首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 449 毫秒
1.
Gas exchange parameters, leaf nitrogen content and specific leaf area (SLA) were measured in situ on 73 C3 and five C4 plant species in Mallorca, west Mediterranean, to test whether species endemic to the Balearic Islands differed from widespread, non-endemic Mediterranean species and crops in their leaf traits and trait inter-relationships. Endemic species differed significantly from widespread species and crops in several parameters; in particular, photosynthetic capacity, on an area basis (A), was 20 % less in endemics than in non-endemics. Similar differences between endemics and non-endemics were found in parameters such as SLA and leaf nitrogen content per area (Na). Nevertheless, most of the observed differences were found only within the herbaceous deciduous species. These could be due to the fact that most of the non-endemic species within this group have adapted to ruderal areas, while none of the endemics occupies this kind of habitat. All the species-including the crops-showed a positive, highly significant correlation between photosynthetic capacity on a mass basis (Am), leaf nitrogen content on a mass basis (Nm) and SLA. However, endemic species had a lower Am for any given SLA and Nm. Hypotheses are presented to explain these differences, and their possible role in reducing the distribution of many endemic Balearic species is discussed.  相似文献   

2.
Current models of island biogeography treat endemic and non-endemic species as if they were functionally equivalent, focussing primarily on species richness. Thus, the functional composition of island biotas in relation to island biogeographical variables remains largely unknown. Using plant trait data (plant height, leaf area and flower length) for 895 native species in the Canary Islands, we related functional trait distinctiveness and climate rarity for endemic and non-endemic species and island ages. Endemics showed a link to climatically rare conditions that is consistent with island geological change through time. However, functional trait distinctiveness did not differ between endemics and non-endemics and remained constant with island age. Thus, there is no obvious link between trait distinctiveness and occupancy of rare climates, at least for the traits measured here, suggesting that treating endemic and non-endemic species as functionally equivalent in island biogeography is not fundamentally wrong.  相似文献   

3.
A random process may control the number of endemic species   总被引:1,自引:0,他引:1  
The richness of endemic species is often recognized as an indication of the distinctiveness of certain local faunas and is used for the definition of conservation hotspots as well. Faunas of different animal taxa were considered in sets of contiguous geographical units. Comparing the faunas of different units in one set, we found an exponential increase in the number of endemics when plotted against the number of non-endemics. A model of independent stochastic population dynamics under the control of environmental oscillations produces random fluctuations in the ranges of species. Ranges of endemic species are supposedly narrower than ranges of co-occurring non-endemic species. In such a case, the flow of a random process leads to an exponential relationship between numbers of co-occurring endemic and non-endemic species. This process also produces an apparent positive correlation between total species number and the percentage of endemics.  相似文献   

4.
Despite extensive research, factors influencing the importance of pre- and post-settlement processes to recruitment variability remain ambiguous. Using a novel perspective, we investigated the potential influence of endemism on the relationship between larval supply and recruitment in reef fish populations at Lord Howe Island, Australia. Larval supply and recruitment were measured for three regional endemic and four widespread non-endemic species using light traps, artificial collectors, and underwater visual censuses. Recruitment was correlated with larval supply in endemics but not in non-endemics, likely due to a combination of low larval supply and post-settlement survival of non-endemics. Surveys also indicated that endemics were far more abundant and occurred in more locations than closely related non-endemics. These preliminary findings suggest that either local adaptation enhances recruitment in endemics through higher larval replenishment rates or reduced post-settlement mortality, populations of widespread species at the periphery of their range are poorly adapted to local environmental conditions and therefore experience lower and more variable settlement and post-settlement survival rates, or both.  相似文献   

5.
We studied frog biodiversity along an elevational gradient in the Hengduan Mountains, China. Endemic and non-endemic elevational diversity patterns were examined individually. Competing hypotheses were also tested for these patterns. Species richness of total frogs, endemics and non-endemics peaked at mid-elevations. The peak in endemic species richness was at higher elevations than the maxima of total species richness. Endemic species richness followed the mid-domain model predictions, and showed a nonlinear relationship with temperature. Water and energy were the most important variables in explaining elevational patterns of non-endemic species richness. A suite of interacting climatic and geometric factors best explained total species richness patterns along the elevational gradient. We suggest that the mid-domain effect was an important factor to explain elevational richness patterns, especially in regions with high endemism.  相似文献   

6.

Background

Despite the importance of the Galápagos Islands for the development of central concepts in ecology and evolution, the understanding of many ecological processes in this archipelago is still very basic. One such process is pollination, which provides an important service to both plants and their pollinators. The rather modest level of knowledge on this subject has so far limited our predictive power on the consequences of the increasing threat of introduced plants and pollinators to this unique archipelago.

Scope

As a first step toward building a unified view of the state of pollination in the Galápagos, a thorough literature search was conducted on the breeding systems of the archipelago''s flora and compiled all documented flower–visitor interactions. Based on 38 studies from the last 100 years, we retrieved 329 unique interactions between 123 flowering plant species (50 endemics, 39 non-endemic natives, 26 introduced and eight of unknown origin) from 41 families and 120 animal species from 13 orders. We discuss the emergent patterns and identify promising research avenues in the field.

