首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Lemna minor fronds transferred to a sterile culture medium containing 50% (v/v) deuterium oxide (2H2O) rapidly undergo a loss of soluble protein with a corresponding increase in free amino acids. The loss of protein is due to two factors: (i) the inhibition of protein synthesis for 4 h followed by a slower rate of synthesis than normal, (ii) a rapid 9–10 fold increase in protein degradation. In plants grown for longer periods (3–6 days) in 50% 2H2O medium, protein synthesis is inhibited by 20% and the rate constant of degradation is 2–3 times that measured in fronds growing in normal (H2O containing) complete medium. The initial loss of protein is not due to the breakdown of any specific protein fraction. Investigation of several enzymes indicates that all proteins are catabolised in response to 2H2O treatment. The implications of these results with regard to the interpretation of density-labelling experiments are discussed.  相似文献   

2.
We present a systematic study of the effect of the level of exchangeable protons on the observed amide proton linewidth obtained in perdeuterated proteins. Decreasing the amount of D2O employed in the crystallization buffer from 90 to 0%, we observe a fourfold increase in linewidth for both 1H and 15N resonances. At the same time, we find a gradual increase in the signal-to-noise ratio (SNR) for 1H–15N correlations in dipolar coupling based experiments for H2O concentrations of up to 40%. Beyond 40%, a significant reduction in SNR is observed. Scalar-coupling based 1H–15N correlation experiments yield a nearly constant SNR for samples prepared with ≤30% H2O. Samples in which more H2O is employed for crystallization show a significantly reduced NMR intensity. Calculation of the SNR by taking into account the reduction in 1H T 1 in samples containing more protons (SNR per unit time), yields a maximum SNR for samples crystallized using 30 and 40% H2O for scalar and dipolar coupling based experiments, respectively. A sensitivity gain of 3.8 is obtained by increasing the H2O concentration from 10 to 40% in the CP based experiment, whereas the linewidth only becomes 1.5 times broader. In general, we find that CP is more favorable compared to INEPT based transfer when the number of possible 1H,1H interactions increases. At low levels of deuteration (≥60% H2O in the crystallization buffer), resonances from rigid residues are broadened beyond detection. All experiments are carried out at MAS frequency of 24 kHz employing perdeuterated samples of the chicken α-spectrin SH3 domain.  相似文献   

3.
Water molecules are a major determinant of protein stability and are important for understanding protein–protein interactions. We present two experiments which allow to measure first the effective T2 decay rate of individual amide proton, and second the magnetization build-up rates for a selective transfer from H2O to HN using spin diffusion as a mixing element. The experiments are demonstrated for a uniformly 2H, 15N labeled sample of a microcrystalline SH3 domain in which exchangeable deuterons were back-substituted with protons. In order to evaluate the NMR experimental data, as X-ray structure of the protein was determined using the same crystallization protocol as for the solid-state NMR sample. The NMR experimental data are correlated with the dipolar couplings calculated from H2O–HN distances which were extracted from the X-ray structure of the protein. We find that the HN T2 decay rates and H2O–HN build-up rates are sensitive to distance and dynamics of the detected water molecules with respect to the protein. We show that qualitative information about localization and dynamics of internal water molecules can be obtained in the solid-state by interpretation of the spin dynamics of a reporter amide proton.  相似文献   

4.
Heavy water (H218O) has been used to label DNA of soil microorganisms in stable isotope probing experiments, yet no measurements have been reported for the 18O content of DNA from soil incubated with heavy water. Here we present the first measurements of atom% 18O for DNA extracted from soil incubated with the addition of H218O. Four experiments were conducted to test how the atom% 18O of DNA, extracted from Ponderosa Pine forest soil incubated with heavy water, was affected by the following variables: (1) time, (2) nutrients, (3) soil moisture, and (4) atom% 18O of added H2O. In the time series experiment, the atom% 18O of DNA increased linearly (R 2 = 0.994, p < 0.01) over the first 72 h of incubation. In the nutrient addition experiment, there was a positive correlation (R 2 = 0.991, p = 0.006) between the log10 of the amount of tryptic soy broth, a complex nutrient broth, added to soil and the log10 of the atom% 18O of DNA. For the experiment where soil moisture was manipulated, the atom% 18O of DNA increased with higher soil moisture until soil moisture reached 30%, above which 18O enrichment of DNA declined as soils became more saturated. When the atom% 18O for H2O added was varied, there was a positive linear relationship between the atom% 18O of the added water and the atom% 18O of the DNA. Results indicate that quantification of 18O incorporated into DNA from H218O has potential to be used as a proxy for microbial growth in soil.  相似文献   

