首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ethylene synthesis is accelerated in response to various environmental stresses like salinity. Ten rhizobacterial strains isolated from wheat rhizosphere taken from different salt affected areas were screened for growth promotion of wheat under axenic conditions at 1, 5, 10 and 15 dS m−1. Three strains, i.e., Pseudomonas putida (N21), Pseudomonas aeruginosa (N39) and Serratia proteamaculans (M35) showing promising performance under axenic conditions were selected for a pot trial at 1.63 (original), 5, 10 and 15 dS m−1. Results showed that inoculation was effective even in the presence of higher salinity levels. P. putida was the most efficient strain compared to the other strains and significantly increased the plant height, root length, grain yield, 100-grain weight and straw yield up to 52, 60, 76, 19 and 67%, respectively, over uninoculated control at 15 dS m−1. Similarly, chlorophyll content and K+/Na+ of leaves also increased by P. putida over control. It is highly likely that under salinity stress, 1-aminocyclopropane-1-carboxylic acid-deaminase activity of these microbial strains might have caused reduction in the synthesis of stress (salt)-induced inhibitory levels of ethylene. The results suggested that these strains could be employed for salinity tolerance in wheat; however, P. putida may have better prospects in stress alleviation/reduction.  相似文献   

2.
Saubidet  María I.  Fatta  Nora  Barneix  Atilio J. 《Plant and Soil》2002,245(2):215-222
Azospirillium brasilense is a rhizosphere bacteria that has been reported to improve yield when inoculated on wheat plants. However, the mechanisms through which this effect is induced is still unclear. In the present work, we have studied the effects of inoculating a highly efficient A. brasilense strain on wheat plant grown in 5 kg pots with soil in a greenhouse, under three N regimes (0, 3 or 16 mM NO3 , 50 ml/pot once or twice-a -week), and in disinfected or non-disinfected soil. At the booting stage, the inoculated roots in both soils showed a similar colonization by Azospirillum sp. that was not affected by N addition. The plants grown in the disinfected soil showed a higher biomass, N content and N concentration than those in the non-disinfected soil, and in both soils the inoculation stimulated plant growth, N accumulation, and N and NO3 concentration in the tissues.At maturity, the inoculated plants showed a higher biomass, grain yield and N content than the uninoculated ones in both soils, and a higher grain protein concentration than the uninoculated. It is concluded that in the present experiments, A. brasilenseincreased plant growth by stimulating nitrogen uptake by the roots.  相似文献   

3.
Murashige & Skoog nutrient was supplemented with substances of molecular weight (MW) less than 5 kDa, which were separated from extract of winter wheat ears by means of Sephadex G-25 ultrafiltration. Isolated embryos of the same wheat cultivar (Grana) were vernalized in the nutrient for 0 and 7 days at 2 °C for 2 weeks and planted in a glass-house. After 150 days of growth (20/17 °C day/night) the development of the shoot apices was observed. It was found that substances of MW<5 kDa strongly stimulated the generative development of the plants, enabling the earing of 30 % of non-vernalized plants (control=0%) and 100 % plants vernalized for 7 days (control=29 %). The substances present in the extract of both spring (cv. Jara) and winter (cv. Grana) varieties were fractionated by means of Sephadex chromatography into 300 fractions of MW=1 to 5 kDa and each of them was added to the isolated embryos of cv. Grana. The embryos were vernalized at 2 °C for 7 days and then cultured as previously described. It was found that the differentiation of the shoot apices was stimulated by over 34 % by fractions of winter wheat extract and more than 50 % by fractions of the spring wheat extract. However, only a few of identical fractions of the extracts of both wheat varieties were able to induce the earing of the plants. These fractions were grouped in 4 continuous intervals of MW equal to about 4.5–4.9, 3.2–3.3, 2.1–2.6 and 1.00–1.03 kDa. Within the three intervals was identified a small group of identical fractions, which affected the growth of the seedlings in similar mode i.e. inhibiting or stimulating. Thus it can be assumed that these intervals contained identical or similar substances capable of stimulating strongly the earing of winter wheat.  相似文献   

