首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
硫代谢是微生物重要的生命代谢活动。微生物对外源硫酸盐的转运、同化、代谢调控以及重要含硫化合物的生物合成,不但与微生物生长代谢相关,而且影响微生物在胁迫环境下的抗逆性和鲁棒性。目前,大部分研究都聚焦在微生物硫酸盐同化过程和H2S产生,对于微生物硫代谢与抗逆性相关的研究较少。本文总结了近年来微生物硫代谢过程中的硫酸盐转运、同化路径以及调控方式;并结合微生物在不同胁迫条件下的氧化应激反应,探讨了含硫化合物如硫化氢、谷胱甘肽和半胱氨酸等提高微生物抗逆性的机制。硫代谢与微生物抗逆性相关机制的解析不仅为理解微生物硫代谢与抗逆性提供理论基础,也为设计与构建抗逆性强的高产稳产工业菌株提供分子靶点。  相似文献   

2.
植物谷胱甘肽代谢与环境胁迫   总被引:18,自引:5,他引:13  
谷胱甘肽是植物体内普遍存在的小分子抗氧化物质,它在还原态硫的储存和转运、蛋白质和核酸的合成、酶活性的调节、组织抗氧化特性的维持以及对氧化还原敏感的信号传导的调节中起着重要作用。谷胱甘肽库的大小及其氧化还原状态也与植物对多种生物异源物质及生物与非生物环境胁迫的忍耐密切相关。本文简要综述了近年来人们在植物谷胱甘肽生物合成与代谢、转运、信号传导以及胁迫响应中所取得的研究进展。  相似文献   

3.
氮代谢参与植物逆境抵抗的作用机理研究进展   总被引:2,自引:0,他引:2  
王新磊  吕新芳 《广西植物》2020,40(4):583-591
近年来,植物所受到的诸如干旱、盐、高温、低氧、重金属胁迫和营养元素缺乏等环境胁迫越来越多,严重影响了植物的生长发育及作物的质量和产量。氮素是植物生长发育所需的必需营养元素,同时也是核酸、蛋白质和叶绿素的重要组成成分,其代谢过程与植物抵抗逆境的能力息息相关。氮代谢是指植物对氮素的吸收、同化和利用的全过程,是植物体内基础代谢途径之一。氮代谢主要从氮素吸收、同化及氨基酸代谢等方面参与植物的抗逆性,并通过调节离子吸收和转运、稳定细胞形态和蛋白质结构、维持激素平衡和细胞代谢水平、减少体内活性氧(reactive oxygen species,ROS)生成以及促进叶绿素合成等生理机制来影响植物抵抗非生物胁迫的能力。因此,提高植物在逆境下的氮代谢水平是减轻外界胁迫对其损伤的一种潜在途径。该文从氮素同化的基本途径出发,分别阐述了氮代谢在干旱胁迫、盐胁迫和高温胁迫等多个方面的逆境抵抗过程中的作用机理,为氮代谢参与植物抗逆性研究提供了有利参考。  相似文献   

4.
植物对重金属镉的耐受机制   总被引:48,自引:0,他引:48  
镉离子(Cd^2+)具有强植物毒性,抑制植物生长,甚至使植物死亡。由于长期的环境选择和适应进化,植物发展出耐受机制,可减轻或避免Cd^2+的毒害。硫转运蛋白、硫还原相关酶类以及半胱氨酸、谷胱甘肽和植物螯合肽合成基因的表达受Cd^2+调控。同时这些基因的过表达也能提高植物对Cd^2+的耐性。植物抗氧化系统对Cd^2+胁迫诱发的活性氧的清除作用,具转运Cd^2+活性的质膜转运蛋白促进Cd^2+经共质体途径向木质部运输、装载,而后随蒸腾流向地上部迁移,具转运Cd^2+活性的液泡膜转运蛋白促进Cd^2+进入液泡的隔离作用,都在植物对Cd^2+的耐性中起作用。  相似文献   

5.
植物氮代谢及其环境调节研究进展   总被引:42,自引:5,他引:37  
氮代谢是植物的基本生理过程之一,也是参与地球化学循环的重要组成部分,植物氮素同化的主要途径是经过硝酸盐还原为铵后直接参与氨基酸的合成与转化,期间硝酸还原酶(NR)、谷氨酰胺合成酶(GS)、谷氨酰胺合酶(GOGAT)、天冬酰胺转氨酶(AspAT)等关键酶参与了催化和调节,以氨基酸为主要底物在细胞中合成蛋白质,再经过对蛋白质的修饰、分类、转运及储存等,成为植物有机体的组成部分,同时与植物的碳代谢等协调统一,共同成为植物生命活动的基本过程,文中概述了植物氮素同化的途径、几种关键酶的特性和调控机制,简述了氮素代谢的信号传导、植物细胞蛋白质的形成、转运、储存和降解过程,基于水分胁迫等关键生态因子对氮代谢的影响及其调节机制的评述,强调了未来需加强研究的7个方面。  相似文献   