5.
Membrane proteins play an essential role in cellular metabolism, transportation and signal transduction across cell membranes. The scarcity of membrane protein structures has thus far prevented a full understanding of their molecular mechanisms. Preliminary topology studies and residue solvent exposure analysis have the potential to provide valuable information on membrane proteins of unknown structure. Here, a 19F-containing unnatural amino acid (trimethylfluoro-phenylalanine, tfmF) was applied to accomplish site-specific 19F spin incorporation at different sites in diacylglycerol kinase (DAGK, an Escherichia coli membrane protein) for site-specific solvent exposure analysis. Due to isotope effect on 19F spins, a standard curve for 19F-tfmF chemical shifts was drawn for varying solvent H2O/D2O ratios. Further site-specific 19F solvent isotope shift analysis was conducted for DAGK to distinguish residues in water-soluble loops, interfacial areas or hydrophobic membrane regions. This site-specific solvent exposure analysis method could be applied for further topological analysis of other membrane proteins.  相似文献   

6.
7.
Summary Water-stress experiments withPhaseolus vulgaris L. were undertaken to determine the transpiration rate dependency of the naturally occurring leaf H2 18O fractionation process. Water-stress leaf H2 18O levels were observed to be unexpectedly higher than controls. Speculations on the cause of this phenomenon are discussed. Since transpiration rate variations should theoretically affect only the rate and not the extent of leaf H2 18O fractionation, the respective time courses for water-stressed and control leaf H2 18O accumulations were compared. Water-stressed leaves displayed a slower rate of isotopic enrichment relative to controls, as was predicted from their reduced transpiration rates. In an absolute sense, however, both control and water-stress leaf H2 18O fractionation rates were markedly greater than projected values from the existing model. Consequently, transpiration rates cannot be derived accurately at present from the observed rates of leaf H2 18O discrimination. Several modifications of the theory are also considered.  相似文献   

8.
The lanthanide complex aquatrichloridobis(1,10‐phenanthroline)cerium(III) [Ce(phen)2(H2O)Cl3] (KP776) was fully characterized by elemental analysis, IR‐, and 1H‐ and 13C‐NMR spectroscopy, as well as TG/DTA measurements, and its behavior in H2O, important for the application as a chemotherapeutic, was studied. In addition, the binding of KP776 to nucleotides and single serum proteins was investigated by capillary electrophoresis, whereas binding to proteins in human plasma was observed by ICP‐MS. The compound shows promising anticancer properties in vitro: proliferation of human cancer cell lines is strongly inhibited with IC50 values in the very low micromolar range.  相似文献   

9.
The thermal stability of an isometric plant virus, Turnip Yellow Mosaic Virus (TYMV), has been investigated at low and high hydrostatic pressure, using small angle neutron scattering. Contrast variation allowed us to separately observe the structural changes of the protein capsid and the RNA core. The experiments were performed in 0.05M Tris buffer at pD = 8.0 and in 0.05M bis-Tris buffer at pD = 6.0 containing different H2O/D2O mixtures (40% and 70% D2O). It was found that hydrostatic pressure enhances the stability of TYMV. The thermally induced uncoating of RNA as well as structural transitions of the protein capsid are shifted to higher temperature upon increasing the pressure from 5 × 106 Pa to 2 × 108 Pa.  相似文献   

10.
Helga Dahlhelm 《Planta》1969,86(3):224-234
Summary The auxin-induced cell elongation and the formation of indoleacetyl-aspartic acid (IAAsp) of pea epicotyl sections and Agrostemma hypocotyl sections are inhibited by heavy water. The formation of IAAsp requires a specific enzyme. The lack of IAAsp in D2O-treated plant tissues may be due to an influence of D2O on the induction or on the synthesis of that enzyme. Treatment of plant sections with synthetic IAAsp has no effect on the growth of the sections in D2O. Indole-3-acetic acid (IAA) increases the incorporation of 32P-orthophosphate into ribosomal and soluble RNA of pea epicotyl sections in H2O but not in D2O. The synthesis of ribosomal RNA is decreased by heavy water.The effects of IAA and D2O on the soluble proteins of pea sections have been studied by PAA-gel electrophoresis. D2O does not change the pattern of protein bands in comparison with the H2O-control, but prevents the probably IAA-induced alteration of the Rf-value of one protein band on the pherogram. It is assumed that the inhibition of auxin-induced reactions in the D2O-medium is due to the stabilizing effect of heavy water on allosteric proteins. The results of this work support the hypothesis that IAA acts as allosteric effector.  相似文献   