4.
Acinetobacter strain IVS-B aerobically grows on isovalerate as sole carbon and energy source. Isovalerate is metabolised via isovaleryl-CoA, an intermediate of the oxidative (S)-leucine degradation pathway. A 3-methylglutaconyl-CoA hydratase (EC 4.2.1.18) was purified 65-fold to apparent homogeneity from cell-free extracts of isovalerate-grown cells of Acinetobacter strain IVS-B. The enzyme was found to be a homotetramer (115.2 kDa) composed of four identical subunits of 28.8 kDa not containing any cofactors. The enzyme was shown to catalyse the hydration of (E)-glutaconyl-CoA (k cat=18 s−1, K m=40 μM) and the dehydration of (S)-3-hydroxyglutaryl-CoA (k cat=13 s−1, K m=52 μM), albeit with somewhat lower catalytic efficiencies as compared to the 3-methyl derivatives, 3-methylglutaconyl-CoA (k cat=138 s−1, K m=14 μM) and (S)-3-hydroxy-3-methylglutaryl-CoA (k cat=60 s−1, K m=36 μM). Thus, the mechanistically simple syn-addition of water to the (E)-isomer of 3-methylglutaconyl-CoA of the leucine degradative pathway leading to the common intermediate (S)-3-hydroxy-3-methylglutaryl-CoA was assigned as the major physiological role to this enzyme. The amino acid sequence of 3-methylglutaconyl-CoA hydratase from Acinetobacter sp. was found to be related to over 100 prokaryotic enoyl-CoA hydratases (up to 50% identity), possibly all being 3-methylglutaconyl-CoA hydratases.An erratum to this article can be found at  相似文献   

5.
Fusarium head blight (FHB) caused by Gibberella zeae (anamorph = Fusarium graminearum) is a devastating disease that causes extensive yield and quality losses to wheat in humid and semi-humid regions of the world. Biological control has been demonstrated to be effective under laboratory conditions but a few biocontrol products have been effective under field conditions. The improvement in the physiological quality of biocontrol agents may improve survival under field conditions, and therefore, enhance biocontrol activity. Bacillus subtilis RC 218 and Brevibacillus sp. RC 263 were isolated from wheat anthers and showed significant effect on control of FHB under greenhouse assays. This study showed the effect of water availability measured as water activity (aW) using a growth medium modified with NaCl, glycerol and glucose on: (i) osmotic stress tolerance, (ii) viability in modified liquid medium, (iii) quantitative intracellular accumulation of betaine and ectoine and (iv) the biocontrol efficacy of the physiologically improved agents. Viability of B. subtilis RC 218 in NaCl modified media was similar to the control. Brevibacillus sp. RC 263 showed a limited adaptation to growth in osmotic stress. Betaine was detected in high levels in modified cells but ectoine accumulation was similar to the control cells. Biocontrol activity was studied in greenhouse assays on wheat inoculated at anthesis period with F. graminearum RC 276. Treatments with modified bacteria reduced disease severity from 60% for the control to below 20%. The physiological improvement of biocontrol agents could be an effective strategy to enhance stress tolerance and biocontrol activity under fluctuating environmental conditions.  相似文献   

6.
Plant growth is often affected with hampered physiological and cellular functioning due to salinity and drought stress. To assess the effectiveness of plant bioregulators (PBRs) in mitigating abiotic stresses, a double spilt plot field study was conducted with three replications at ICAR-CSSRI, research farm, Nain, Panipat. The study comprised of three deficit irrigation regimes viz., 100, 80 and 60% of crop evapo-transpiration (ETc) (I1, I2 and I3), four levels of irrigation water salinity i.e. 2, 4, 8, 12 dS m−1 (S0, S1, S2 and S3) and two PBRs salicylic acid (SA; G1) and thiourea (TU; G2). Irrigations, as per regimes and salinity, were applied at identified critical stages of wheat and if needed in pearl millet. PBRs were applied as seed priming and foliar sprays at two sensitive stages of respective crops. The trend of plant height, and physiological and biochemical traits was similar under different treatments at both stages, but differed significantly only at reproductive stage. Water deficit caused significant reduction in pearl millet (5.1%) and wheat (6.7%) grain yields. The reduction in grain yield under 8 and 12 dS m−1 was 12.90 and 22.43% in pearl millet and 7.68 and 32.93% in wheat, respectively compared to 2 dS m−1. Application of either SA (G1) or TU (G2) significantly enhanced plant height and grain yield, but magnitude of the increment was higher with SA in pearl millet and with TU in wheat. Application of SA and TU increased grain yield by 14.42 and 12.98 in pearl millet, and 12.90 and 17.36% in wheat, respectively. The plant height, RWC, TC, MI, LP, proline, Fv/Fm and Na/K ratio significantly reduced by salinity stress in pearl millet and both water and salinity stress in wheat. Application of both PBRs proved beneficial to mitigate adverse effect of water deficit and salt stress by significantly improving physiological traits, biochemical traits and ultimately grain yield in both crops.  相似文献   