6.
植物硫营养代谢、调控与生物学功能   总被引:14,自引:0,他引:14  
植物作为无机硫的主要还原者,在全球的硫循环中起着关键作用。植物对土壤中硫酸盐的吸收运输和同化代谢,以及一系列具有重要生物学功能的含硫代谢产物的合成,不但与植物生长发育、耐逆和抗病虫害等密切相关,而且影响农作物产量与品质。硫营养的代谢和调控非常复杂,且生物学功能众多。本文综述了近年来植物硫营养代谢及调控及其在逆境胁迫中的生物学功能等方面的新进展,同时讨论了该领域悬而未决的重要生物学问题和研究动向,进而提出硫营养在农业生产上的重要性和所面临的新问题。  相似文献   

7.
植物作为无机硫的主要还原者, 在全球的硫循环中起着关键作用。植物对土壤中硫酸盐的吸收运输和同化代谢, 以及一系列具有重要生物学功能的含硫代谢产物的合成, 不但与植物生长发育、耐逆和抗病虫害等密切相关, 而且影响农作物产量与品质。硫营养的代谢和调控非常复杂, 且生物学功能众多。本文综述了近年来植物硫营养代谢及调控及其在逆境胁迫中的生物学功能等方面的新进展, 同时讨论了该领域悬而未决的重要生物学问题和研究动向, 进而提出硫营养在农业生产上的重要性和所面临的新问题。  相似文献   

8.
9.
磷、硫转运蛋白是大豆(Glycine max(L.)Merr.)体内磷、硫转运的重要载体,参与调节磷和硫酸盐的吸收与转运,对提高大豆的磷、硫利用效率至关重要。大豆磷转运蛋白可划分为Pht1、Pht2、Pht3、Pho1和Pho2 5大家族,目前对Pht1的研究最为深入。大豆14个Pht1家族可分为3个亚家族,他们对磷吸收和转运具有重要作用。大豆硫转运蛋白基因GmSULTR1;2b可在大豆根中特异性表达并被低硫胁迫诱导。本文基于大豆磷、硫的营养吸收、转运与利用过程中的相关性,对Pht1家族以及GmSULTR1;2b基因在大豆中的研究进展进行了综述,并对近年来大豆磷、硫转运蛋白的研究进展及未来的研究方向进行了展望。  相似文献   

10.
植物MicroRNA(miRNA)是一类内源性非编码小分子RNA,它们参与调节植物的生长、发育和代谢过程中多种基因的表达。近期的研究发现miRNA参与调节磷的吸收和利用,对植物适应低磷胁迫具有重要作用。本文概述了植物磷吸收和转运的机制,介绍了低磷胁迫下miRNA的表达水平变化,重点对miRNA在植物响应低磷胁迫中的作用,如改变根系结构、提高磷的转运和再利用效率、参与花青素和抗氧化物生物合成等进行了综述,以期为揭示植物低磷胁迫响应分子机制,提高植物对磷的吸收效率提供借鉴。  相似文献   

11.
12.
Plants can''t move away and are therefore continuously confronted with unfavorable environmental conditions (such as soil salinity, drought, heat, cold, flooding and heavy metal contamination). Among heavy metals, cadmium (Cd) is a non-essential and toxic metal, rapidly taken up by roots and accumulated in various plant tissues which hamper the crop growth and productivity worldwide. Plants employ various strategies to counteract the inhibitory effect of Cd, among which nutrient management is one of a possible way to overcome Cd toxicity. Sulfur (S) uptake and assimilation are crucial for determining crop yield and resistance to Cd stress. Cd affects S assimilation pathway which leads to the activation of pathway responsible for the synthesis of cysteine (Cys), a precursor of glutathione (GSH) biosynthesis. GSH, a non-protein thiol acts as an important antioxidant in mitigating Cd-induced oxidative stress. It also plays an important role in phytochelatins (PCs) synthesis, which has a proven role in Cd detoxification. Therefore, S assimilation is considered a crucial step for plant survival under Cd stress. The aim of this review is to discuss the regulatory mechanism of S uptake and assimilation, GSH and PC synthesis for Cd stress tolerance in crop plants.Key words: cadmium, cysteine, glutathione, phytochelatins, stress tolerance, sulfur  相似文献   

