首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Whatever their abundance in genomes, spliceosomal introns are the signature of eukaryotic genes. The sequence of Saccharomyces cerevisiae, achieved fifteen years ago, revealed that this yeast has very few introns, but conserved intron boundaries typical for an intron definition mechanism. With the improvement and the development of new sequencing technologies, yeast genomes have been extensively sequenced during the last decade. We took advantage of this plethora of data to compile and assess the intron content of the protein-coding genes of 13 genomes representative of the evolution of hemiascomycetous yeasts. We first observed that intron paucity is a general rule and that the fastest evolving genomes tend to lose their introns more rapidly (e.g. S. cerevisiae versus Yarrowia lipolytica). Noticeable differences were also confirmed for 5' splice sites and branch point sites (BP) as well as for the relative position of the BP. These changes seemed to be correlated with the lineage specific evolution of splicing factors.  相似文献   

2.
Many spliceosomal introns exist in the eukaryotic nuclear genome. Despite much research, the evolution of spliceosomal introns remains poorly understood. In this paper, we tried to gain insights into intron evolution from a novel perspective by comparing the gene structures of cytoplasmic ribosomal proteins (CRPs) and mitochondrial ribosomal proteins (MRPs), which are held to be of archaeal and bacterial origin, respectively. We analyzed 25 homologous pairs of CRP and MRP genes that together had a total of 527 intron positions. We found that all 12 of the intron positions shared by CRP and MRP genes resulted from parallel intron gains and none could be considered to be “conserved,” i.e., descendants of the same ancestor. This was supported further by the high frequency of proto-splice sites at these shared positions; proto-splice sites are proposed to be sites for intron insertion. Although we could not definitively disprove that spliceosomal introns were already present in the last universal common ancestor, our results lend more support to the idea that introns were gained late. At least, our results show that MRP genes were intronless at the time of endosymbiosis. The parallel intron gains between CRP and MRP genes accounted for 2.3% of total intron positions, which should provide a reliable estimate for future inferences of intron evolution.  相似文献   

3.
Conservation versus parallel gains in intron evolution   总被引:10,自引:1,他引:9  
Orthologous genes from distant eukaryotic species, e.g. animals and plants, share up to 25–30% intron positions. However, the relative contributions of evolutionary conservation and parallel gain of new introns into this pattern remain unknown. Here, the extent of independent insertion of introns in the same sites (parallel gain) in orthologous genes from phylogenetically distant eukaryotes is assessed within the framework of the protosplice site model. It is shown that protosplice sites are no more conserved during evolution of eukaryotic gene sequences than random sites. Simulation of intron insertion into protosplice sites with the observed protosplice site frequencies and intron densities shows that parallel gain can account but for a small fraction (5–10%) of shared intron positions in distantly related species. Thus, the presence of numerous introns in the same positions in orthologous genes from distant eukaryotes, such as animals, fungi and plants, appears to reflect mostly bona fide evolutionary conservation.  相似文献   

4.
Correct identification of all introns is necessary to discern the protein-coding potential of a eukaryotic genome. The existence of most of the spliceosomal introns predicted in the genome of Saccharomyces cerevisiae remains unsupported by molecular evidence. We tested the intron predictions for 87 introns predicted to be present in non-ribosomal protein genes, more than a third of all known or suspected introns in the yeast genome. Evidence supporting 61 of these predictions was obtained, 20 predicted intron sequences were not spliced and six predictions identified an intron-containing region but failed to specify the correct splice sites, yielding a successful prediction rate of <80%. Alternative splicing has not been previously described for this organism, and we identified two genes (YKL186C/MTR2 and YML034W) which encode alternatively spliced mRNAs; YKL186C/MTR2 produces at least five different spliced mRNAs. One gene (YGR225W/SPO70) has an intron whose removal is activated during meiosis under control of the MER1 gene. We found eight new introns, suggesting that numerous introns still remain to be discovered. The results show that correct prediction of introns remains a significant barrier to understanding the structure, function and coding capacity of eukaryotic genomes, even in a supposedly simple system like yeast.  相似文献   