7.
A greenhouse experiment was carried out aiming to evaluate the response to drought stress of cowpea nodule enzymatic activities during different plant developmental stages leading to biological N2 fixation. Stress was applied by controlling soil’s water-potential through a porous cup. Cowpea plants cv IPA 205 were grown in pots with yellow latosol soil under three different matric potential (ψm) treatments. Even with high evaporative demand and limited soil water availability, cowpea could not induce an extremely low leaf water potential (ψw). Sap ureides concentration in cowpea declined during the drought stress period. There was a decline in enzyme activity in the metabolic pathways concerned with N2 fixation: NADH-dependent glutamate synthase (EC 1.4.1.14), glutamine synthetase (EC 6.3.1.2) and phosphoenolpyruvate carboxylase (EC 4.1.1.31). In contrast, an increase in glutamate dehydrogenase (EC 1.4.1.4) was observed as the ψm declined. Metabolism associated with N2 assimilation was impaired every time that the ψw was reduced below −0.73 MPa as had happened in the stressed treatments. The stress applied by the porous cup was gradual and the plant recovered its turgor, avoiding permanent deleterious alterations in the cellular metabolism, even from a limited cowpea-growth ψm.  相似文献   

8.
The DNA hypomethylation effect of 5-azacytine (5-AC; a cytosine analog) is widely known. This agent has been used for rRNA gene expression studies of Triticeae amphiploids and hybrids regarding rye rRNA genes suppression caused by the wheat nucleolar dominance phenomenon. However, this situation is reverted by 5-AC treatment which activates rye rRNA gene expression as it has been intensively observed in triticale. For nucleolar dominance studies, we produced F1 multigeneric hybrids (AABBRHch; 2n = 6x = 42) from crosses between the triticale cultivar ‘Corgo’ (AABBRR; 2n = 6x = 42) and the tritordeum cultivars HT9 and HT31 (AABBHchHch; 2n = 6x = 42). The hybrid seeds were germinated in a low concentration of 5-AC (treatment) and in distilled water (nontreated control plants). Silver nitrate staining performed in one 5-AC-treated F1 hybrid revealed a reduced number of interphase cells with seven nucleoli, metaphases with eight Ag-NORs, and neocentromeres in the long arm of three wheat chromosomes. Nontreated hybrids presented six Ag-NORs per mitotic metaphase cell and a maximum of six nucleoli per interphase because of the 1R Ag-NOR suppression. No neocentromere was found in the control F1 hybrid plants. Both treated and nontreated seedlings were subsequently evaluated by fluorescent in situ hybridization performed with genomic and repetitive DNA probes to identify Hch and rye genomes, to confirm Ag-NORs location, and to detect inactive rDNA loci. DAPI counterstaining was also helpful for the detection of neocentromeres in the long arm of three wheat chromosomes. This study allowed us to suggest that 5-AC treatment specifically induced wheat neocentromeres in the F1 multigeneric triticale × tritordeum hybrids.  相似文献   

