainbow trout were observed.  相似文献   

7.
This study is aimed at the development and application of a convenient and rapid optical assay to monitor the wet-heat resistance of bacterial endospores occurring in food samples. We tested the feasibility of measuring the release of the abundant spore component dipicolinic acid (DPA) as a probe for heat inactivation. Spores were isolated from the laboratory type strain Bacillus subtilis 168 and from two food product isolates, Bacillus subtilis A163 and Bacillus sporothermodurans IC4. Spores from the lab strain appeared much less heat resistant than those from the two food product isolates. The decimal reduction times (D values) for spores from strains 168, A163, and IC4 recovered on Trypticase soy agar were 1.4, 0.7, and 0.3 min at 105°C, 120°C, and 131°C, respectively. The estimated Z values were 6.3°C, 6.1°C, and 9.7°C, respectively. The extent of DPA release from the three spore crops was monitored as a function of incubation time and temperature. DPA concentrations were determined by measuring the emission at 545 nm of the fluorescent terbium-DPA complex in a microtiter plate fluorometer. We defined spore heat resistance as the critical DPA release temperature (Tc), the temperature at which half the DPA content has been released within a fixed incubation time. We found Tc values for spores from Bacillus strains 168, A163, and IC4 of 108°C, 121°C, and 131°C, respectively. On the basis of these observations, we developed a quantitative model that describes the time and temperature dependence of the experimentally determined extent of DPA release and spore inactivation. The model predicts a DPA release rate profile for each inactivated spore. In addition, it uncovers remarkable differences in the values for the temperature dependence parameters for the rate of spore inactivation, DPA release duration, and DPA release delay.  相似文献   

8.
The Bacillus cereus spore surface layers consist of a coat surrounded by an exosporium. We investigated the interplay between the sporulation temperature and the CotE morphogenetic protein in the assembly of the surface layers of B. cereus ATCC 14579 spores and on the resulting spore properties. The cotE deletion affects the coat and exosporium composition of the spores formed both at the suboptimal temperature of 20°C and at the optimal growth temperature of 37°C. Transmission electron microscopy revealed that ΔcotE spores had a fragmented and detached exosporium when formed at 37°C. However, when produced at 20°C, ΔcotE spores showed defects in both coat and exosporium attachment and were susceptible to lysozyme and mutanolysin. Thus, CotE has a role in the assembly of both the coat and exosporium, which is more important during sporulation at 20°C. CotE was more represented in extracts from spores formed at 20°C than at 37°C, suggesting that increased synthesis of the protein is required to maintain proper assembly of spore surface layers at the former temperature. ΔcotE spores formed at either sporulation temperature were impaired in inosine-triggered germination and resistance to UV-C and H2O2 and were less hydrophobic than wild-type (WT) spores but had a higher resistance to wet heat. While underscoring the role of CotE in the assembly of B. cereus spore surface layers, our study also suggests a contribution of the protein to functional properties of additional spore structures. Moreover, it also suggests a complex relationship between the function of a spore morphogenetic protein and environmental factors such as the temperature during spore formation.  相似文献   

9.
The combined high pressure and heat resistances of spores of five proteolytic Clostridium botulinum strains and of the nonpathogenic surrogate strain Clostridium sporogenes PA3679 were compared with their heat-only resistances on the basis of equivalent accumulated thermal lethality, expressed as equivalent minutes at a reference temperature of 105°C (F105°C). Comparisons were made with three model (i.e., diluted) products, namely, 30% (wt/wt) Bolognese sauce, 50% (wt/wt) cream sauce, and rice water agar. Pressure was determined to act synergistically with heat during high-pressure thermal (HPT) processing for C. botulinum FRRB 2802 (NCTC 7273) and C. botulinum FRRB 2804 (NCTC 3805 and 62A) in the Bolognese and cream sauces and for C. botulinum FRRB 2807 (213B) in the Bolognese sauce only. No synergy was observed for C. botulinum FRRB 2803 (NCTC 2916) or FRRB 2806 (62A) or C. sporogenes FRRB 2790 (NCTC 8594 and PA3679) in any of the model products. No significant protective effect of pressure against spore inactivation was determined for any Clostridium strain in any product. Because synergy was not consistently observed among strains of C. botulinum or among products, the prediction of inactivation of C. botulinum spores by HPT sterilization (HPTS) for the present must assume a complete lack of synergy. Therefore, any HPTS process for low-acid shelf-stable foods must be at least thermally equivalent to an F0 process of 2.8 min, in line with current good manufacturing practices. The results of this study suggest that the use of C. sporogenes PA3679 as a surrogate organism may risk overestimating inactivation of C. botulinum by HPT processing.  相似文献   

