首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Recombinant CHO cells of DG44 origin (CS*13-1.00), expressing a chimeric antibody against the S surface antigen of the Hepatitis B virus, were cultivated in single-stage and two-stage depth filter perfusion systems (DFPS) under varying temperature, pH, and oxygen tension conditions to determine their effects on recombinant antibody production. A long-term culture was carried out in a single-stage depth filter for 81 days, during which an occasional clog interrupted the experiment. However, this problem was solved via trypsin injection. The DFPS showed a steady production of monoclonal antibody at a concentration of 100∼150 mg/L. As the cultivation temperature was increased from 33 to 37°C, the monoclonal antibody (Mab) concentration increased from 80.33 to 133.47 mg/L. Likewise, the glucose uptake rate (GUR) and lactate production rate (LPR) also increased. With an increase in pH from 6.95 to 7.61, the Mab concentration increased from 61.64 to 94.31 mg/L. When the oxygen tension was increased from 60 to 80%, the Mab concentration increased from 93.78 to 128.30 mg/L.  相似文献   

2.
Recombinant Chinese hamster ovary cells, producing recombinant antibody against the human platelet, were cultivated in a depth filter perfusion system (DFPS). When perfusion cultures with working volume of 1 L were operated at perfusion rates of 5/d and 6/d, volumetric antibody productivities reached values 28 and 34 times higher than that of batch suspension culture in Erlenmeyer flasks and 43 and 53 times higher than that of batch culture in a controlled stirred tank reactor, respectively. Perfusion cultures in the DFPS showed stable antibody production over the whole culture period of up to 20 days. In the DFPS, inoculated cells in suspension were entrapped in a few hours within the depth filter matrix by medium circulation and retained there until the void space of the filter matrix was saturated by the cultured cells. After cells in the depth filter matrix reached saturation, overgrown viable cells at a perfusion rate of 5/d or 6/d were continuously collected into waste medium at a density of 2-4 x 10(5) cells/mL, which resulted in stable operation at high perfusion rates, maintaining values of process parameters such as glucose/lactate concentration, pH, and dissolved oxygen concentration. Because the DFPS overcomes most drawbacks observed with conventional perfusion systems, it is preferable to be used as a key culture system to produce monoclonal antibody stably for a long culture period.  相似文献   

3.
A depth filter perfusion system (DFPS) for animal cell culture was developed and its use in continuous highdensity cultures of hybridoma cells was investigated. In the DFPS, based on cell immobilization in a cylindrical depth filter matrix, cells were easily immobilized and cultivated by simple medium recirculation. The cell density in the 20-mum pore size filter matrix reached up to 3 x 10(7) cells/mLin less than 10 days. This resulted in a high monoclonal antibody productivity of 744 mg/L/day, which was 25-35 times higher than that of continuous-suspension cultures using the same cell line. The 20-mum pore filter retained more cells than the 30-mum filterin a shorter period. The DFPS provides advantages of low-cost set-up, easy operation, and scale-up in the cultures of anchorage-independent cells. It also has a high potential for anchorage-dependent cell cultures because of its unusually high surface-to-volume ratio of 450-600 cm(2)/cm(3). (c) 1994 John Wiley & Sons, Inc.  相似文献   

4.
Summary A depth filter perfusion system (DFPS), equipped with a 40-m polypropylene depth filter for cell immobilization, was used for the continuous production of tissue plasminogen activator (t-PA) from recombinant Chinese hamster ovary cells. Final cell density in the DFPS with oxygen control was 1.8×107 cells/mL of the total working volume and maximum t-PA productivity was 2.63 mg/L/day. Dissolved oxygen concentration in the filter matrix was successfully controlled by air sparging and stable operation was possible for more than 20 days.  相似文献   