5.
The spliceosome is a large, dynamic ribonuclear protein complex, required for the removal of intron sequences from newly synthesized eukaryotic RNAs. The spliceosome contains five essential small nuclear RNAs (snRNAs): U1, U2, U4, U5, and U6. Phylogenetic comparisons of snRNAs from protists to mammals have long demonstrated remarkable conservation in both primary sequence and secondary structure. In contrast, the snRNAs of the hemiascomycetous yeast Saccharomyces cerevisiae have highly unusual features that set them apart from the snRNAs of other eukaryotes. With an emphasis on the pathogenic yeast Candida albicans, we have now identified and compared snRNAs from newly sequenced yeast genomes, providing a perspective on spliceosome evolution within the hemiascomycetes. In addition to tracing the origins of previously identified snRNA variations present in Saccharomyces cerevisiae, we have found numerous unexpected changes occurring throughout the hemiascomycetous lineages. Our observations reveal interesting examples of RNA and protein coevolution, giving rise to altered interaction domains, losses of deeply conserved snRNA-binding proteins, and unique snRNA sequence changes within the catalytic center of the spliceosome. These same yeast lineages have experienced exceptionally high rates of intron loss, such that modern hemiascomycetous genomes contain introns in only approximately 5% of their genes. Also, the splice site sequences of those introns that remain adhere to an unusually strict consensus. Some of the snRNA variations we observe may thus reflect the altered intron landscape with which the hemiascomycetous spliceosome must contend.  相似文献   

6.
Spliceosomal introns play a key role in eukaryotic genome evolution and protein diversity. A large Rab GTPase family has been identified in a unicellular eukaryote Trichomonas vaginalis. However, the characteristics of introns in Rab genes of T. vaginalis have not been investigated previously. In this study, we identified a 25-bp spliceosomal intron in the T. vaginalis Rab1a (TvRab1a) gene, the smallest intron in T. vaginalis to be characterized to date. This intron contains a canonical splice site at both 5' (GT) and 3' (AG) ends, and a putative branch-point sequence (TCTAAC) that matches the Trichomonad consensus sequence of ACTAAC except for the first nucleotide. The position and phase of the TvRab1a intron are evolutionarily conserved in Rab1 homologous genes across at least five eukaryotic supergroups, including Opisthokonta, Amoebozoa, Excavata, Chromalveolata, and Plantae. These results strongly suggest that the TvRab1a intron is likely to be an ancient spliceosomal intron, and it can therefore be used as a phylogenetic marker to evaluate particular eukaryotic groupings. Identification and characterization of the TvRabla intron may provide an insight into the evolution of the large Rab repertoire in T. vaginalis.  相似文献   

7.
The evolution of spliceosomal introns remains poorly understood. Although many approaches have been used to infer intron evolution from the patterns of intron position conservation, the results to date have been contradictory. In this paper, we address the problem using a novel maximum likelihood method, which allows estimation of the frequency of intron insertion target sites, together with the rates of intron gain and loss. We analyzed the pattern of 10,044 introns (7,221 intron positions) in the conserved regions of 684 sets of orthologs from seven eukaryotes. We determined that there is an average of one target site per 11.86 base pairs (bp) (95% confidence interval, 9.27 to 14.39 bp). In addition, our results showed that: (i) overall intron gains are ~25% greater than intron losses, although specific patterns vary with time and lineage; (ii) parallel gains account for ~18.5% of shared intron positions; and (iii) reacquisition following loss accounts for ~0.5% of all intron positions. Our results should assist in resolving the long-standing problem of inferring the evolution of spliceosomal introns.  相似文献   

8.
How exon-intron structures of eukaryotic genes evolved under various evolutionary forces remains unknown. The phases of spliceosomal introns (the placement of introns with respect to reading frame) provide an opportunity to approach this question. When a large number of nuclear introns in protein-coding genes were analyzed, it was found that most introns were of phase 0, which keeps codons intact. We found that the phase distribution of spliceosomal introns is strongly correlated with the sequence conservation of splice signals in exons; the relatively underrepresented phase 2 introns are associated with the lowest conservation, the relatively overrepresented phase 0 introns display the highest conservation, and phase 1 introns are intermediate. Given the detrimental effect of mutations in exon sequences near splice sites as found in molecular experiments, the underrepresentation of phase 2 introns may be the result of deleterious-mutation-driven intron loss, suggesting a possible genetic mechanism for the evolution of intron-exon structures.  相似文献   

