首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The growth and graviresponsiveness of roots were investigated in lentil seedlings (Lens culinaris L. cv. Verte du Puy) grown (1) in microgravity, (2) on a 1 g centrifuge in space, (3) in microgravity and then placed on the 1 g centrifuge for 3 h, (4) on the ground. Dry seeds were hydrated in space (except for the ground control) and incubated for 25 h at 22°C in darkness. At the end of the experiment, the seedlings were photographed and fixed in glutaraldehyde in a Biorack glove box. Root length was similar for seedlings grown in space and for the ground and the 1 g centrifuge controls. The direction of root growth in the microgravity sample deviated strongly from the initial orientation of the roots of the dry seeds. This deviation could be due to spontaneous curvatures similar to those observed on clinostats. When lentil seedlings were first grown in microgravity for 25 h and then placed on the 1 g centrifuge for 3 h, their roots bent strongly under the effect of the centrifugal acceleration. The amplitude of root curvature on the centrifuge was not significantly different from that observed on ground controls growing in the vertical position and placed in the horizontal position for 3 h. The gravisensitivity of statocytes differentiated in microgravity was similar to that of statocytes differentiated on earth. There were no qualitative differences in the ultrastructural features of the gravisensing cells in microgravity and in the 1 g centrifuge and ground controls. However, the distribution of statoliths in the gravisensing cells was different in microgravity: most of them were observed in the proximal part of these cells. Thus, these organelles were not distributed at random, which is in contradiction with results obtained with clinostats. The distal complex of endoplasmic reticulum in the statocytes was not in contact with the amyloplasts. Contact and pressure of amyloplasts on the tubules were not prerequisites for gravisensing. The results obtained are not in agreement with the hypothesis that the distal endoplasmic reticulum would be the transducer of the action of the statoliths.  相似文献   

2.
Mechanotransduction in root gravity sensing cells   总被引:1,自引:0,他引:1  
The analysis of the dose-response curve of the gravitropic reaction of lentil seedling roots has shown that these organs are more sensitive when they have been grown in microgravity than when they have been grown on a 1 g centrifuge in space before gravistimulation. This difference of gravisensitivity is not due to the volume or the density of starch grains of statoliths, which are about the same in both conditions (1 g or microgravity). However, the distribution of statoliths within the statocyte may be responsible for this differential sensitivity, since the dispersion of these organelles is greater in microgravity than in 1 g. When lentil roots grown in microgravity or in 1 g are stimulated at 0.93 g for 22 min, the amyloplasts sediment following two different trajectories. They move from the proximal half of the statocytes toward the lower longitudinal wall in the microgravity grown sample and from the distal half toward the longitudinal wall in the 1 g grown sample. At the end of the stimulation, they reach a similar position within the statocytes. If the roots of both samples are left in microgravity for 3 h, the amyloplasts move toward the cell centre in a direction that makes an average angle of 40 degrees with respect to the lower longitudinal wall. The actin filaments, which are responsible for this movement, may have an overall orientation of 40 degrees with respect to this wall. Thus, when roots grown in microgravity are stimulated on the minicentrifuge the amyloplasts slide on the actin filaments, whereas they move perpendicular to them in 1 g grown roots. Our results suggest that greater sensitivity of seedling roots grown in microgravity should be due to greater dispersion of statoliths, to better contacts between statoliths and the actin network and to greater number of activated mechanoreceptors. One can hypothesize that stretch activated ion channels (SACs) located in the plasma membrane are responsible for the transduction of gravistimulus. These SACs may be connected together by elements of the cytoskeleton lining the plasma membrane and to the actin filaments. They could be stimulated by the action of statoliths on the actin network and/or on these elements of the cytoskeleton which link the mechanoreceptors (SACs).  相似文献   