5.
Choi SK  Chang HN  Lee GM  Kim IH  Oh DJ 《Cytotechnology》1995,17(3):173-183
A depth filter perfusion system (DFPS) with polypropylene fibers had been demonstrated to support high density cultures of anchorage-independent hybridoma cells. The DFPS provides advantages of high surface-to-volume ratio of 450–600 cm2/cm3, low cost set-up, easy operation and scale-up. To test the feasibility of using DFPS for high density cultures of anchorage-dependent cells, Vero cells were cultivated in the DFPS. Gelatin coating on polypropylene fibers in the DFPS was necessary to promote cell attachment and growth. Dissolved oxygen (DO) concentrations could be controlled by sparging air into the reservoir vessel through a filter sparger. When DO concentration was controlled above 40% of air saturation in the DFPS with 40 m pore size, the maximum cell concentration as estimated on specific lactate production rate, was 3.81×107 cells/ml of the total reactor volume. This viable cell concentration is approximately 18 times higher than that obtained in a T-flask batch culture. Taken together, the results obtained here showed the potential of DFPS for high-density cultures of anchorage-dependent cells.  相似文献   

6.
The production of an intracellular secondary metabolite rosmarinic acid (RA) by plant cell suspensions of Anchusa officinalis cultivated with intermittent medium exchange is investigated. Initially, a two-stage perfusion culture method was employed. After being cultured in the batch mode for ca. 6 days in B5 medium plus 3% sucrose, 1 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D), and 0.1 mg/L kinetin (2,4-D B5 medium), Anchusa culture was cultivated to high cell density by perfusion during the growth stage using a hormone-free Gamborg B5 medium supplemented with 6% sucrose. This was followed by a production stage, in which a complete medium exchange into B5 medium plus 3% sucrose and 0.25 mg/L naphthleneacetic acid (NAA) was conducted. The two-stage perfusion culture had a higher maximum culture RA concentration but a lower RA content per cell than the batch stock culture maintained in the 2,4-D B5 medium. Higher culture RA concentration was due primarily to high cell density. The high packed cell volume, however, seemed to reduce the synergistic effect of NAA on RA synthesis. Subsequently, a single-stage perfusion culture method was investigated. The best result was obtained by growing the culture in the batch mode for ca. 10 days using B5 medium supplemented with 3% sucrose and 0.25 mg/L NAA, followed by perfusing the culture with B5 medium plus 6% sucrose and 0.25 mg/L NAA at a constant perfusion rate of 0.1/day. A maximum cell dry weight of 35 g/L and a RA concentration of almost 4 g/L were achieved. This is the highest RA concentration ever reported in the Anchusa culture. (c) 1993 John Wiley & Sons, Inc.  相似文献   

7.
A novel wave bioreactor-perfusion culture system was developed for highly efficient production of monoclonal antibody IgG2a (mAb) by hybridoma cells. The system consists of a wave bioreactor, a floating membrane cell-retention filter, and a weight-based perfusion controller. A polyethylene membrane filter with a pore size of 7 microm was floating on the surface of the culture broth for cell retention, eliminating the need for traditional pump around flow loops and external cell separators. A weight-based perfusion controller was designed to balance the medium renewal rate and the harvest rate during perfusion culture. BD Cell mAb Medium (BD Biosciences, CA) was identified to be the optimal basal medium for mAb production during batch culture. A control strategy for perfusion rate (volume of fresh medium/working volume of reactor/day, vvd) was identified as a key factor affecting cell growth and mAb accumulation during perfusion culture, and the optimal control strategy was increasing perfusion rate by 0.15 vvd per day. Average specific mAb production rate was linearly corrected with increasing perfusion rate within the range of investigation. The maximum viable cell density reached 22.3 x 105 and 200.5 x 105 cells/mL in the batch and perfusion culture, respectively, while the corresponding maximum mAb concentration reached 182.4 and 463.6 mg/L and the corresponding maximum total mAb amount was 182.4 and 1406.5 mg, respectively. Not only the yield of viable cell per liter of medium (32.9 x 105 cells/mL per liter medium) and the mAb yield per liter of medium (230.6 mg/L medium) but also the mAb volumetric productivity (33.1 mg/L.day) in perfusion culture were much higher than those (i.e., 22.3 x 105 cells/mL per liter medium, 182.4 mg/L medium, and 20.3 mg/L.day) in batch culture. Relatively fast cell growth and the perfusion culture approach warrant that high biomass and mAb productivity may be obtained in such a novel perfusion culture system (1 L working volume), which offers an alternative approach for producing gram quantity of proteins from industrial cell lines in a liter-size cell culture. The fundamental information obtained in this study may be useful for perfusion culture of hybridoma cells on a large scale.  相似文献   