11.
Simultaneous data acquisition in time-sharing (TS) multi-dimensional NMR experiments has been shown an effective means to reduce experimental time, and thus to accelerate structure determination of proteins. This has been accomplished by spin evolution time-sharing of the X and Y heteronuclei, such as 15N and 13C, in one of the time dimensions. In this work, we report a new 3D TS experiment, which allows simultaneous 13C and 15N spin labeling coherence in both t 1 and t 2 dimensions to give four NOESY spectra in a single 3D experiment. These spectra represent total NOE correlations between 1HN and 1HC resonances. This strategy of double time-sharing (2TS) results in an overall four-fold reduction in experimental time compared with its conventional counterpart. This 3D 2TS CN-CN-H HSQC-NOESY-HSQC pulse sequence also demonstrates improvements in water suppression, 15N spectral resolution and sensitivity, which were developed based on 2D TS CN-H HSQC and 3D TS H-CN-H NOESY-HSQC experiments. Combining the 3D TS and the 3D 2TS NOESY experiments, NOE assignment ambiguities and errors are considerably reduced. These results will be useful for rapid protein structure determination to complement the effort of discerning the functions of diverse genomic proteins.  相似文献   

12.
Deuterium isotope labelling is important for NMR studies of large proteins and complexes. Many eukaryotic proteins are difficult to express in bacteria, but can be efficiently produced in the methylotrophic yeast Pichia pastoris. In order to facilitate NMR studies of the malaria parasite merozoite surface protein-1 (MSP1) complex and its interactions with antibodies, we have investigated production of the MSP1-19 protein in P. pastoris grown in deuterated media. The resulting deuteration patterns were analyzed by NMR and mass spectrometry. We have compared growth characteristics and levels of heterologous protein expression in cells adapted to growth in deuterated media (95% D2O), compared with expression in non-adapted cells. We have also compared the relative deuteration levels and the distribution pattern of residual protiation in protein from cells grown either in 95% D2O medium with protiated methanol as carbon source, or in 95% D2O medium containing deuterated methanol. A high level of uniform C deuteration was demonstrated, and the consequent reduction of backbone amide signal linewidths in [1H/15N]-correlation experiments was measured. Residual protiation at different positions in various amino acid residues, including the distribution of methyl isotopomers, was also investigated. The deuteration procedures examined here should facilitate economical expression of 2H/13C/15N-labelled protein samples for NMR studies of the structure and interactions of large proteins and protein complexes.  相似文献   

13.
Concentrated deionized solutions of haemoglobin in water were diluted with unbuffered pure 2H2O and left to stand for 15 to 70 hours. Oxygen equilibrium curves were measured at different temperatures and concentrations of 2H2O. In 98.5% 2H2O Hill's constant retained its normal value at temperatures below 11 °C, but was reduced by 0.4 above 11 °C. This temperature effect was reversible. Lowering the 2H2O concentrations raised the transition temperature between the states of low and high co-operativity of the reaction. The shape of the transition curve remained unchanged. Further experiments allowed a phase diagram to be constructed which shows the boundaries between the two states: one of low co-operativity at high concentration of 2H2O and high temperature, and another of high co-operativity at low values of these variables. Reversibility of the isotope effect even at 2H2O concentration of 98.5% excludes a purely steric interpretation. Possible dynamic and co-operative interactions between the protein molecule and its surrounding water molecules are discussed.  相似文献   