13.
Effect of cadmium on growth, antioxidative enzymes namely catalase, peroxidase, glutathione reductase, level of glutathione and phytochelatin synthesis was investigated in callus and seedlings of Cuscuta reflexa. A time, concentration and tissue dependent response of Cd was observed. Cd inhibited the growth of callus and seedlings by 50% at 300 and 500 micromol/L concentrations, respectively. Shorter exposure of low concentration of Cd led to augmentation of antioxidant activity, both in callus and seedlings, while longer exposure and high concentration of Cd led to a concentration dependent decrease in callus. Analysis of phytochelatin (PC) synthesis in callus and seedlings of C. reflexa revealed both quantitative and qualitative changes. Cd at low concentrations led to synthesis of predominantly PC4, while at higher concentrations, PC3 was the major form being synthesized. Amelioration of antioxidative systems of C. reflexa in response to Cd stress might be playing a protective role, alleviating the damaging effects of ROS, generated during Cd stress. Concomitantly, chelation and sequestering of toxic Cd ions in this parasite was mediated by synthesis of PC. The response to Cd stress shown by this holoparasitic plant was found to be similar to those of non-parasitic plants (hosts).  相似文献   

14.
15.
Glutathione (gamma-glu-cys-gly; GSH) is usually present at high concentrations in most living cells, being the major reservoir of non-protein reduced sulfur. Because of its unique redox and nucleophilic properties, GSH serves in bio-reductive reactions as an important line of defense against reactive oxygen species, xenobiotics and heavy metals. GSH is synthesized from its constituent amino acids by two ATP-dependent reactions catalyzed by gamma-glutamylcysteine synthetase and glutathione synthetase. In yeast, these enzymes are found in the cytosol, whereas in plants they are located in the cytosol and chloroplast. In protists, their location is not well established. In turn, the sulfur assimilation pathway, which leads to cysteine biosynthesis, involves high and low affinity sulfate transporters, and the enzymes ATP sulfurylase, APS kinase, PAPS reductase or APS reductase, sulfite reductase, serine acetyl transferase, O-acetylserine/O-acetylhomoserine sulfhydrylase and, in some organisms, also cystathionine beta-synthase and cystathionine gamma-lyase. The biochemical and genetic regulation of these pathways is affected by oxidative stress, sulfur deficiency and heavy metal exposure. Cells cope with heavy metal stress using different mechanisms, such as complexation and compartmentation. One of these mechanisms in some yeast, plants and protists is the enhanced synthesis of the heavy metal-chelating molecules GSH and phytochelatins, which are formed from GSH by phytochelatin synthase (PCS) in a heavy metal-dependent reaction; Cd(2+) is the most potent activator of PCS. In this work, we review the biochemical and genetic mechanisms involved in the regulation of sulfate assimilation-reduction and GSH metabolism when yeast, plants and protists are challenged by Cd(2+).  相似文献   

16.
Although Cd(2+) is a more effective inducer of phytochelatin (PC) synthesis than Zn(2+) in higher plants, we have observed greater induction of PC synthesis by Zn(2+) than Cd(2+) in the marine green alga, Dunaliella tertiolecta. To elucidate this unique regulation of PC synthesis by Zn(2+), we investigated the effects of Zn(2+) and Cd(2+) on the activities of both phytochelatin synthase (PC synthase) and enzymes in the GSH biosynthetic pathway. PC synthase was more strongly activated by Cd(2+) than by Zn(2+), but the difference was not very big. On the other hand, gamma-glutamylcysteine synthetase (gamma-ECS) and glutathione synthetase (GS) were activated by both heavy metals, but their activities were higher in Zn-treated cells than in Cd-treated cells. Dose-dependent stimulation of intracellular reactive oxygen species (ROS) production was observed with Zn(2+), but not Cd(2+) treatment. These results suggest that Zn(2+) strongly promotes the synthesis of GSH through indirect activation of gamma-ECS and GS by stimulating ROS generation. This acceleration of the flux rate for GSH synthesis might mainly contribute to high level PC synthesis.  相似文献   

17.
To investigate rate-limiting factors for glutathione and phytochelatin (PC) production and the importance of these compounds for heavy metal tolerance, Indian mustard (Brassica juncea) was genetically engineered to overexpress the Escherichia coli gshI gene encoding gamma-glutamylcysteine synthetase (gamma-ECS), targeted to the plastids. The gamma-ECS transgenic seedlings showed increased tolerance to Cd and had higher concentrations of PCs, gamma-GluCys, glutathione, and total non-protein thiols compared with wild-type (WT) seedlings. When tested in a hydroponic system, gamma-ECS mature plants accumulated more Cd than WT plants: shoot Cd concentrations were 40% to 90% higher. In spite of their higher tissue Cd concentration, the gamma-ECS plants grew better in the presence of Cd than WT. We conclude that overexpression of gamma-ECS increases biosynthesis of glutathione and PCs, which in turn enhances Cd tolerance and accumulation. Thus, overexpression of gamma-ECS appears to be a promising strategy for the production of plants with superior heavy metal phytoremediation capacity.  相似文献   