3.
During five rocket flights (TEXUS 18, 19, 21, 23 and 25), experiments were performed to investigate the behaviour of statoliths in rhizoids of the green alga Chara globularia Thuill. and in statocytes of cress (Lepidium sativum L.) roots, when the gravitational field changed to approx. 10–4 · g (i.e. microgravity) during the parabolic flight (lasting for 301–390 s) of the rockets. The position of statoliths was only slightly influenced by the conditions during launch, e.g. vibration, acceleration and rotation of the rocket. Within approx. 6 min of microgravity conditions the shape of the statolith complex in the rhizoids changed from a transversely oriented lens into a longitudinally oriented spindle. The center of the statolith complex moved approx. 14 m and 3.6 m in rhizoids and root statocytes, respectively, in the opposite direction to the originally acting gravity vector. The kinetics of statolith displacement in rhizoids demonstrate that the velocity was nearly constant under microgravity whereas it decreased remarkably after inversion of rhizoids on Earth. It can be concluded that on Earth the position of statoliths in both rhizoids and root statocytes depends on the balance of two forces, i.e. the gravitational force and the counteracting force mediated by microfilaments.Abbreviations ER endoplasmic reticulum - g 9.806 m · s–2 - MF microfilament - TEXUS Technologische Experimente unter Schwerelosigkeit (technological experiments under reduced gravity) Dedicated to Professor Wolfgang Haupt on the occasion of his 70th birthday  相似文献   

4.
The biophysical properties of the interaction between fibronectin and its membrane receptor were inferred from adhesion tests on living cells. Individual fibroblasts were maintained on fibronectin-coated glass for short time periods (1–16 s) using optical tweezers. After contact, the trap was removed quickly, leading to either adhesion or detachment of the fibroblast. Through a stochastic analysis of bond kinetics, we derived equations of adhesion probability versus time, which fit the experimental data well and were used to compute association and dissociation rates (k +=0.3–1.4 s−1 and k off=0.05–0.25 s−1, respectively). The bond distribution is binomial, with an average bond number ≤10 at these time scales. Increasing the fibronectin density (100–3000 molecules/μm2) raised k + in a diffusion-dependent manner, leaving k off relatively unchanged. Increasing the temperature (23–37 °C) raised both k + and k off, allowing calculation of the activation energy of the chemical reaction (around 20 k B T). Increasing the compressive force on the cell during contact (up to 60 pN) raised k + in a logarithmic manner, probably through an increase in the contact area, whereas k off was unaffected. Finally, by varying the pulling force to detach the cell, we could distinguish between two adhesive regimes, one corresponding to one bond, the other to at least two bonds. This transition occurred at a force around 20 pN, interpreted as the strength of a single bond. Received: 2 November 1999 / Revised version: 6 March 2000 / Accepted: 19 April 2000  相似文献   

5.
Pulvinus activity of Phaseolus species in response to environmental stimuli plays an essential role in heliotropic leaf movement. The aims of this study were to monitor the continuous daily pulvinus movement and pulvinus temperature, and to evaluate the effects of leaf movements, on a hot day, on instantaneous leaf water-use efficiency (WUEi), leaf gas exchange, and leaf temperature. Potted plants of Phaseolus vulgaris L. var. Provider were grown in Chicot sandy loam soil under well-watered conditions in a greenhouse. When the second trifoliate leaf was completely extended, one plant was selected to measure pulvinus movement using a beta-ray gauging (BRG) meter with a point source of thallium-204 (204Tl). Leaf gas exchange measurements took place on similar leaflets of three plants at an air temperature interval of 33–42°C by a steady-state LI-6200 photosynthesis system. A copper-constantan thermocouple was used to monitor pulvinus temperature. Pulvinus bending followed the daily diurnal rhythm. Significant correlations were found between the leaf-incident angle and the stomatal conductance (R 2 = 0.54; P < 0.01), and photosynthesis rate (R 2 = 0.84; P < 0.01). With a reduction in leaf-incidence angle and increase in air temperature, WUEi was reduced. During the measurements, leaf temperature remained below air temperature and was a significant function of air temperature (r = 0.92; P < 0.01). In conclusion, pulvinus bending followed both light intensity and air temperature and influenced leaf gas exchange.  相似文献   

6.
Oxygen consumption was measured in five Dermophis mexicanus and averaged (±SEM) 0.047 ± 0.004 ml O2 g−1 h−1. Carbon dioxide production averaged 0.053 ± 0.005 ml CO2 g−1 h−1 in the same five animals 1 week later. This metabolic rate is similar to metabolic rates of other Gymnophionans but lower than metabolic rates reported for Anurans and Urodeles. Total nitrogen excretion averaged 1.37 μmol N g−1 h−1 which is higher than that found for other amphibians. Of this, 82.5% (1.13 μmol N g−1 h−1) was in the form of urea while 17.5% (0.24 μmol N g−1 h−1) was in the form of NH3 + NH+ 4. Such ureotelism is typical of terrestrial amphibians like D. mexicanus. Osmotic water flux averaged 0.0193 ml g−1 h−1 in control (sham injected) animals and was not significantly altered by injection of either arginine vasotocin or mesotocin. This osmotic flux is similar to osmotic fluxes found for other terrestrial amphibians. The combined data suggest that metabolism in D. mexicanus is, like most other Gymnophionans, lower than other amphibians. The high rates of nitrogen (especially urea) excretion suggests that this fossorial animal accumulates urea like other burrowing amphibians. Accepted: 27 June 2000  相似文献   