8.
Apoptosis is an active, genetically determined death mechanism which can be induced by a wide range of physiological factors and by mild stress. It is the predominant form of cell death during the production of antibodies from murine hybridoma cell lines. A number of studies have now demonstrated that the suppression of this death pathway, by means of over-expression of survival genes such as bcl-2, results in improved cellular robustness and antibody productivity during batch culture. In the present study, the influence of bcl-2 expression on hybridoma productivity in two high density perfusion bioreactor systems was investigated. In the first system, a fixed-bed reactor, the DNA content in the spent medium was 25% higher in the control (TB/C3-pEF) culture than that found in the bcl-2 transfected (TB/C3-bcl2) cultures at all perfusion rates. This is indicative of a higher level of cell death in the control cell line. The average antibody concentration for the TB/C3-pEF cell line was 14.9 mg L-1 at perfusion rates of 2.6 and 5.2 d-1. However, for the TB/C3-bcl2 cell line it was 33 mg L-1 at dilution rates of 2 and 4 d-1. A substantial increase in antibody concentration was also found in the Integra Tecnomouse hollow fibre reactor. The antibody titre in the TB/C3-bcl2 cassette was nearly 100% higher than that in the TB/C3-pEF cassette during the cultivation period which lasted 6 weeks. Clearly, these results demonstrate the positive impact of bcl-2 over-expression on production of antibody in hybridoma perfusion cultures. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
为解决连续灌注培养产物因营养物质不能有效利用而导致产率偏低的问题,降低生产成本,我们通过在发酵过程中测定表达重组肿瘤坏死因子受体p75:Fc(TNFRp75:Fc)蛋白的CHO工程细胞株对氨基酸成分的不同消耗速率,定量添加特定氨基酸作为营养补偿,提高了培养基中氨基酸的综合利用效率;同时,在连续灌注过程中通过对葡萄糖补加的限量控制,使培养体系中葡萄糖始终低于0.5 g/L,减少了乳酸蓄积对细胞的毒性作用,从而有效降低了灌注速率。结果显示,在30L工作体积发酵规模上经过氨基酸补偿和葡萄糖控制的连续灌注培养工艺使最终重组蛋白产率(mg/L)和最终产量较工艺改进前提高了2.1倍和3.7倍,分别达到388mg/L和244.4g,生产周期延长了一周。工艺改进前后重组蛋白的唾液酸含量和体外生物比活没有改变。通过营养补偿和代谢控制工艺策略可以有效提高连续灌注培养工艺重组肿瘤坏死因子受体p75:Fc蛋白的产率和产能,从而降低产业化成本。  相似文献   

10.
Process intensification in biomanufacturing has attracted a great deal of interest in recent years. Manufacturing platform improvements leading to higher cell density and bioreactor productivity have been pursued. Here we evaluated a variety of intensified mammalian cell culture processes for producing monoclonal antibodies. Cell culture operational modes including fed‐batch (normal seeding density or high seeding density with N‐1 perfusion), perfusion, and concentrated fed‐batch (CFB) were assessed using the same media set with the same Chinese Hamster Ovary (CHO) cell line. Limited media modification was done to quickly fit the media set to different operational modes. Perfusion and CFB processes were developed using an alternating tangential flow filtration device. Independent of the operational modes, comparable cell specific productivity (fed‐batch: 29.4 pg/cell/day; fed‐batch with N‐1 perfusion: 32.0 pg/cell/day; perfusion: 31.0 pg/cell/day; CFB: 20.1 – 45.1 pg/cell/day) was reached with similar media conditions. Continuous media exchange enabled much higher bioreactor productivity in the perfusion (up to 2.29 g/L/day) and CFB processes (up to 2.04 g/L/day), compared with that in the fed‐batch processes (ranging from 0.39 to 0.49 g/L/day), largely due to the higher cell density maintained. Furthermore, media cost per gram of antibody produced from perfusion was found to be highly comparable with that from fed‐batch; and the media cost for CFB was the highest due to the short batch duration. Our experimental data supports the argument that media cost for perfusion process could be even lower than that in a fed‐batch process, as long as sufficient bioreactor productivity is achieved. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:867–878, 2017  相似文献   