10.
High-level heat resistance of spores of Bacillus thermoamylovorans poses challenges to the food industry, as industrial sterilization processes may not inactivate such spores, resulting in food spoilage upon germination and outgrowth. In this study, the germination and heat resistance properties of spores of four food-spoiling isolates were determined. Flow cytometry counts of spores were much higher than their counts on rich medium (maximum, 5%). Microscopic analysis revealed inefficient nutrient-induced germination of spores of all four isolates despite the presence of most known germination-related genes, including two operons encoding nutrient germinant receptors (GRs), in their genomes. In contrast, exposure to nonnutrient germinant calcium-dipicolinic acid (Ca-DPA) resulted in efficient (50 to 98%) spore germination. All four strains harbored cwlJ and gerQ genes, which are known to be essential for Ca-DPA-induced germination in Bacillus subtilis. When determining spore survival upon heating, low viable counts can be due to spore inactivation and an inability to germinate. To dissect these two phenomena, the recoveries of spores upon heat treatment were determined on plates with and without preexposure to Ca-DPA. The high-level heat resistance of spores as observed in this study (D120°C, 1.9 ± 0.2 and 1.3 ± 0.1 min; z value, 12.2 ± 1.8°C) is in line with survival of sterilization processes in the food industry. The recovery of B. thermoamylovorans spores can be improved via nonnutrient germination, thereby avoiding gross underestimation of their levels in food ingredients.  相似文献   

11.
The apparent heat resistance of spores of Bacillus weihenstephanensis and Bacillus licheniformis was measured and expressed as the time to first decimal reduction (δ value) at a given recovery temperature and pH. Spores of B. weihenstephanensis were produced at 30°C and 12°C, and spores of B. licheniformis were produced at 45°C and 20°C. B. weihenstephanensis spores were then heat treated at 85°C, 90°C, and 95°C, and B. licheniformis spores were heat treated at 95°C, 100°C, and 105°C. Heat-treated spores were grown on nutrient agar at a range of temperatures (4°C to 40°C for B. weihenstephanensis and 15°C to 60°C for B. licheniformis) or a range of pHs (between pH 4.5 and pH 9.5 for both strains). The recovery temperature had a slight effect on the apparent heat resistance, except very near recovery boundaries. In contrast, a decrease in the recovery pH had a progressive impact on apparent heat resistance. A model describing the heat resistance and the ability to recover according to the sporulation temperature, temperature of treatment, and recovery temperature and pH was proposed. This model derived from secondary mathematical models for growth prediction. Previously published cardinal temperature and pH values were used as input parameters. The fitting of the model with apparent heat resistance data obtained for a wide range of spore treatment and recovery conditions was highly satisfactory.  相似文献   

12.
Nutrient germination of spores of Bacillus species occurs through germinant receptors (GRs) in spores'' inner membrane (IM) in a process stimulated by sublethal heat activation. Bacillus subtilis spores maximum germination rates via different GRs required different 75°C heat activation times: 15 min for l-valine germination via the GerA GR and 4 h for germination with the l-asparagine–glucose–fructose–K+ mixture via the GerB and GerK GRs, with GerK requiring the most heat activation. In some cases, optimal heat activation decreased nutrient concentrations for half-maximal germination rates. Germination of spores via various GRs by high pressure (HP) of 150 MPa exhibited heat activation requirements similar to those of nutrient germination, and the loss of the GerD protein, required for optimal GR function, did not eliminate heat activation requirements for maximal germination rates. These results are consistent with heat activation acting primarily on GRs. However, (i) heat activation had no effects on GR or GerD protein conformation, as probed by biotinylation by an external reagent; (ii) spores prepared at low and high temperatures that affect spores'' IM properties exhibited large differences in heat activation requirements for nutrient germination; and (iii) spore germination by 550 MPa of HP was also affected by heat activation, but the effects were relatively GR independent. The last results are consistent with heat activation affecting spores'' IM and only indirectly affecting GRs. The 150- and 550-MPa HP germinations of Bacillus amyloliquefaciens spores, a potential surrogate for Clostridium botulinum spores in HP treatments of foods, were also stimulated by heat activation.  相似文献   