9.
Common bean,Phaseolus vulgaris L., is known to be ‘inefficient’ in nodulation and N2 fixation although it responds to applied nitrogen. An experiment was conducted to identify and to characterize bean cultivars nodulating in the presence of a high level of nitrogen. Sixteen cultivars and a check for inefficient nodulation, OAC Seaforth, were inoculated and grown for 40 days in replicated pots supplied with zero, 3.5 and 10.5 mM combined nitrogen as NO 3 and NH 4 + . Seven traits relating to nodulation and N2 fixation were all significantly affected by N level (N), cultivar (Cv) and N × Cv interactions (except for root dry weight), indicating that cultivars responded differently to the N treatments. Total dry weight (W) and shoot to root ratio (S/R) increased with the increased N levels. Nodule dry weight (Wn), visual nodulation score (Nv) and nodulation index (Nx) decreased as the N increased. Percent N and N content per plant increased with the increased N level. Plant weight (W) was positively correlated with Wn, Nv and N content and negatively correlated with %N. Nodulation score was positively associated with Wn and plant N content. Genotypes superior in nodulation and N2 fixation in the presence of N were identified. Cultivars Italian Barlotti, California Light Red Kidney, Kentucky Wonder A and Pueblo 152 were selected for further testing and use in improving the nitrate tolerant nodulating characteristic of bean.  相似文献   

10.
Summary Soil + charcoal (1∶3) carrier based and liquid cultures of Rhizobia were used to inoculate wheat seed cv. HD2329. The plants received 100 kg N in two equal splits and 60 kg P2O5 and 40 kg K20 ha−1. Inoculation with rhizobia had little effect on grain yield of wheat. Significant increase in straw yield and N-uptake occurred due to inoculation. A comparison of results of a similar experiment conducted during 1983–84, showed that inoculation with the same strains of rhizobia and application 50 kg N ha−1 as basal dressing, was more effective in increasing yield and N-uptake in wheat cv. HD2329. It appears reasonable to assume occurrence of nitrogen fixation by root nodule bacteria in rhizosphere of wheat.  相似文献   

11.
Oxygen isotope fractionation between human phosphate and water revisited   总被引:1,自引:0,他引:1  
The oxygen isotope composition of human phosphatic tissues (δ18OP) has great potential for reconstructing climate and population migration, but this technique has not been applied to early human evolution. To facilitate this application we analyzed δ18OP values of modern human teeth collected at 12 sites located at latitudes ranging from 4°N to 70°N together with the corresponding oxygen composition of tap waters (δ18OW) from these areas. In addition, the δ18O of some raw and boiled foods were determined and simple mass balance calculations were performed to investigate the impact of solid food consumption on the oxygen isotope composition of the total ingested water (drinking water + solid food water). The results, along with those from three, smaller published data sets, can be considered as random estimates of a unique δ18OW18OP linear relationship: δ18OW = 1.54(±0.09) × δ18OP−33.72(±1.51) (R2 = 0.87: p [H0:R2 = 0] = 2 × 10−19). The δ18O of cooked food is higher than that of the drinking water. As a consequence, in a modern diet the δ18O of ingested water is +1.05 to 1.2‰ higher than that of drinking water in the area. In meat-dominated and cereal-free diets, which may have been the diets of some of our early ancestors, the shift is a little higher and the application of the regression equation would slightly overestimate δ18OW in these cases.  相似文献   

12.
为了探究不同种植方式下草本植物对喀斯特"土层浅薄"和"岩溶干旱"生境的养分调节响应,选择苇状羊茅(Festuca arundinacea)和黑麦草(Lolium perenne)为研究材料,在盆栽水分控制条件下设置了2种土壤厚度[对照土壤厚度(T_(CK))和浅土(T_S)]、2种水分处理[对照水分(W_(CK))和干旱(W_D)]和2种种植方式(单种和混种),研究土壤厚度和水分减少对混种下两种草本植物元素含量、积累和分配的影响。结果表明:(1)与对照组(CK:T_(CK)W_(CK))相比,在浅土组(S:T_SW_(CK))、干旱组(D:T_(CK)W_D)和浅土+干旱组(SD:T_SW_D),苇状羊茅和黑麦草的地上和根系C和N含量在单种和混种下(浅土除外)显著增加,P含量和各部分元素积累量显著降低;而苇状羊茅的根系各元素分配比在3种低资源水平下(S、D、SD)由单种时增加转为混种时降低,而黑麦草的根系营养元素分配比在浅土中增加,但在干旱处理下减少。(2)在对照资源水平下(CK),混种后苇状羊茅的地上部分C含量、根系P含量、地上、地下和总的元素积累量和根系元素分配比显著高于单种,而在3种低资源水平下达到各参数在单种和混种下无显著差异。(3)在各资源水平下,混种后黑麦草各部分C、N、P的含量、积累量和根系元素分配比大体上与单种无显著差异。结果表明,在低资源水平下,苇状羊茅和黑麦草通过增加C和N元素含量表现出较强的资源获取和防御能力。在混种条件下,苇状羊茅能够通过调节自身元素的积累和分配来提高竞争力,而黑麦草保持相对恒定的策略来响应竞争。  相似文献   