18.
The dependence of phytochelatin synthase (gamma-glutamylcysteine dipeptidyltranspeptidase (PCS), EC ) on heavy metals for activity has invariably been interpreted in terms of direct metal binding to the enzyme. Here we show, through analyses of immunopurified, recombinant PCS1 from Arabidopsis thaliana (AtPCS1), that free metal ions are not essential for catalysis. Although AtPCS1 appears to be primarily activated posttranslationally in the intact plant and purified AtPCS1 is able to bind heavy metals directly, metal binding per se is not responsible for catalytic activation. As exemplified by Cd(2+)- and Zn(2+)-dependent AtPCS1-mediated catalysis, the kinetics of PC synthesis approximate a substituted enzyme mechanism in which micromolar heavy metal glutathione thiolate (e.g. Cd.GS(2) or Zn.GS(2)) and free glutathione act as gamma-Glu-Cys acceptor and donor. Further, as demonstrated by the facility of AtPCS1 for the net synthesis of S-alkyl-PCs from S-alkylglutathiones with biphasic kinetics, consistent with the sufficiency of S-alkylglutathiones as both gamma-Glu-Cys donors and acceptors in media devoid of metals, even heavy metal thiolates are dispensable. It is concluded that the dependence of AtPCS1 on the provision of heavy metal ions for activity in media containing glutathione and other thiol peptides is a reflection of this enzyme's requirement for glutathione-like peptides containing blocked thiol groups for activity.  相似文献   

19.
Huang J  Zhang Y  Peng JS  Zhong C  Yi HY  Ow DW  Gong JM 《Plant physiology》2012,158(4):1779-1788
Much of our dietary uptake of heavy metals is through the consumption of plants. A long-sought strategy to reduce chronic exposure to heavy metals is to develop plant varieties with reduced accumulation in edible tissues. Here, we describe that the fission yeast (Schizosaccharomyces pombe) phytochelatin (PC)-cadmium (Cd) transporter SpHMT1 produced in Arabidopsis (Arabidopsis thaliana) was localized to tonoplast, and enhanced tolerance to and accumulation of Cd2+, copper, arsenic, and zinc. The action of SpHMT1 requires PC substrates, and failed to confer Cd2+ tolerance and accumulation when glutathione and PC synthesis was blocked by L-buthionine sulfoximine, or only PC synthesis is blocked in the cad1-3 mutant, which is deficient in PC synthase. SpHMT1 expression enhanced vacuolar Cd2+ accumulation in wild-type Columbia-0, but not in cad1-3, where only approximately 35% of the Cd2+ in protoplasts was localized in vacuoles, in contrast to the near 100% found in wild-type vacuoles and approximately 25% in those of cad2-1 that synthesizes very low amounts of glutathione and PCs. Interestingly, constitutive SpHMT1 expression delayed root-to-shoot metal transport, and root-targeted expression confirmed that roots can serve as a sink to reduce metal contents in shoots and seeds. These findings suggest that SpHMT1 function requires PCs in Arabidopsis, and it is feasible to promote food safety by engineering plants using SpHMT1 to decrease metal accumulation in edible tissues.  相似文献   

20.
Rea PA 《Physiologia plantarum》2012,145(1):154-164
Of the mechanisms known to protect vascular plants and some algae, fungi and invertebrates from the toxic effects of non-essential heavy metals such as As, Cd or Hg, one of the most sophisticated is the enzyme-catalyzed synthesis of phytochelatins (PCs). PCs, (γ-Glu-Cys)(n) Gly polymers, which serve as high-affinity, thiol-rich cellular chelators and contribute to the detoxification of heavy metal ions, are derived from glutathione (GSH; γ-Glu-Cys-Gly) and related thiols in a reaction catalyzed by phytochelatin synthases (PC synthases, EC 2.3.2.15). Using the enzyme from Arabidopsis thaliana (AtPCS1) as a model, the reasoning and experiments behind the conclusion that PC synthases are novel papain-like Cys protease superfamily members are presented. The status of S-substituted GSH derivatives as generic PC synthase substrates and the sufficiency of the N-terminal domain of the enzyme from eukaryotic and its half-size equivalents from prokaryotic sources, for net PC synthesis and deglycylation of GSH and its derivatives, respectively, are emphasized. The question of the common need or needs met by PC synthases and their homologs is discussed. Of the schemes proposed to account for the combined protease and peptide polymerase capabilities of the eukaryotic enzymes vs the limited protease capabilities of the prokaryotic enzymes, two that will be considered are the storage and homeostasis of essential heavy metals in eukaryotes and the metabolism of S-substituted GSH derivatives in both eukaryotes and prokaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号