13.
The effects of pressure on cultures of Lactobacillus plantarum were characterized by determination of the viability and activity of HorA, an ATP-binding cassette multidrug resistance transporter. Changes in the membrane composition of L. plantarum induced by different growth temperatures were determined. Furthermore, the effect of the growth temperature of a culture on pressure inactivation at 200 MPa was determined. Cells were characterized by plate counts on selective and nonselective agar after pressure treatment, and HorA activity was measured by ethidium bromide efflux. Fourier transform-infrared spectroscopy and Laurdan fluorescence spectroscopy provided information about the thermodynamic phase state of the cytoplasmic membrane during pressure treatment. A pressure-temperature diagram for cell membranes was established. Cells grown at 37°C and pressure treated at 15°C lost >99% of HorA activity and viable cell counts within 36 and 120 min, respectively. The membranes of these cells were in the gel phase region at ambient pressure. In contrast, cells grown at 15°C and pressure treated at 37°C lost >99% of HorA activity and viable cell counts within 4 and 8 min, respectively. The membranes of these cells were in the liquid crystalline phase region at ambient pressure. The kinetic analysis of inactivation of L. plantarum provided further evidence that inactivation of HorA is a crucial step during pressure-induced cell death. Comparison of the biological findings and the membrane state during pressure treatment led to the conclusion that the inactivation of cells and membrane enzymes strongly depends on the thermodynamic properties of the membrane. Pressure treatment of cells with a liquid crystalline membrane at 0.1 MPa resulted in HorA inactivation and cell death more rapid than those of cells with a gel phase membrane at 0.1 MPa.  相似文献   

14.
In this study, we determined the effects of incubation temperature and prior heat treatment on the lag-phase kinetics of individual spores of nonproteolytic Clostridium botulinum Eklund 17B. The times to germination (tgerm), one mature cell (tC1), and two mature cells (tC2) were measured for individual unheated spores incubated at 8, 10, 15, or 22°C and used to calculate the tgerm, the outgrowth time (tC1tgerm), and the first doubling time (tC2tC1). Measurements were also made at 22°C of spores that had previously been heated at 80°C for 20 s. For unheated spores, outgrowth made a greater contribution to the duration and variability of the lag phase than germination. Decreasing incubation temperature affected germination less than outgrowth; thus, the proportion of lag associated with germination was less at lower incubation temperatures. Heat treatment at 80°C for 20 s increased the median germination time of surviving spores 16-fold and greatly increased the variability of spore germination times. The shape of the lag-time (tC1) and outgrowth (tC1tgerm) distributions were the same for unheated spores, but heat treatment altered the shape of the lag-time distribution, so it was no longer homogeneous with the outgrowth distribution. Although heat treatment mainly extended germination, there is also evidence of damage to systems required for outgrowth. However, this damage was quickly repaired and was not evident by the time the cells started to double. The results presented here combined with previous findings show that the stage of lag most affected, and the extent of any effect in terms of duration or variability, differs with both historical treatment and the growth conditions.Clostridium botulinum is a group of four physiologically and phylogenetically distinct anaerobic spore-forming bacteria (known as groups I, II, III, and IV) that produce the highly toxic botulinum neurotoxin (12). The severity of the intoxication, botulism, ensures considerable effort is directed at preventing the growth of this pathogen in food. Nonproteolytic (group II) C. botulinum is one of the two groups most frequently associated with food-borne botulism. It forms heat-resistant spores and can germinate, grow, and produce toxin at 3°C (8); thus, nonproteolytic C. botulinum is a particular concern in mild heat-treated chilled foods (16, 17).Spores formed by pathogens such as C. botulinum are a significant food safety issue since they are able to resist many of the processes, such as cooking, used to kill vegetative cells. Understanding the transformation from a dormant spore to active vegetative cells is an important part of quantifying the risk associated with such organisms. Considerable effort has been targeted at measuring and relating the kinetic responses of populations of C. botulinum to environmental conditions and such data have been used to create predictive models, for example, ComBase (www.combase.cc). Such approaches have made a considerable contribution to ensuring food safety but problems with using population based predictions may arise when an initial inoculum is very small or additional information beyond point values is required. Spores typically contaminate foods at low concentrations so that growth of C. botulinum, when it occurs, is likely to initiate from just a few spores. In these circumstances the distribution of times to growth in packs will reflect the heterogeneity of times to growth from the contaminating individual spores. There is an intrinsic variability between individual spores within a population, and the relationship between population lag and individual lag is complex. Consequently, individual lag times cannot be predicted from population measurements (3). Knowledge of the underlying distribution would allow greater refinement of risk assessments.The lag period between a spore being exposed to conditions suitable for growth and the start of exponential growth will reflect the combined times of germination, emergence, elongation, and first cell division. Currently, very little is known about the variability and duration of these stages and any relationships between them. Measuring the kinetics of spore germination is usually achieved by measuring a population to identify time to percent completion. Such germination curves represent the summation of responses by individual spores. Some authors have measured the biovariability associated with individual spores, but most studies have examined only germination (4-7, 11, 22) and not subsequent outgrowth. More recently, we have used phase-contrast microscopy and image analysis to follow individual spores of nonproteolytic C. botulinum from dormancy, through germination and emergence, to cell division (21, 23). These experiments showed there is very little, or no, relationship between the time spent in each stage by individual spores. We have now extended this work to determine distributions of times for different stages in lag phase as affected by heat treatment and incubation temperature.  相似文献   