13.
S. C. Jarvis 《Plant and Soil》1987,100(1-3):99-112
Summary Perennial ryegrass was grown in flowing solution culture with nitrogen supplied in amounts that increased exponentially,i.e. in parallel with the rate of increase in growth. Nitrogen was supplied as either NO 3 or NH 4 + , and the amounts to be added were calculated on the basis of extrapolated values for dry weights obtained from fitted curves. There were two rates of addition for each form of N aimed at providing adequate (5.0 per cent) and less than adequate (2.75 per cent) contents in the plants in each case. Measured plant weights and N concentrations were in close agreement with predicted values over a four week experimental period. There was no effect of N-form at high N, and these plants produced 46 per cent more dry matter than the plants at low N. Only minor differences in overall growth occurred with NO 3 or NH 4 + plants at low N, but the NH 4 + plants had a greater shoot:root ratio. The absorption rate (m mol Ng root d−1) for NH 4 + -N was therefore greater than for NO 3 -N. The cation/anion composition of the plants was affected in a predicable way, and to a greater or lesser extent at high or low N, respectively, in NO 3 or NH 4 + plants. The major changes in cation composition came through effects on potassium absorption. Plants with low NO 3 appeared to be under greater N stress than those with low NH 4 + because of the lower shoot:root ratio and the greater C∶N ratio in the shoots.  相似文献   

14.
An hydroponic experiment with a simulated water stress induced by PEG (6000) was conducted in a greenhouse to study the effects of nitrate (NO3 ), ammonium (NH4 +) and the mixture of NO3 and NH4 +, on water stress tolerance of rice seedlings. Rice (Shanyou 63) was grown under non- or simulated water stress condition (10% (w/v) PEG, MW6000) with the 3 different N forms during 4 weeks. Under non-stressed condition no difference was observed among the N treatments. Under simulated water stress, seedlings grown on N-NO3 were stunted. Addition of PEG did not affect rice seedling growth in the treatment of only NH4 + supply but slightly inhibited the rice seedling growth in the treatment of mixed supply of NO3 and NH4 +. Simulated water stress, when only N-NH4 + was present, did not affect leaf area and photosynthesis rate, however, both parameters decreased significantly in the NO3 containing solutions. Under water stress, Rubisco content in newly expanded leaves significantly increased in the sole NH4 + supplied plants as compared to that in plants of the other two N treatments. Under water stress, the ratio of carboxylation efficiency to Rubisco content was, respectively, decreased by 13 and 23% in NH4 + and NO3 treatments, respectively. It is concluded that, water stress influenced the Rubisco activity than stomatal limitation, and this effects could be regulated by N forms. Responsible Editor: Herbert Johannes Kronzucker. Shiwei Guo and Gui Chen contributed equally to this paper.  相似文献   