7.
The radial movement of cis-abscisic acid (ABA) has been investigated in young excised roots of Zea mays L. and Helianthus annuus L. which were grown hydroponically. In addition to the symplastic path, ABA was largely translocated across the root apoplast by solvent drag with the water in the transpiration stream. On the apoplastic path ABA may even cross the endodermis. Depending on the ABA concentration of the medium (range: 5–500 nM) and in the root apoplast, the solvent-drag component of the flow of ABA counteracted the dilution of ABA in the xylem caused by transpirational water flow. Acidification of the rhizosphere and of the root apoplast increased the apoplastic transport component. In sunflower, the apoplastic flow of ABA was significantly weaker than in maize roots. This was also indicated by the larger apparent reflection coefficient (σABA) of sunflower roots for ABA (sunflower: σABA = 0.97 ± 0.02, n = 6 roots; maize: σABA = 0.68 ± 0.06, n = 6 roots; ±SD). For both species, σABA was smaller than unity. Root reflection coefficients were affected by factors such as pH, ABA concentration of the medium, and by the suction force applied to excised root systems. Due to the complex composite structure of the permeation barrier in the root, the reflection coefficient estimated from solvent drag is also complex. Since unstirred layers affected the absolute value of the reflection coefficient, σABA has been termed `apparent'. It is concluded that the pH and ABA concentration of the soil solution as well as the transpiration rate (suction force) modify the intensity of the root-to-shoot signal which is influenced by an apoplastic bypass flow of ABA. The latter may be substantially affected by the existence of Casparian bands in the exodermis, which were lacking in the roots studied in this paper. Received: 25 February 1998 / Accepted: 16 July 1998  相似文献   

8.
Matrix polysaccharide from the brown algae Sargassum turbinarioides collected in the coastal waters of Nosy Be (Madagascar) in the Indian Ocean was isolated and its structure was studied by 1H-NMR spectroscopy, FT-IR, SEC-MALLS and HPAEC. An alginate with a molecular weight of 5.528 × 105 g mol−1 was identified as sole polysaccharide. Values of the M/G ratio, F GG, F MM and F GM (or F GM) blocks were measured at respectively 0.94, 0.39, 0.36 and 0.25 and compared with those of alginates from other Sargassum species. This sodium alginate appeared similar to some of the other Sargassum alginates with M/G < 1, high values of homopolymeric blocks (η < 1) and significant polyguluronic block content.  相似文献   

9.
 PsaC is a tightly bound ferredoxin in the Photosystem I (PS I) reaction center which contains two [4Fe-4S] clusters named FA and FB. We recently proposed that the mixed-ligand FB cluster in C14DPsaC and the mixed-ligand FA cluster in C51DPsaC exist in a spin state of S=3/2, and that a spin state crossover to S=1/2 occurs when the PsaC mutants are rebound onto P700-FX cores. Since EPR signals from a highly rhombic S=3/2 spin state can be difficult to study, wild-type PsaC was reconstituted with iron and selenium to introduce an easily detected S=7/2 spin state similar to that shown for Clostridial ferredoxin. When the unbound [4Fe-4Se] PsaC was chemically reduced, a sharp derivative resonance was found at g=5.171 attributed to the excited ±3/2 doublet from an S=7/2 spin multiplet. An additional peak was found at g=5.616 attributed to the superimposed ±1/2 and ±3/2 doublets from a highly rhombic S=3/2 spin multiplet, and an axial set of resonances found around g=2.0 attributed, in part, to a classical S=1/2 spin state. When the [4Fe-4Se] PsaC was rebound onto P700-FX cores, the spin population derived from the S=7/2 and 3/2 spin states was negligible. Illumination of the rebuilt PS I complex at 15 K resulted in two rhombic sets of resonances, one with g values of 2.043, 1.941 and 1.854, diagnostic of FA, and the other with g values of 2.067, 1.941 and 1.878, diagnostic of FB. Chemical reduction with sodium dithionite at pH 10.5 or photoaccumulation by freezing during illumination resulted in a set of resonances with g values of 2.046, 1.938, 1.920 and 1.883, characteristic of a spin-coupled FA /FB pair. The spin state crossover in this iron chalcogenide cluster is the first known to be induced by protein-protein association and reinforces the hypothesis that an S=3/2 to 1/2 crossover occurs in the PS I-rebound mutants C14DPsaC and C51DPsaC. Received: 6 August 1996 / Accepted: 28 December 1996  相似文献   