14.
Isotope substitution of H2O by 2H2O causes an increase in the rate of dark recombination between photooxidized bacteriochlorophyll (P+) and reduced primary quinone acceptor in Rhodobacter sphaeroides reaction centers (RC) at room temperature. The isotopic effect declines upon decreasing the temperature. Dehydration of RC complexes of Ectothiorhodospira shaposhnikovii chromatophores containing multiheme cytochrome c causes a decrease in the efficiency of transfer of a photomobilized electron between the primary and secondary quinone acceptors and from cytochrome to P+. In the case of H2O medium these effects are observed at a lower hydration than in 2H2O-containing medium. In the E. shaposhnikovii chromatophores subjected to dehydration in H2O, the rate of electron transfer from the nearest high-potential cytochrome heme to P+ is virtually independent of hydration within the P/P0 range from 0.1 to 0.5. In samples hydrated in 2H2O this rate is approximately 1.5 times lower than in H2O. However, the isotopic effect of this reaction disappears upon dehydration. The intramolecular electron transfer between two high-potential hemes of cytochrome c in samples with 2H2O is inhibited within this range of P/P0, whereas in RC samples with H2O there is a trend toward gradual inhibition of the interheme electron transfer with dehydration. The experimental results are discussed in terms of the effects of isotope substitution and dehydration on relaxation processes and charge state of RC on implementation of the reactive states of RC providing electron transfer control.  相似文献   

15.
Changes in gene expression, by application of H2O2, O2°generating agents (methyl viologen, digitonin) and gamma irradiation to tomato suspension cultures, were investigated and compared to the well-described heat shock response. Two-dimensional gel protein mapping analyses gave the first indication that at least small heat shock proteins (smHSP) accumulated in response to application of H2O2 and gamma irradiation, but not to O2° generating agents. While some proteins seemed to be induced specifically by each treatment, only part of the heat shock response was observed. On the basis of Northern hybridization experiments performed with four heterologous cDNA, corresponding to classes I–IV of pea smHSP, it could be concluded that significant amounts of class I and II smHSP mRNA are induced by H2O2 and by irradiation. Taken together, these results demonstrate that in plants some HSP genes are inducible by oxidative stresses, as in micro-organisms and other eukaryotic cells. HSP22, the main stress protein that accumulates following H2O2 action or gamma irradiation, was also purified. Sequence homology of amino terminal and internal sequences, and immunoreactivity with Chenopodium rubrum mitochondrial smHSP antibody, indicated that the protein belongs to the recently discovered class of plant mitochondrial smHSP. Heat shock or a mild H2O2 pretreatment was also shown to lead to plant cell protection against oxidative injury. Therefore, the synthesis of these stress proteins can be considered as an adaptive mechanism in which mitochondrial protection could be essential.  相似文献   

16.
Further trajectory studies on the C+ + H2O reaction have been performed using a potential energy surface described through a finite element method in its p version. In former trajectory studies [Y. Ishikawa, T. Ikegami and R.C. Binning Jr., Direct ab initio molecular dynamics study of C++H2O: angular distribution of products and distribution of product kinetic energies, Chem. Phys. Lett. 370 (2003), pp. 490–495; J.R. Flores, Quasichemical trajectories on a finite element density functional potential energy surface: the C++H2O reaction revisited, J. Chem. Phys. 125 (2006), 164309], tunnelling was not taken into account. The present results together with the analysis of the electronic excited states [J.R. Flores and A.B. González, The role of the excited electronic states in the C++H2O reaction, J. Chem. Phys. 128 (2008), 144310] are useful to interpret the mechanism of the title reaction, which has been the subject of crossed beam experiments [D.M. Sonnenfroh, R.A. Curtiss and J.M. Farrar, Collision complex formation in the reaction of C+ with H2O, J. Chem. Phys. 83 (1985), pp. 3958–3964] and can be considered a prototypical ion–molecule reaction.  相似文献   

17.
An O-polysaccharide (O-antigen) was isolated by mild acid degradation of the lipopolysaccharide of Providencia alcalifaciens O60 and studied by sugar and methylation analyses as well as 1H and 13C NMR spectroscopy, including 2D ROESY and 1H,13C HMBC experiments in D2O and a ROESY experiment in a 9:1 H2O–D2O mixture to reveal correlations for NH protons. It was found that the polysaccharide is built up of linear pentasaccharide repeating units containing an amide of d-glucuronic acid with l-serine and has the following structure:The O-antigen studied is structurally and serologically closely related to the O-antigen of Proteus vulgaris O44.  相似文献   

