首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Understanding the molecular basis of plant performance under water-limiting conditions will help to breed crop plants with a lower water demand. We investigated the physiological and gene expression response of drought-tolerant (IR57311 and LC-93-4) and drought-sensitive (Nipponbare and Taipei 309) rice (Oryza sativa L.) cultivars to 18 days of drought stress in climate chamber experiments. Drought stressed plants grew significantly slower than the controls. Gene expression profiles were measured in leaf samples with the 20 K NSF oligonucleotide microarray. A linear model was fitted to the data to identify genes that were significantly regulated under drought stress. In all drought stressed cultivars, 245 genes were significantly repressed and 413 genes induced. Genes differing in their expression pattern under drought stress between tolerant and sensitive cultivars were identified by the genotype x environment (G x E) interaction term. More genes were significantly drought regulated in the sensitive than in the tolerant cultivars. Localizing all expressed genes on the rice genome map, we checked which genes with a significant G x E interaction co-localized with published quantitative trait loci regions for drought tolerance. These genes are more likely to be important for drought tolerance in an agricultural environment. To identify the metabolic processes with a significant G x E effect, we adapted the analysis software MapMan for rice. We found a drought stress induced shift toward senescence related degradation processes that was more pronounced in the sensitive than in the tolerant cultivars. In spite of higher growth rates and water use, more photosynthesis related genes were down-regulated in the tolerant than in the sensitive cultivars.  相似文献   

2.
3.
4.
5.
6.
Quality traits such as flavour and texture are assuming a greater importance in crop breeding programmes. This study takes advantage of potato germplasm differentiated in tuber flavour and texture traits. A recently developed 44,000-element potato microarray was used to identify tuber gene expression profiles that correspond to differences in tuber flavour and texture as well as carotenoid content and dormancy characteristics. Gene expression was compared in two Solanum tuberosum group Phureja cultivars and two S. tuberosum group Tuberosum cultivars; 309 genes were significantly and consistently up-regulated in Phureja, whereas 555 genes were down-regulated. Approximately 46% of the genes in these lists can be identified from their annotation and amongst these are candidates that may underpin the Phureja/Tuberosum trait differences. For example, a clear difference in the cooked tuber volatile profile is the higher level of the sesquiterpene alpha-copaene in Phureja compared with Tuberosum. A sesquiterpene synthase gene was identified as being more highly expressed in Phureja tubers and its corresponding full-length cDNA was demonstrated to encode alpha-copaene synthase. Other potential 'flavour genes', identified from their differential expression profiles, include those encoding branched-chain amino acid aminotransferase and a ribonuclease suggesting a mechanism for 5'-ribonucleotide formation in potato tubers on cooking. Major differences in the expression levels of genes involved in cell wall biosynthesis (and potentially texture) were also identified, including genes encoding pectin acetylesterase, xyloglucan endotransglycosylase and pectin methylesterase. Other gene expression differences that may impact tuber carotenoid content and tuber life-cycle phenotypes are discussed.  相似文献   

7.
Propolis is a polyphenol-rich resinous substance extensively used to improve health and prevent diseases. The effects of polyphenols from different sources of propolis on atherosclerotic lesions and inflammatory and angiogenic factors were investigated in LDL receptor gene (LDLr?/?) knockout mice. The animals received a cholesterol-enriched diet to induce the initial atherosclerotic lesions (IALs) or advanced atherosclerotic lesions (AALs). The IAL or AAL animals were divided into three groups, each receiving polyphenols from either the green, red or brown propolis (250 mg/kg per day) by gavage. After 4 weeks of polyphenol treatment, the animals were sacrificed and their blood was collected for lipid profile analysis. The atheromatous lesions at the aortic root were also analyzed for gene expression of inflammatory and angiogenic factors by quantitative real-time polymerase chain reaction and immunohistochemistry. All three polyphenol extracts improved the lipid profile and decreased the atherosclerotic lesion area in IAL animals. However, only polyphenols from the red propolis induced favorable changes in the lipid profiles and reduced the lesion areas in AAL mice. In IAL groups, VCAM, MCP-1, FGF, PDGF, VEGF, PECAM and MMP-9 gene expression was down-regulated, while the metalloproteinase inhibitor TIMP-1 gene was up-regulated by all polyphenol extracts. In contrast, for advanced lesions, only the polyphenols from red propolis induced the down-regulation of CD36 and the up-regulation of HO-1 and TIMP-1 when compared to polyphenols from the other two types of propolis. In conclusion, polyphenols from propolis, particularly red propolis, are able to reduce atherosclerotic lesions through mechanisms including the modulation of inflammatory and angiogenic factors.  相似文献   