10.
Endo-mannanases and endo-xylanases cleave different heteromannans and xylans yielding mainly dimers and trimers of the corresponding sugars as end-products. However, in the early stages of hydrolysis, four purified mannanases and four xylanases from fungal and bacterial origin, examined in this study, showed a different pattern of released oligomers (determined up to the pentamers). Furthermore, some of these enzymes showed a preference for cleaving the polysaccharides in the middle of the chain while others acted more at the end. When the increase in the specific fluidity of mannan and xylan solutions per reducing sugar released (K v) was measured against the bleaching effect of the enzymes on softwood kraft pulp, a correlation was found. A xylanase from Penicillium simplicissimum (K v = 0.15 l mPa−1s−1g−1) and a mannanase from Sclerotium rolfsii (K v = 0.12 l mPa−1s−1g−1) applied in a O(QX)P bleaching sequence (O = oxygen delignification, X = treatment with hemicellulolytic enzymes, Q = chelation of metals, P = treatment with hydrogen peroxide in alkaline solution) gave a high brightness increase of 3.0% and 1.9% ISO respectively. A less significant brightness increase was obtained with enzymes showing lower K v values, such as a xylanase from Schizophyllum commune (Kv = 0.051  l mPa−1s−1g−1, 0.2% ISO) and a bacterial mannanase (K v = 0.061 l mPa−1s−1g−1,0.5% ISO). Received: 19 December 1996 / Received revision: 20 February 1997 / Accepted: 22 February 1997  相似文献   

11.
Min Yu  Peter J. Facchini 《Planta》1999,209(1):33-44
A development-specific and elicitor-inducible acyltransferase [hydroxycinnamoyl-CoA: tyramine N-(hydroxycinnamoyl)transferase (THT; EC 2.3.1.110)] that catalyzes the transfer of hydroxycinnamic acids from hydroxycinnamoyl-CoA esters to hydroxyphenethylamines was purified 988-fold to apparent homogeneity from opium poppy (Papaver somniferum L.) cell-suspension cultures. The purification procedure, which resulted in a 6.8% yield, involved hydrophobic interaction and anion-exchange chromatography, followed by affinity chromatography on Reactive Yellow-3-Agarose using the acyl donor (feruloyl-CoA) as eluent. Purified THT had an isoelectric point of 5.2, a native molecular mass of approximately 50 kDa, and consisted of two apparently identical 25-kDa subunits as determined by two-dimensional polyacrylamide gel electrophoresis. The purified enzyme was able to synthesize a variety of amides due to a relatively low specificity for cinnamoyl-CoA derivatives and hydroxyphenethylamines. The best substrates were feruloyl-CoA (VK m −113.4 mkat g−1 M−1) and tyramine (VK m −16.57 mkat g−1 M−1). The THT activity increased during development of opium poppy seedlings, occurred at high levels in roots and stems of mature plants, and was induced in cell-suspension cultures after treatment with a pathogen-derived elicitor. Immunoblot analysis using THT mouse polyclonal antibodies did not always show a correlation between THT polypeptide and enzyme activity levels. For example, despite low THT activity in leaves, an abundant 25-kDa immunoreactive polypeptide was detected. Immunohistochemical localization showed that THT polypeptides occur in cortical and xylem parenchyma, immature xylem vessel elements, root periderm, anthers, ovules, and the inner layer of the seed coat, but are most abundant in phloem sieve-tube members in roots, stems, leaves, and anther filaments. Received: 19 January 1999 / Accepted: 3 March 1999  相似文献   