11.
Animal cell perfusion high density culture is often adopted for the production of biologicals in industry. In high density culture sometimes the productivity of biologicals has been found to be enhanced. Especially in immobilized animal cell culture, significant increase in the productivity has been reported. We have found that the specific monoclonal antibody (MAb) productivity of an immobilized hybridoma cell is enhanced more than double. Several examples of enhancing productivities have been also shown by collagen immobilized cells. Immobilized cells involve some different points from non-immobilized cells in high density culture: In immobilized culture, some cells are contacted together, resulting in locally much higher cell concentration more than 108 cells/ml. Information originating from a cell can be easily transduced to the others in immobilized culture because the distance between cells is much nearer. Here we have performed collagen gel immobilized culture of recombinant BHK cells which produce a human IgG monoclonal antibody in a protein-free medium for more than three months. In this high density culture a stabilized monoclonal antibody production was found with around 8 times higher specific monoclonal antibody productivity compared with that in a batch serum containing culture. No higher MAb productivity was observed using a conditioned medium which was obtained from the high density culture, indicating that no components secreted from the immobilized cells work for enhancing monoclonal antibody production. The MAb productivity by the non-immobilized cells obtained by dissolving collagen using a collagenase gradually decreased and returned to the original level in the batch culture using a fresh medium. This suggests that the direct contact of the cells or a very close distance between the cells has something to do with the enhancement of the MAb productivity, and the higher productivity is kept for a while in each cell after they are drawn apart.  相似文献   

12.
Summary In this study, a perfusion fermentation ofAnchusa officinalis was carried out in a stirred tank bioreactor integrated with an internal cross-flow filter. Bubble-free aeration via microporous membrane fibers was used to provide oxygen. A two-stage culture was successfully conducted in this reactor without filter fouling. In a 17 day fermentation, a cell density of 26 g dw/I and a rosmarinic acid productivity of 94 mg/l day were achieved. This productivity is three times that obtained in a batch culture.  相似文献   

13.
The production of Bacillus thuringiensis spores was investigated in a bioreactor incorporating a ceramic membrane filter to improve spore concentration and volumetric productivity. Two cultivation methods were used in this study: a total cell retention culture (TCRC), and a two-stage continuous culture with partial cell bleeding. In the TCRC, fed by 50 g/L of glucose, a spore concentration of 1.6 x 10(10) CFU/mL was obtained with a spore percentage of greater than 95% and a maximum cell mass of 82.2 g/L. The volumetric productivity was four times higher than that obtained from batch cultivation. In the two-stage continuous culture with partial cell bleeding spore concentration was strongly dependent on the bleed ratio. The spore concentration of 1.8 x 10(9) CFU/mL and the spore percentage of 70% were obtained at the second stage when a bleed ratio of 0.33 and a dilution rate of 0.23 h(-1) were used. (c) 1993 John Wiley & Sons, Inc.  相似文献   

14.
For efficient astaxanthin production from the culture of green microalga, Haematococcus pluvialis, a two-stage mixotrophic culture system was established with stepwise increased light irradiance. By perfusion process, high density biomass (2.47 g/L) was achieved during the vegetative stage due to no detrimental effect of inhibitory metabolites, which was 3.09 and 1.67 times higher than batch and fed-batch processes, respectively. During the induction stage, biomass and astaxanthin were subsequently produced to the very high level 12.3 g/L and 602 mg/L, under stepwise increased light irradiance (150–450 μE/m2/s), respectively. These results indicate that the combinatorial approach of perfusion culture during the vegetative stage and stepwise light irradiation during the induction stage is a promising strategy for the simultaneous production of high concentration of biomass and astaxanthin in microalgae including H. pluvialis.  相似文献   