15.
A specific and sensitive combined selection and enrichment PCR procedure was developed for the detection of Clostridium botulinum types B, E, and F in fecal samples from slaughtered pigs. Two enrichment PCR assays, using the DNA polymerase rTth, were constructed. One assay was specific for the type B neurotoxin gene, and the other assay was specific for the type E and F neurotoxin genes. Based on examination of 29 strains of C. botulinum, 16 strains of other Clostridium spp., and 48 non-Clostridium strains, it was concluded that the two PCR assays detect C. botulinum types B, E, and F specifically. Sample preparation prior to the PCR was based on heat treatment of feces homogenate at 70°C for 10 min, enrichment in tryptone-peptone-glucose-yeast extract broth at 30°C for 18 h, and DNA extraction. The detection limits after sample preparation were established as being 10 spores per g of fecal sample for nonproteolytic type B, and 3.0 × 103 spores per g of fecal sample for type E and nonproteolytic type F with a detection probability of 95%. Seventy-eight pig fecal samples collected from slaughter houses were analyzed according to the combined selection and enrichment PCR procedure, and 62% were found to be PCR positive with respect to the type B neurotoxin gene. No samples were positive regarding the type E and F neurotoxin genes, indicating a prevalence of less than 1.3%. Thirty-four (71%) of the positive fecal samples had a spore load of less than 4 spores per g. Statistical analysis showed that both rearing conditions (outdoors and indoors) and seasonal variation (summer and winter) had significant effects on the prevalence of C. botulinum type B, whereas the effects of geographical location (southern and central Sweden) were less significant.  相似文献   

16.
Among Bacillus subtilis IFO13722 spores sporulated at 30, 37, and 44°C, those sporulated at 30°C had the highest resistance to treatments with high hydrostatic pressure (100 to 300 MPa, 55°C, 30 min). Pressure resistance increased after demineralization of the spores and decreased after remineralization of the spores with Ca2+ or Mg2+, whereas the resistance did not change when spores were remineralized with Mn2+ or K+, suggesting that former two divalent ions were involved in the activation of cortex-lytic enzymes during germination.  相似文献   