8.
Differential gene expression was analyzed after infection with Phytophthora infestans in six potato cultivars with different levels of resistance to late blight. To verify the infection of the potato leaflets, the amount of phytopathogen mRNA within the plant material was quantified by real-time quantitative PCR. The expression of 182 genes selected from two subtracted cDNA libraries was studied with cDNA array hybridization using RNA from non-infected and infected potato leaflets. Gene up- and down-regulation were clearly detectable in all cultivars 72 h post inoculation. Gene expression patterns in susceptible cultivars differed from those in potato varieties with a higher level of resistance. In general, a stronger gene induction was observed in the susceptible cultivars compared to the moderately to highly resistant potato varieties. Five genes with the highest homology to stress and/or defence-related genes were induced specifically in the susceptible cultivars. Four genes responded to pathogen attack independently of the level of resistance of the cultivar used, and three genes were repressed in infected tissue of most cultivars. Even in the absence of P. infestans infection, six genes showed higher expression levels in the somewhat resistant cultivars Bettina and Matilda. Possible reasons for the different levels of gene expression are discussed.  相似文献   

9.
Drought is the most crucial environmental factor that limits productivity of many crop plants. Exploring novel genes and gene combinations is of primary importance in plant drought tolerance research. Stress tolerant genotypes/species are known to express novel stress responsive genes with unique functional significance. Hence, identification and characterization of stress responsive genes from these tolerant species might be a reliable option to engineer the drought tolerance. Safflower has been found to be a relatively drought tolerant crop and thus, it has been the choice of study to characterize the genes expressed under drought stress. In the present study, we have evaluated differential drought tolerance of two cultivars of safflower namely, A1 and Nira using selective physiological marker traits and we have identified cultivar A1 as relatively drought tolerant. To identify the drought responsive genes, we have constructed a stress subtracted cDNA library from cultivar A1 following subtractive hybridization. Analysis of?~1,300 cDNA clones resulted in the identification of 667 unique drought responsive ESTs. Protein homology search revealed that 521 (78?%) out of 667 ESTs showed significant similarity to known sequences in the database and majority of them previously identified as drought stress-related genes and were found to be involved in a variety of cellular functions ranging from stress perception to cellular protection. Remaining 146 (22?%) ESTs were not homologous to known sequences in the database and therefore, they were considered to be unique and novel drought responsive genes of safflower. Since safflower is a stress-adapted oil-seed crop this observation has great relevance. In addition, to validate the differential expression of the identified genes, expression profiles of selected clones were analyzed using dot blot (reverse northern), and northern blot analysis. We showed that these clones were differentially expressed under different abiotic stress conditions. The implications of the analyzed genes in abiotic stress tolerance are discussed in our study.  相似文献   

10.
11.
12.
One-carbon metabolism plays a critical role in both DNA methylation and DNA synthesis. Accumulating evidence has shown that interruptions of this pathway are associated with many disease outcomes including cardiovascular diseases and cancers. Mechanistic studies have been performed on genetic polymorphisms involved in one-carbon metabolism. However, expression profiles of these inter-related genes are not well-known. In this study, we examined the gene expression profiles of 11 one-carbon metabolizing genes by quantifying the mRNA level of the lymphocyte among 54 healthy individuals and explored the correlations of these genes. We found these genes were expressed in lymphocytes at moderate levels and showed significant inter-person variations, We also applied principle component analysis to explore potential patterns of expression. The components identified by the program agreed with existing knowledge about one-carbon metabolism. This study helps us better understand the biological functions of one-carbon metabolism.  相似文献   