9.
Bhattacharya  D.  Lutzoni  F.  Reeb  V.  Simon  D.  Fernandez  F.  & Friedl  T. 《Journal of phycology》2000,36(S3):6-7
Ribosomal DNA genes in lichen algae and lichen fungi are astonishingly rich in spliceosomal and group I introns. We use phylogenetic, secondary structure, and biochemical analyses to understand the evolution of these introns. Despite the widespread distribution of spliceosomal introns in nuclear pre-mRNA genes, their general mechanism of origin remains an open question because few proven cases of recent and pervasive intron origin have been documented. The lichen introns are valuable in this respect because they are undoubtedly of a "recent" origin and limited to the Euascomycetes. Our analyses suggest that rDNA spliceosomal introns have arisen through aberrant reverse-splicing (in trans) of free pre-mRNA introns into r RNAs. We propose that the spliceosome itself (and not an external agent; e.g. transposable elements, group II introns) has given rise to the introns. The rDNA introns are found most often between the flanking sequence G (78%) - intron-G (72%), and their clustered positions on secondary structures suggest that particular r RNA regions are preferred sites (i.e., proto-splice sites) for insertion. Mapping of intron positions on the newly available tertiary structures show that they are found most often in exposed regions of the ribosomes. This again is consistent with an intron origin through reverse-splicing. Remarkably, the distribution and phylogenetic relationships of most group I introns in nuclear rDNA genes are also consistent with a reverse-splicing origin. These data underline the value of lichens as a model system for understanding intron origin and stress the importance of RNA-level processes in the spread of these sequences in nuclear coding regions.  相似文献   

10.
The role of spliceosomal intronic structures played in evolution has only begun to be elucidated. Comparative genomic analyses of fungal snoRNA sequences, which are often contained within introns and/or exons, revealed that about one-third of snoRNA-associated introns in three major snoRNA gene clusters manifested polymorphisms, likely resulting from intron loss and gain events during fungi evolution. Genomic deletions can clearly be observed as one mechanism underlying intron and exon loss, as well as generation of complex introns where several introns lie in juxtaposition without intercalating exons. Strikingly, by tracking conserved snoRNAs in introns, we found that some introns had moved from one position to another by excision from donor sites and insertion into target sties elsewhere in the genome without needing transposon structures. This study revealed the origin of many newly gained introns. Moreover, our analyses suggested that intron-containing sequences were more prone to sustainable structural changes than DNA sequences without introns due to intron''s ability to jump within the genome via unknown mechanisms. We propose that splicing-related structural features of introns serve as an additional motor to propel evolution.  相似文献   

11.
12.
13.
14.
Introns are flanked by a partially conserved coding sequence that forms the immediate exon junction sequence following intron removal from pre-mRNA. Phylogenetic evidence indicates that these sequences have been targeted by numerous intron insertions during evolution, but little is known about this process. Here, we test the prediction that exon junction sequences were functional splice sites that existed in the coding sequence of genes prior to the insertion of introns. To do this, we experimentally identified nine cryptic splice sites within the coding sequence of actin genes from humans, Arabidopsis, and Physarum by inactivating their normal intron splice sites. We found that seven of these cryptic splice sites correspond exactly to the positions of exon junctions in actin genes from other species. Because actin genes are highly conserved, we could conclude that at least seven actin introns are flanked by cryptic splice sites, and from the phylogenetic evidence, we could also conclude that actin introns were inserted into these cryptic splice sites during evolution. Furthermore, our results indicate that these insertion events were dependent upon the splicing machinery. Because most introns are flanked by similar sequences, our results are likely to be of general relevance.  相似文献   

15.
16.
The origins and importance of spliceosomal introns comprise one of the longest-abiding mysteries of molecular evolution. Considerable debate remains over several aspects of the evolution of spliceosomal introns, including the timing of intron origin and proliferation, the mechanisms by which introns are lost and gained, and the forces that have shaped intron evolution. Recent important progress has been made in each of these areas. Patterns of intron-position correspondence between widely diverged eukaryotic species have provided insights into the origins of the vast differences in intron number between eukaryotic species, and studies of specific cases of intron loss and gain have led to progress in understanding the underlying molecular mechanisms and the forces that control intron evolution.  相似文献   

17.
18.
19.
20.

Background  

The timing of the origin of introns is of crucial importance for an understanding of early genome architecture. The Exon theory of genes proposed a role for introns in the formation of multi-exon proteins by exon shuffling and predicts the presence of conserved splice sites in ancient genes. In this study, large-scale analysis of potential conserved splice sites was performed using an intron-exon database (ExInt) derived from GenBank.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号