15.
Based upon the results of scale-down intermittent perfusion processes, a cell-once-through (COT) perfusion concept was applied to a dual bioreactor system coupled to a Centritech Lab II centrifuge for culture of recombinant Chinese hamster ovary (rCHO) cells for monoclonal antibody production. In this new culture mode, i.e., the COT perfusion process, total spent medium was transferred to the centrifuge and a fixed percentage was removed. Approximately 99% of the viable cells are transferred to another bioreactor filled with fresh medium by single operation of the Centritech Lab II centrifuge system for about 30 min. Accordingly, a significant reduction of the cell-passage frequency to the centrifuge led to minimization of cell damage caused by mechanical shear stress, oxygen limitation, nutrient limitation, and low temperature outside the bioreactor. The effects of culture temperature shift and fortified medium on cell growth and recombinant antibody production in the COT perfusion process were investigated. Although the suppressive effects of low culture temperature on cell growth led to a loss of stability in a long-term COT perfusion culture system, the average antibody concentration at 33 degrees C was 157.8 mg/L, approximately 2.4-fold higher than that at 37 degrees C. By the use of a fortified medium at 37 degrees C, rCHO cells were maintained at high density above 1.2 x 10(7) cells/mL, and antibody was produced continuously in a range of 260-280 mg/L in a stable long-term COT perfusion culture. The proposed new culture mode, the COT perfusion approach, guarantees the recovery of rCHO cells damaged by lowered temperature or high lactate and ammonium concentration. It will be an attractive choice for minimization of cell damage and stable long-term antibody production with high cell density.  相似文献   

16.
In the current environment of diverse product pipelines, rapidly fluctuating market demands and growing competition from biosimilars, biotechnology companies are increasingly driven to develop innovative solutions for highly flexible and cost‐effective manufacturing. To address these challenging demands, integrated continuous processing, comprised of high‐density perfusion cell culture and a directly coupled continuous capture step, can be used as a universal biomanufacturing platform. This study reports the first successful demonstration of the integration of a perfusion bioreactor and a four‐column periodic counter‐current chromatography (PCC) system for the continuous capture of candidate protein therapeutics. Two examples are presented: (1) a monoclonal antibody (model of a stable protein) and (2) a recombinant human enzyme (model of a highly complex, less stable protein). In both cases, high‐density perfusion CHO cell cultures were operated at a quasi‐steady state of 50–60 × 106 cells/mL for more than 60 days, achieving volumetric productivities much higher than current perfusion or fed‐batch processes. The directly integrated and automated PCC system ran uninterrupted for 30 days without indications of time‐based performance decline. The product quality observed for the continuous capture process was comparable to that for a batch‐column operation. Furthermore, the integration of perfusion cell culture and PCC led to a dramatic decrease in the equipment footprint and elimination of several non‐value‐added unit operations, such as clarification and intermediate hold steps. These findings demonstrate the potential of integrated continuous bioprocessing as a universal platform for the manufacture of various kinds of therapeutic proteins. Biotechnol. Bioeng. 2012; 109: 3018–3029. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Continuous upstream processing in mammalian cell culture for recombinant protein production holds promise to increase product yield and quality. To facilitate the design and optimization of large-scale perfusion cultures, suitable scale-down mimics are needed which allow high-throughput experiments to be performed with minimal raw material requirements. Automated microbioreactors are available that mimic batch and fed-batch processes effectively but these have not yet been adapted for perfusion cell culture. This article describes how an automated microbioreactor system (ambr15) can be used to scale-down perfusion cell cultures using cell sedimentation as the method for cell retention. The approach accurately predicts the viable cell concentration, in the range of about 1 × 107 cells/mL for a human cell line, and cell viability of larger scale cultures using a hollow fiber based cell retention system. While it was found to underpredict cell line productivity, the method accurately predicts product quality attributes, including glycosylation profiles, from cultures performed in bioreactors with working volumes between 1 L and 1,000 L. The spent media exchange method using the ambr15 was found to predict the influence of different media formulations on large-scale perfusion cultures in contrast to batch and chemostat experiments performed in the microbioreactor system. The described experimental setup in the microbioreactor allowed an 80-fold reduction in cell culture media requirements, half the daily operator time, which can translate into a cost reduction of approximately 2.5-fold compared to a similar experimental setup at bench scale.  相似文献   