13.
14.
Potato tuber development has proven to be a valuable model system for studying underground sink organ formation. Research on this topic has led to the identification of many genes involved in this complex process and has aided in the unravelling of the mechanisms underlying starch synthesis. However, less attention has been paid to the biochemical pathways of other important metabolites or to the changing metabolic fluxes occurring during potato tuber development. In this paper, we describe the construction of a potato complementary DNA (cDNA) microarray specifically designed for genes involved in processes related to tuber development and tuber quality traits. We present expression profiles of 1315 cDNAs during tuber development where the predominant profiles were strong up- and down-regulation. Gene expression profiles showing transient increases or decreases were less abundantly represented and followed more moderate changes, mainly during tuber initiation. In addition to the confirmation of gene expression patterns during tuber development, many novel differentially expressed genes were identified and are considered as candidate genes for direct involvement in potato tuber development. A detailed analysis of starch metabolism genes provided a unique overview of expression changes during tuber development. Characteristic expression profiles were often clearly different between gene family members. A link between differential gene expression during tuber development and potato tissue specificity is described. This dataset provides a firm basis for the identification of key regulatory genes in a number of metabolic pathways that may provide researchers with new tools to achieve breeding goals for use in industrial applications.  相似文献   

15.
16.
17.
Sequence and expression of potato U2 snRNA genes.   总被引:5,自引:2,他引:3       下载免费PDF全文
  相似文献   

18.
Cotton is one of the most important crops for its natural textile fibers in the world. However, it often suffered from drought stress during its growth and development, resulting in a drastic reduction in cotton productivity. Therefore, study on molecular mechanism of cotton drought-tolerance is very important for increasing cotton production. To investigate molecular mechanism of cotton drought-resistance, we employed RNA-Seq technology to identify differentially expressed genes in the leaves of two different cultivars (drought-resistant cultivar J-13 and drought-sensitive cultivar Lu-6) of cotton. The results indicated that there are about 13.38% to 18.75% of all the unigenes differentially expressed in drought-resistant sample and drought-sensitive control, and the number of differentially expressed genes was increased along with prolonged drought treatment. DEG (differentially expression gene) analysis showed that the normal biophysical profiles of cotton (cultivar J-13) were affected by drought stress, and some cellular metabolic processes (including photosynthesis) were inhibited in cotton under drought conditions. Furthermore, the experimental data revealed that there were significant differences in expression levels of the genes related to abscisic acid signaling, ethylene signaling and jasmonic acid signaling pathways between drought-resistant cultivar J-13 and drought-sensitive cultivar Lu-6, implying that these signaling pathways may participate in cotton response and tolerance to drought stress.  相似文献   

19.
Two cDNAs of the enzyme glutathione reductase (GR; EC 1.6.4.2) encoding a dual-targeted isoform (dtGR) and a cytosolic isoform (cGR), were cloned from leaves of common bean (Phaseolus vulgaris L.). Moderate drought stress (Psi w=-1.5MPa) followed by re-watering was applied to common bean cultivars, one tolerant to drought (IPA), the other susceptible (Carioca) and to cowpea (Vigna unguiculata L. Walp) cultivars, one tolerant to drought (EPACE-1), and the other susceptible (1183). mRNA levels were much higher for PvcGR than for PvdtGR in all cases. Moderate drought stress induced an up-regulation of the expression of PvcGR in the susceptible cultivars. On the contrary, PvdtGR expression decreased. In the tolerant cowpea EPACE-1, GR gene expression remained stable under drought. During recovery from drought, an up-regulation of the two GR isoforms occurred, with a peak at 6-10h after re-hydration. This suggests that moderate drought stress may lead to a hardening process and acclimation tolerance. The role of GR isoforms in plant tolerance and capacity to recover from drought stress is discussed.  相似文献   

20.
Plant polyphenols have gained prominence in quality of plant products and in human health. An experiment was conducted to determine the association of tea polyphenols with water stress and their suitability as indicators for drought tolerance. The experiment was conducted in a 'rain-out' shelter, and consisted of six tea clones (BBK 35, TRFK 6/8, TRFK 76/1, TRFK 395/2, TRFK 31/30, and TRFK 311/287) and four levels of soil water contents (38, 30, 22, and 14% v/v), which were maintained for a period of 12 weeks. The treatments were arranged in a completely randomized design and replicated three times. Plant growth was monitored over 6 weeks, and a water stress index was calculated to determine water-stress tolerant clones. Total polyphenols in tea shoots was analyzed and a regression analysis done. The results indicate that declining soil water content (SWC) reduced both growth and content of polyphenols in tea. Tolerant clones maintained a high polyphenol content at low SWC, and also showed less fluctuation in phenolics when subjected to changes in SWC. There was significant (P<0.001) correlation of total polyphenol content with shoot growth and WSI of tea, and a linear relationship (r2=0.97) between SWC for tea and both, water stress index and shoot polyphenol content. We report that there is a potential to use polyphenols as indicators for selection of drought-tolerant tea cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号