18.
Differential scanning microcalorimetry was used to investigate the enthalpy (ΔHd) and the temperature (td) of thermal denaturation of normal (nondeuterated) (H-PC) and deuterated (D-PC) phycocyanins in D2O solvent. Values of td in D-PC are about 5–7°C lower than those in H-PC. The magnitudes of ΔHd in D-PC are only 21–32% of those in H-PC. During the protein unfolding, the heat-capacity changes (ΔCp) in D-PC are also lower than those in H-PC. CD was employed to evaluate the secondary structure and the urea denaturation of these proteins in D2O solvent. These proteins have about the same α-helix content. D-PC is less resistant to the denaturant urea than is H-PC. In general, the apparent free-energy change in the process of protein unfolding at zero denaturant concentration is higher in H-PC than in D-PC. Comparisons of the present results for D2O solvent with those previously reported for H2O reveal that solvent isotope effect essentially does not change the α-helix content in H-PC and D-PC. However, D-PC or H-PC has a higher random-coil content in its secondary structure in D2O than in H2O. Substitution of H2O with D2O as the solvent increases td in both D-PC and H-PC, lowers ΔHd in H-PC, and greatly lowers ΔHd in D-PC. The deuterium solvent isotope effect does not change ΔCp in H-PC but lowers ΔCp in D-PC. In the urea denaturation, the magnitudes of (Cu)1/2 in H-PC and D-PC are not affected by such a solvent effect, whereas those of ΔG are greatly increased. These results are correlated with the structure and stability of the proteins.  相似文献   

19.
Biological properties of new copper(II) complexes of 2-methylthionicotinate (2-MeSNic) of composition Cu(2-MeSNic)2(MeNia)2·4H2O (where MeNia isN-methylnicotinamide), Cu(2-MeSNic)2(Nia)2·2H2O (where Nia is nicotinamide) and Cu(2-MeSNic)2(2 (where L is isonicotinamide (iNia) or ethyl nicotinate (EtNic)) are reported. Gram-bacteria (Escherichia coli) are more resistant against Cu(II) complexes than Gram+-bacteria (Staphylococcus aureus)—significant antistaphylococcal activity was found with Cu(2-MeSNic)2(MeNia)2·4H2O (IC50 1.3 mmol/L).Caddida parapsilosis was most inhibited by Cu(2-MeSNic)2·H2O and Cu(2-MeSNic)2(MeNia)2·4H2O (IC50 1.4 mmol/L and 1.5 mmol/L, respectively). Biosynthesis of nucleic acids influenced by Cu(2-MeSNic)2-(Nia)2·2H2O indicated by incorporation of14C-adenine (IC50(Ade) 0.31 mmol/L) is more sensitive than biosynthesis of proteins indicated by incorporation of14C-leucine (IC50(Leu) 9.94 mmol/L). Cu(II) complexes with expressed antimicrobial activity showed no mutagenic activity.  相似文献   

20.
DNA-binding proteins from nutrient-starved cells (DPS) protect cells from oxidative stress by removing H2O2 and iron. A new class of DPS-like proteins has recently been identified, with DPS-like protein from Sulfolobus solfataricus (SsDPS) being the best characterized to date. SsDPS protects cells from oxidative stress and is upregulated in response to H2O2 but also in response to iron depletion. The ferroxidase active site of SsDPS is structurally similar to the active sites of manganese catalase and rat liver arginase. The present work shows that the ferroxidase center in SsDPS binds two Mn2+ ions with K D = (1/K 1 K 2)1/2 = 48(3) μM. The binding constant of the second Mn2+ is significantly higher than that of the first, inducing dinuclear Mn(II) cluster formation for all but the lowest concentrations of added Mn2+. In competition experiments, equimolar amounts of Fe2+ were unable to displace the bound manganese. EPR spectroscopy of the Mn2 2+ cluster showed signals comparable to those of other characterized dimanganese clusters. The exchange coupling for the cluster was determined, J = −1.4(3) cm−1 (H = −2JS 1 S 2), and is within the range expected for a μ1,1-carboxylato bridge between the manganese ions. Manganese-bound SsDPS showed catalase activity at a rate 10–100 times slower than for manganese catalases. EPR spectra of SsDPS after addition of H2O2 showed the appearance of an intermediate in the reaction with H2O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号