18.
Jäger V 《Cytotechnology》1996,20(1-3):191-198
Conclusion High density perfusion culture of insect cells for the production of recombinant proteins has proved to be an attractive alternative to batch and fed-batch processes. A comparison of the different production processes is summarized in Table 3. Internal membrane perfusion has a limited scale-up potential but appears to the method of choice in smaller lab-scale production systems. External membrane perfusion results in increased shear stress generated by pumping of cells and passing through microfiltration modules at high velocity. However, using optimized perfusion strategies this shear stress can be minimized such that it is tolerated by the cells. In these cases, perfusion culture has proven to be superior to batch production with respect to product yields and cell specific productivity. Although insect cells could be successfully cultivated by immobilization and perfusion in stationary bed bioreactors, this method has not yet been used in continuous processes. In fluidized bed bioreactors with continuous medium exchange cells showed reduced growth and protein production rates.For the cultivation of insect cells in batch and fedbatch processes numerous efforts have been made to optimize the culture medium in order to allow growth and production at higher cell densities. These improved media could be used in combination with a perfusion process, thus allowing substantially increased cell densities without raising the medium exchange rate. However, sufficient oxygen supply has to be guaranteed during fermentation in order to ensure optimal productivity.  相似文献   

19.
A semicontinuous perfusion culture process (repeated medium renewal with cell retention) was evaluated together with batch and repeated fed-batch processes for astaxanthin production in shake-flask cultures of Xanthophyllomyces dendrorhous. The perfusion process with 25% medium renewal every 12 h for 10 days achieved a biomass density of 65.6 g/L, a volumetric astaxanthin yield of 52.5 mg/L, and an astaxanthin productivity of 4.38 mg/L-d, which were 8.4-fold, 5.6-fold, and 2.3-fold of those in the batch process, 7.8 g/L, 9.4 mg/L, and 1.88 mg/L-d, respectively. The incorporation of hydrogen peroxide (H(2)O(2)) stimulation of astaxanthin biosynthesis into the perfusion process further increased the astaxanthin yield to 58.3 mg/L and the productivity to 4.86 mg/L-d. The repeated fed-batch process with 8 g/L glucose and 4 g/L corn steep liquor fed every 12 h achieved 42.2 g/L biomass density, 36.5 mg/L astaxanthin yield, and 3.04 mg/L-d astaxanthin productivity. The lower biomass and astaxanthin productivity in the repeated fed-batch than in the perfusion process may be mostly attributed to the accumulation of inhibitory metabolites such as ethanol and acetic acid in the culture. The study shows that perfusion process plus H(2)O(2) stimulation is an effective strategy for enhanced astaxanthin production in X. dendrorhous cultures.  相似文献   

20.
Improvements in lipid productivity would enhance the economic feasibility of microalgal biodiesel. In order to optimise lipid productivity, both the growth rate and lipid content of algal cells must be maximised. The lipid content of many microalgae can be enhanced through nitrogen limitation, but at the expense of biomass productivity. This suggests that a two-stage nitrogen supply strategy might improve lipid productivity. Two different nitrogen supply strategies were investigated for their effect on lipid productivity in Chlorella vulgaris. The first was an initial nitrogen-replete stage, designed to optimise biomass productivity, followed by nitrogen limitation to enhance lipid content (two-stage batch) and the second was an initial nitrogen-limited stage, designed to maximise lipid content, followed by addition of nitrogen to enhance biomass concentration (fed-batch). Volumetric lipid yield in nitrogen-limited two-stage batch and fed-batch was compared with that achieved in nitrogen-replete and nitrogen-limited batch culture. In a previous work, maximum lipid productivity in batch culture was found at an intermediate level of nitrogen limitation (starting nitrate concentration of 170 mg L?1). Overall lipid productivity was not improved by using fed-batch or two-stage culture strategies, although these strategies showed higher volumetric lipid concentrations than nitrogen-replete batch culture. The dilution of cultures prior to nitrogen deprivation led to increased lipid accumulation, indicating that the availability of light influenced the rate of lipid accumulation. However, dilution did not lead to increased lipid productivity due to the resulting lower biomass concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号