12.
We report the deposition of highly uniform thin silver films on plastic materials using a wet-chemistry method, suitable for surface plasmon-coupled emission (SPCE). This approach is reproducible for diverse low-cost applications and versatile to generate silver surfaces on various plastics substrates. An oxygen plasma pretreatment of the plastic provides for rapid silvering, leading to a 47-nm-thick continuous film for SPCE applications. The surface smoothness and thickness of the films have been estimated using atomic force microscope. The higher refractive index of polycarbonate, resulted in an SPCE angle of θ F = 470 for Rhodamine B, compared to glass (θ F = 500). The current study presents details on film deposition conditions, appropriate choice of index matching fluids, substrates, and light sources that play a vital role to augment SPCE emission intensity.  相似文献   

13.
Hover-feeding glossophagine bats provide, in addition to the hummingbirds, a second vertebrate model for the analysis of hovering flight based on metabolic measurement and aerodynamic theory. In this study, the power input of hovering Glossophaga soricina bats (11.9 g) was measured by standard respirometry and fast-response (<0.2 s) oxygen analysis. Bats needed 5–7 s after a rest-to-flight transition to return to a respiratory steady state. Therefore, only hovering events preceeded by a 7-s flight interval were evaluated. V˙O2 during hovering fluctuated with a frequency of 3–5 Hz, which corresponded in frequency to the licking movement of the tongue. During hovering, bats often may have hypoventilated as indicated by reduced V˙O2 and a respiratory exchange ratio (RER) well below the steady-state value of 1. Steady-state oxygen consumption (and derived power input) during hovering was estimated to be 27 (25–29) ml O2 g−1 h−1 (158 W kg−1 or 1.88 W) in the 11.9-g bats as indicated by three independent findings: (1) V˙O2 was 26 ml O2 g−1 h−1 after 6.5 s of hovering, (2) the mean RER during single hovering events was at its steady-state level of 1 only at oxygen uptake rates of 25–29 ml g−1 h−1, and (3) when the oxygen potentially released from estimated oxygen stores was added to the measured oxygen uptake, the upper limit for oxygen consumption during hovering was found to be 29 ml O2 g−1 h−1. Hovering power input was about 1.2 times the value of minimum flight power input (Winter and von Helversen 1998) and thus well below the 1.7–2.6 difference in power output postulated by aerodynamic theory (Norberg et al. 1993). Mass specific power input was 40% less than in hummingbirds. Thus, within the possible modes of hovering flight, Glossophaga bats seem to operate at the high-efficiency end of the spectrum. Accepted: 28 April 1998  相似文献   

14.
We have analysed the influence of the initial pH of the medium and the quantity of aeration provided during the batch fermentation of solutions of d-xylose by the yeast Hansenula polymorpha (34438 ATCC). The initial pH was altered between 3.5 and 6.5 whilst aeration varied between 0.0 and 0.3 vvm. The temperature was kept at 30 °C during all the experiments. Hansenula polymorpha is known to produce high quantities of xylitol and low quantities of ethanol. The most favourable conditions for the growth of xylitol turned out to be: an initial pH of between 4.5 and 5.5 and the aeration provided by the stirring vortex alone. Thus, at an initial pH of 5.5, the maximum specific production rate (μm) was 0.41 h−1, the overall biomass yield (Y x/s G) was 0.12 g g−1, the specific d-xylose-consumption rate (q s ) was 0.075 g g−1 h−1 (for t = 75 h), the specific xylitol-production rate (q Xy ) was 0.31 g g−1 h−1 (for t = 30 h) and the overall yields of ethanol (Y E/s G) and xylitol (Y Xy/s G) were 0.017 and 0.61 g g−1 respectively. Both q s and q Xy decreased during the course of the experiments once the exponential growth phase had finished. Received: 26 March 1998 / Received revision: 30 June 1998 / Accepted: 2 July 1998  相似文献   