15.
L. Perry  K. Williams 《Oecologia》1996,105(4):428-434
Sabal palmetto (Walt.) Lodd. ex Schultes (cabbage palm) dominates the coastal limit of many forests in North Florida and Georgia, United States. Changes in saltwater flooding due to sea level rise have been credicted with pushing the coastal limit of cabbage palms inland, eliminating regeneration before causing death of mature trees. Localized freshwater discharge along the coast causes different forest stands to experience tidal flooding with waters that differ in salinity. To elucidate the effect of such variation on regeneration failure under tidal flooding, we examined relative effects of flooding and salinity on the performance of cabbage palm seedlings. We examined the relationship between seedling establishment and degree of tidal inundation in the field, compared the ability of seedlings to withstand tidal flooding at two coastal sites that differed in tidal water salinity, and investigated the physiological responses of cabbage palm seedlings to salinity and flooding in a factorial greenhouse experiment. Seedling survival was inversely correlated with depth and frequency of tidal flooding. Survival of seedlings at a coastal site flooded by waters low in salinity [c. 3 parts per thousand (ppt)] was greater than that at a site flooded by waters higher in salinity (up to 23 ppt). Greenhouse experiments revealed that leaves of seedlings in pots flushed twice daily with salt solutions of 0 ppt and 8 ppt exhibited little difference in midmorning net CO2 assimilation rates; those flushed with solutions of 15 ppt and 22 ppt, in contrast, had such low rates that they could not be detected. Net CO2 assimilation rates also declined with increasing salinity for seedlings in pots that were continuously inundated. Continuous root zone inundation appeared to ameliorate effects of salinity on photosynthesis, presumably due to increased salt concentrations and possibly water deficits in periodically flushed pots. Such problems associated with periodic flushing by salt water may play a role in the mortality of cabbage palm seedlings in the field. The salinity range in which plant performance plummeted in the greenhouse was consistent with the salinity difference found between our two coastal study sites, suggesting that variation in tidal water salinity along the coast plays an important role in the ability of cabbage palm seedlings to withstand tidal flooding.  相似文献   

16.
Kochia sieversiana (Pall.) C. A. M., a naturally alkali-resistant halophyte, was chosen as the test organism for our research. The seedlings of K. sieversiana were treated with varying (0–400 mM) salt stress (1:1 molar ratio of NaCl to Na2SO4) and alkali stress (1:1 molar ratio of NaHCO3 to Na2CO3). The concentrations of various solutes in fresh shoots, including Na+, K+, Ca2+, Mg2+, Cl, SO42−, NO3, H2PO3, betaine, proline, soluble sugar (SS), and organic acid (OA), were determined. The water content (WC) of the shoots was calculated and the OA components were analyzed. Finally, the osmotic adjustment and ion balance traits in the shoots of K. sieversiana were explored. The results showed that the WC of K. sieversiana remained higher than 6 [g g−1 Dry weight (DW)] even under the highest salt or alkali stress. At salinity levels >240 mM, proline concentrations increased dramatically, with rising salinity. We proposed that this was not a simple response to osmotic stress. The concentrations of Na+ and K+ all increased with increasing salinity, which implies that there was no competitive inhibition for absorption of either in K. sieversiana. Based on our results, the osmotic adjustment feature of salt stress was similar to that of alkali stress in the shoots of K. sieversiana. The shared essential features were that the shoots maintained a state of high WC, OA, Na+, K+ and other inorganic ions, accumulated largely in the vacuoles, and betaine, accumulated in cytoplasm. On the other hand, the ionic balance mechanisms under both stresses were different. Under salt stress, K. sieversiana accumulated OA and inorganic ions to maintain the intracellular ionic equilibrium, with close to equal contributions of OA and inorganic ions to anion. However, under alkali stress, OA was the dominant factor in maintaining ionic equilibrium. The contribution of OA to anion was as high as 84.2%, and the contribution of inorganic anions to anion was only 15.8%. We found that the physiological responses of K. sieversiana to salt and alkali stresses were unique, and that mechanisms existed in it that were different from other naturally alkali-resistant gramineous plants, such as Aneurolepidium chinense, Puccinellia tenuiflora. Responsible Editor: John McPherson Cheeseman.  相似文献   

17.
Summary Soil pH, NH 4 + and NO 3 concentrations in soil, and take-all root rot of winter wheat grown in the field were measured concurrently from sowing to anthesis in order to relate disease development to liming and N fertilization practices. Experimental variables included soil pH (5.5 and 6.0) and three N sources (NH4NO3, (NH4)2SO4, NH4Cl) banded with the seed at sowing in factorial combination with the same three N sources topdressed in the spring. Take-all severity was increased by increasing soil pH and by fertilization with NO 3 . Disease severity on crown roots increased exponentially following spring N fertilization and was affected more by soil pH and N-form than was severity on seminal roots. Grain yield ranged from 4.70 Mgha−1 with spring NH4NO3 at soil pH 6.0 to 7.65 Mgha−1 with spring NH4Cl at soil pH 5.5. Sixty-six percent of the variability in grain yield was explained by the number of take-all infected crown roots per tiller at anthesis. Oregon Agric. Exp. Stn. technical paper no. 7707.  相似文献   