17.
Unheated spores of nonproteolytic Clostridium botulinum were able to lead to growth in sterile deoxygenated turnip, spring green, helda bean, broccoli, or potato juice, although the probability of growth was low and the time to growth was longer than the time to growth in culture media. With all five vegetable juices tested, the probability of growth increased when spores were inoculated into the juice and then heated for 2 min in a water bath at 80°C. The probability of growth was greater in bean or broccoli juice than in culture media following 10 min of heat treatment in these media. Growth was prevented by heat treatment of spores in vegetable juices or culture media at 80°C for 100 min. We show for the first time that adding heat-treated vegetable juice to culture media can increase the number of heat-damaged spores of C. botulinum that can lead to colony formation.  相似文献   

18.
Decimal reduction time (time to inactivate 90% of the population) (D) values of Bacillus anthracis spores in milk ranged from 3.4 to 16.7 h at 72°C and from 1.6 to 3.3 s at 112°C. The calculated increase of temperature needed to reduce the D value by 90% varied from 8.7 to 11.0°C, and the Arrhenius activation energies ranged from 227.4 to 291.3 kJ/mol. Six-log-unit viability reductions were achieved at 120°C for 16 s. These results suggest that a thermal process similar to commercial ultrahigh-temperature pasteurization could inactivate B. anthracis spores in milk.  相似文献   

19.
This work was undertaken to obtain information on levels of metabolism in dormant spores of Bacillus species incubated for weeks at physiological temperatures. Spores of Bacillus megaterium and Bacillus subtilis strains were harvested shortly after release from sporangia and incubated under various conditions, and dormant spore metabolism was monitored by 31P nuclear magnetic resonance (NMR) analysis of molecules including 3-phosphoglyceric acid (3PGA) and ribonucleotides. Incubation for up to 30 days at 4, 37, or 50°C in water, at 37 or 50°C in buffer to raise the spore core pH from ∼ 6.3 to 7.8, or at 4°C in spent sporulation medium caused no significant changes in ribonucleotide or 3PGA levels. Stage I germinated spores of Bacillus megaterium that had slightly increased core water content and a core pH of 7.8 also did not degrade 3PGA and accumulated no ribonucleotides, including ATP, during incubation for 8 days at 37°C in buffered saline. In contrast, spores incubated for up to 30 days at 37 or 50°C in spent sporulation medium degraded significant amounts of 3PGA and accumulated ribonucleotides, indicative of RNA degradation, and these processes were increased in B. megaterium spores with a core pH of ∼7.8. However, no ATP was accumulated in these spores. These data indicate that spores of Bacillus species stored in water or buffer at low or high temperatures exhibited minimal, if any, metabolism of endogenous compounds, even when the spore core pH was 7.8 and core water content was increased somewhat. However, there was some metabolism in spores stored in spent sporulation medium.  相似文献   

20.
Germination of Bacillus spores with a high pressure (HP) of ∼150 MPa is via activation of spores'' germinant receptors (GRs). The HP germination of multiple individual Bacillus subtilis spores in a diamond anvil cell (DAC) was monitored with phase-contrast microscopy. Major conclusions were that (i) >95% of wild-type spores germinated in 40 min in a DAC at ∼150 MPa and 37°C but individual spores'' germination kinetics were heterogeneous; (ii) individual spores'' HP germination kinetic parameters were similar to those of nutrient-triggered germination with a variable lag time (Tlag) prior to a period of the rapid release (ΔTrelease) of the spores'' dipicolinic acid in a 1:1 chelate with Ca2+ (CaDPA); (iii) spore germination at 50 MPa had longer average Tlag values than that at ∼150 MPa, but the ΔTrelease values at the two pressures were identical and HPs of <10 MPa did not induce germination; (iv) B. subtilis spores that lacked the cortex-lytic enzyme CwlJ and that were germinated with an HP of 150 MPa exhibited average ΔTrelease values ∼15-fold longer than those for wild-type spores, but the two types of spores exhibited similar average Tlag values; and (v) the germination of wild-type spores given a ≥30-s 140-MPa HP pulse followed by a constant pressure of 1 MPa was the same as that of spores exposed to a constant pressure of 140 MPa that was continued for ≥35 min; (vi) however, after short 150-MPa HP pulses and incubation at 0.1 MPa (ambient pressure), spore germination stopped 5 to 10 min after the HP was released. These results suggest that an HP of ∼150 MPa for ≤30 s is sufficient to fully activate spores'' GRs, which remain activated at 1 MPa but can deactivate at ambient pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号