15.
X chromosome inactivation is unique among dosage compensation mechanisms in that the two X chromosomes in females are treated differently within the same cell; one X chromosome is stably silenced while the other remains active. It is widely believed that, when X inactivation is initiated, each cell makes a random choice of which X chromosome will be silenced. In mice, only one genetic locus, the X-linked X controlling element (Xce), is known to influence this choice, because animals that are heterozygous at Xce have X-inactivation patterns that differ markedly from a mean of 0.50. To document other genetic and epigenetic influences on choice, we have performed a population-based study of the effect of Xce genotype on X-inactivation patterns. In B6CAST F1 females (Xceb/Xcec), the X-inactivation pattern followed a symmetric distribution with a mean of 0.29 (SD = 0.08). Surprisingly, however, in a population of Xceb/Xcec heterozygous B6CAST F2 females, we observed significant differences in both the mean (p = 0.004) and variance (p = 0.004) of the X-inactivation patterns. This finding is incompatible with a single-locus model and suggests that additional genetic factors also influence X chromosome choice. We show that both parent-of-origin and naturally occurring genetic variation at autosomal loci contribute to these differences. Taken together, these data reveal further genetic complexity in this epigenetic control pathway.  相似文献   

16.
Kraft TF  van Loon JJ  Kiss JZ 《Planta》2000,211(3):415-422
 In order to study gravity effects on plant structure and function, it may become necessary to remove the g-stimulus. On Earth, various instruments such as clinostats have been used by biologists in an attempt to neutralize the effects of gravity. In this study, the position of amyloplasts was assayed in columella cells in the roots of Arabidopsisthaliana (L.) Heynh. seedlings grown in the following conditions: on Earth, on a two-dimensional clinostat at 1 rpm, on a three-dimensional clinostat (also called a random-positioning machine, or an RPM), and in space (true microgravity). In addition, the effects of these gravity treatments on columella cell area and plastid area also were measured. In terms of the parameters measured, only amyloplast position was affected by the gravity treatments. Plastid position was not significantly different between spaceflight and RPM conditions but was significantly different between spaceflight and the classical two-dimensional clinostat treatments. Flanking columella cells showed a greater susceptibility to changes in gravity compared to the central columella cells. In addition, columella cells of seedlings that were grown on the RPM did not exhibit deleterious effects in terms of their ultrastructure as has been reported previously for seedlings grown on a two-dimensional clinostat. This study supports the hypothesis that the RPM provides a useful simulation of weightlessness. Received: 5 January 2000 / Accepted: 22 February 2000  相似文献   

17.
Summary Previous videomicroscopy ofChara rhizoids during parabolic flights of rockets showed that the weightless statoliths moved basipetally. A hypothesis was offered that the removal of gravity force disturbed the initial balance between this force and the basipetally acting forces generated in a dynamic interaction of statoliths with microfilaments (MFs). The prediction of this hypothesis that the statoliths would not be displaced basipetally during the microgravity phase (MG-phase) after disorganizing the MFs was tested by videomicroscopy of a rhizoid treated with cytochalasin D (CD) immediately before the flight. The prediction was fully supported by the flight experiment. Additionally, by chemical fixation of many rhizoids at the end of the MG-phase it was shown that all rhizoids treated with CD before the flight had statoliths at the same location, i.e., sedimented on the apical cell wall, while all untreated rhizoids had statoliths considerably displaced basipetally from their normal position. Thus, a dynamical interaction involving shearing forces between MFs and statoliths appears highly probable.Abbreviations CD cytochalasin D - g gravitational acceleration - MF microfilament - MG-phase microgravity phase - TEXUS technological experiments under reduced gravity Dedicated to Hilton H. Mollenhauer on the occasion of his retirement  相似文献   