18.
Hu H  Gao K 《Biotechnology letters》2006,28(13):987-992
Nannochloropsis sp. was grown with different levels of nitrate, phosphate, salinity and temperature with CO2 at 2,800 μl l−1. Increased levels of NaNO3 and KH2PO4 raised protein and polyunsaturated fatty acids (PUFAs) contents but decreased carbohydrate, total lipid and total fatty acids (TFA) contents. Nannochloropsis sp. grew well at salinities from 22 to 49 g l−1, and lowering salinity enhanced TFA and PUFAs contents. TFA contents increased with the increasing temperature but PUFAs contents decreased. The highest eicosapentaenoic acid (EPA, 20:5ω3) content based on the dry mass was above 3% under low N (150 μM NaNO3) or high N (3000 μM NaNO3) condition. Excessive nitrate, low salinity and temperature are thus favorable factors for improving EPA yields in Nannochloropsis sp.  相似文献   

19.
Summary A method was developed for plant regeneration from alginate-encapsulated shoot tips of Phyllanthus amarus. Shoot tips excised from in vitro proliferated shoots were encapsulated in calcium alginate beads. The best gel complexation was achieved using 3% sodium alginate and 75 mM CaCl2·2H2O. Maximum percentage response for conversion of encapsulated shoot tips into plantlets was 90% after 5 wk of culture on Murashige and Skoog (MS) medium without plant growth regulator. The regrowth ability of encapsulated shoot tips was affected by the concentration of sodium alginate, storage duration, and the presence or absence of MS nutrients in calcium alginate beads. Plantlets with well-developed shoot and roots were transferred to pots containing an autoclaved mixture of soilrite and peat moss (1∶1). The conversion of encapsulated shoot tips into plantlets also occurred when calcium alginate beads were directly sown in autoclaved soilrite moistened with 1/4-MS salts. Encapsulation of vegetative propagules in calcium alginate beads can be used as an alternative to synthetic seeds derived from somatic embryos.  相似文献   

20.
孙轲  黎建强  杨关吕  左嫚  胡景 《生态学报》2021,41(8):3100-3110
为了更好地理解土壤碳氮对枯落物输入变化的响应,通过枯落物添加与去除实验(DIRT)对滇中高原云南松林枯落物输入变化对土壤碳氮储量及其分布格局的影响进行了研究。2018年3月至2019年2月分别设置6种枯落物输处理,分别为对照(CO)、去除枯落物(NL)、双倍枯落物(DL)、去除根系(NR)、无输入(NI)以及去除有机层与A层(O/A-Less),研究了不同处理条件下土壤剖面上碳氮储量的分布规律。研究结果表明:(1)不同处理全碳储量为134.49-170.92 t/hm2,全碳储量在不同处理间表现为:SC(NL)=170.92 t/hm2 > SC(CO)=168.10 t/hm2 > SC(NR)=153.26 t/hm2 > SC(NI)=147.20 t/hm2 > SC(O/A-Less)=143.54 t/hm2 > SC(DL)=134.49 t/hm2,不同处理0-20 cm土层全碳储量占0-60 cm土层全碳储量的40.86%-53.56%;不同处理全氮储量表现为:SN(CO)=11.83 t/hm2 > SN(NL)=9.70 t/hm2 > SN(DL)=8.70 t/hm2 > SN(NR)=8.35 t/hm2 > SN(O/A-Less)=8.21 t/hm2 > SN(NI)=8.09 t/hm2。不同处理0-20 cm土层的全氮储量占0-60 cm土层全氮储量的39.28%-46.04%。云南松林地枯落物添加去除实验发现去除枯落物短期内可以增加土壤碳储量,其他处理均在一定程度上减少了土壤碳氮储量。(2)地上枯落物输入对表层(0-20 cm)土壤碳氮影响显著,根系输入对深层(20-40 cm)土壤碳氮影响显著;(3)土壤C、N存在耦合关系,不同处理土壤全碳含量与全氮含量极显著正相关,并且土壤全碳含量与土壤各化学计量比均呈极显著正相关关系;土壤容重与土壤碳氮含量具有极显著负相关关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号