18.
Spin-restricted DFT (X3LYP and B3LYP) and ab initio (MP2(fc) and CCSD(fc)) calculations in conjunction with the Aug-CC-pVDZ and Aug-CC-pVTZ basis sets were performed on a series of hydrogen bonded complexes PN···HX (X = F, Cl, Br) to examine the variations of their equilibrium gas phase structures, energetic stabilities, electronic properties, and vibrational characteristics in their electronic ground states. In all cases the complexes were predicted to be stable with respect to the constituent monomers. The interaction energy (ΔE) calculated using a super-molecular model is found to be in this order: PN···HF > PN···HCl > PN···HBr in the series examined. Analysis of various physically meaningful contributions arising from the Kitaura-Morokuma (KM) and reduced variational space self-consistent-field (RVS-SCF) energy decomposition procedures shows that the electrostatic energy has significant contribution to the over-all interaction energy. Dipole moment enhancement (Δμ) was observed in these complexes expected of predominant dipole-dipole electrostatic interaction and was found to follow the trend PN···HF > PN···HCl > PN···HBr at the CCSD level. However, the DFT (X3LYP and B3LYP) and MP2 levels less accurately determined these values (in this order HF < HCl < HBr). Examination of the harmonic vibrational modes reveals that the PN and HX bands exhibit characteristic blue- and red shifts with concomitant bond contraction and elongation, respectively, on hydrogen bond formation. The topological or critical point (CP) analysis using the static quantum theory of atoms in molecules (QTAIM) of Bader was considered to classify and to gain further insight into the nature of interaction existing in the monomers PN and HX, and between them on H-bond formation. It is found from the analysis of the electron density ρ c , the Laplacian of electron charge density ∇2ρc, and the total energy density (H c ) at the critical points between the interatomic regions that the interaction N···H is indeed electrostatic in origin (ρc > 0, ∇2ρc > 0 and Hc > 0 at the BCP) whilst the bonds in PN (ρc > 0, ∇2ρc > 0 and Hc < 0) and HX ((ρc > 0, ∇2ρc < 0 and Hc < 0)) are predominantly covalent. A natural bond orbital (NBO) analysis of the second order perturbation energy lowering, E(2), caused by charge transfer mechanism shows that the interaction N···H is n(N) → BD*(HX) delocalization.  相似文献   

19.
Volker D. Kern  Fred D. Sack 《Planta》1999,209(3):299-307
Apical cells of protonemata of the moss Ceratodon purpureus (Hedw.) Brid. are negatively gravitropic in the dark and positively phototropic in red light. Various fluence rates of unilateral red light were tested to determine whether both tropisms operate simultaneously. At irradiances ≥140 nmol m−2 s−1 no gravitropism could be detected and phototropism predominated, despite the presence of amyloplast sedimentation. Gravitropism occurred at irradiances lower than 140 nmol m−2 s−1 with most cells oriented above the horizontal but not upright. At these low fluence rates, phototropism was indistinct at 1 g but apparent in microgravity, indicating that gravitropism and phototropism compete at 1 g. The frequency of protonemata that were negatively phototropic varied with the fluence rate and the duration of illumination, as well as with the position of the apical cell before illumination. These data show that the fluence rate of red light regulates whether gravitropism is allowed or completely repressed, and that it influences the polarity of phototropism and the extent to which apical cells are aligned in the light path. Received: 19 January 1999 / Accepted: 19 March 1999  相似文献   

20.
Emissions of N2O and CO2 were measured following combined applications of 15N-labelled fertiliser (100 μg N g−1; 10 atom % excess 15N) and organic olive crop weed residues (Avena sativa, Ononis viscosa, Ridolfia segetum and Olea europea; 100 μg N g−1) to a silt loam soil under controlled environment conditions. The objective was to determine the effect of varying combinations of inorganic fertiliser and plant residues on these emissions and soil mineral N dynamics. Emissions were generally increased following application of residues alone, with 23 ng N2O–N g−1 soil (2 ng N2O–N g−1 soil mg−1 biomass) and 389 μg CO2–C g−1 soil (39 μg CO2–C g−1 soil mg−1 biomass) emitted over 28 days after addition of the Ridolfia residues in the absence of fertiliser-N. N2O emissions from these residue-only treatments were strongly negatively correlated with residue lignin content (r = −0.91; P < 0.05), total carbon content (r = −0.90; P < 0.05) and (lignin + polyphenol)-to-N ratio (r = −0.70; P < 0.1). However, changes in the net input of these compounds through application of 25:75, 50:50 and 75:25 proportional mixtures of Avena and Ononis residues had no effect on emissions compared to their single (0:100 or 100:0) applications. Addition of fertiliser-N increased emissions (by up to 30 ng N2O–N g−1 28 days−1; 123%), particularly from the low residue-N treatments (Avena and Ridolfia) where a greater quantity of biomass was applied, resulting in emissions above that of the sum from the unfertilised residue and fertilised control treatments. In contrast, fertiliser application had no impact on emissions from the Olea treatment with the highest polyphenol (2%) and lignin (11%) contents due to strong immobilisation of soil N, and the 15N–N2O data indicated that residue quality had no effect on the denitrification of applied fertiliser-N. Such apparent inconsistencies mean that before the potential for manipulating N input (organic + inorganic) to lower gaseous N losses can be realised, first the nature and extent of interactions between the different N sources and any interactions with other compounds released from the residues need to be better understood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号