Conclusions

Although breeding systems are known for <20 % of the flora, most species in our database were self-compatible. Moreover, the incidence of autogamy among endemics, non-endemic natives and alien species did not differ significantly, being high in all groups, which suggests that a poor pollinator fauna does not represent a constraint to the integration of new plant species into the native communities. Most interactions detected (approx. 90 %) come from a single island (most of them from Santa Cruz). Hymenopterans (mainly the endemic carpenter bee Xylocopa darwinii and ants), followed by lepidopterans, were the most important flower visitors. Dipterans were much more important flower visitors in the humid zone than in the dry zone. Bird and lizard pollination has been occasionally reported in the dry zone. Strong biases were detected in the sampling effort dedicated to different islands, time of day, focal plants and functional groups of visitors. Thus, the existing patterns need to be confronted with new and less biased data. The implementation of a community-level approach could greatly increase our understanding of pollination on the islands and our ability to predict the consequences of plant invasions for the natural ecosystems of the Galápagos.  相似文献   

7.
We analysed the range-sizes of 835 Andean passerine species (including 414 endemics and 421 non-endemics) to test for latitudinal and altitudinal Rapoport effects (LRE and ARE). We tested for positive range-size: latitude/altitude correlations using three different methods: (i) Rohde's mid-point method, (ii) species sorted out by altitude, and (iii) a phylogenetic comparative method (CAIC). Using Rohde's mid-point method, the mean latitudinal extent of species does not follow a Rapoport pattern, but the mean latitudinal occupancy of all passerines and non-endemics do increase with latitude. The latitudinal ranges of endemics sorted out by altitude follow a reverse Rapoport effect, but non-endemics support the pattern. CAIC confirms the latitudinal increase in the occupancy of non-endemics, but regressions have low coefficients of determination. The ARE is supported by the mean altitudinal extent of species, but the trend vanishes when controlling for geometric effects. Low-altitude species occupy about the same proportion of the available altitudinal space as do high-altitude ones. Our analyses suggest that latitude and altitude have low explanatory power for understanding the spatial variation in range-sizes at a continental scale. We show how different patterns can emerge from applying different criteria to the analysis of data.  相似文献   

8.
A major frontier in global change research is predicting how multiple agents of global change will alter plant productivity, a critical component of the carbon cycle. Recent research has shown that plant responses to climate change are phylogenetically conserved such that species within some lineages are more productive than those within other lineages in changing environments. However, it remains unclear how phylogenetic patterns in plant responses to changing abiotic conditions may be altered by another agent of global change, the introduction of non-native species. Using a system of 28 native Tasmanian Eucalyptus species belonging to two subgenera, Symphyomyrtus and Eucalyptus, we hypothesized that productivity responses to abiotic agents of global change (elevated CO2 and increased soil N) are unique to lineages, but that novel interactions with a non-native species mediate these responses. We tested this hypothesis by examining productivity of 1) native species monocultures and 2) mixtures of native species with an introduced hardwood plantation species, Eucalyptus nitens, to experimentally manipulated soil N and atmospheric CO2. Consistent with past research, we found that N limits productivity overall, especially in elevated CO2 conditions. However, monocultures of species within the Symphyomyrtus subgenus showed the strongest response to N (gained 127% more total biomass) in elevated CO2 conditions, whereas those within the Eucalyptus subgenus did not respond to N. Root:shoot ratio (an indicator of resource use) was on average greater in species pairs containing Symphyomyrtus species, suggesting that functional traits important for resource uptake are phylogenetically conserved and explaining the phylogenetic pattern in plant response to changing environmental conditions. Yet, native species mixtures with E. nitens exhibited responses to CO2 and N that differed from those of monocultures, supporting our hypothesis and highlighting that both plant evolutionary history and introduced species will shape community productivity in a changing world.  相似文献   

9.
Understanding evolution and ecology of endemic plants is of great importance for conservation of those rare and endangered species. Pairwise comparisons of plant functional traits could be an adequate method to get insights in evolutionary and ecological processes. We examined whether morphological traits representing competitive ability and habitat specificity differ between endemics and common plants. Therefore, we performed pairwise comparison analyses of 9 plant functional traits in 36 congeneric pairs of endemics and their common congeners on the East Mediterranean island of Cyprus, i.e., the first such study conducted on a Mediterranean island. We found that endemic species prefer higher elevations and more extreme habitats. Endemics were smaller and they had smaller flowers than their common congeners. Common species had higher chromosome numbers than endemic ones. Endemic and common species showed no significant differences in canopy height, inflorescence height, leaf length and width, and flowering period. Our study showed that the situation on a large oceanic island does not differ from results in mainland research areas.  相似文献   

10.
Island endemic species are expected to have lower dispersal ability than their non-endemic congeners. Several studies have demonstrated differences in diaspore morphology between endemic species and their non-endemic congeners. It is, however, relatively difficult to translate the differences in morphology of the diaspores into differences in dispersal ability. To avoid this problem, we measured directly dispersal values (anemo-, hydro-, exozoo- and endozoo-chory) of 27 pairs of closely related endemic and non-endemic species from Canary Islands. We did not explicitly support the hypothesis about the loss of dispersal ability of island species. The comparison of pairs of endemic and non-endemic species showed the reduction in dispersal potential only for endozoochory. In many cases, endemic species had, in fact, the same or better dispersal ability than their non-endemic congeners. Higher dispersal ability of endemic species could have been evolved as a consequence of species subsequent dispersal to neighboring islands. As a support for this we found that the endemic species dispersing better than their non-endemic congeners also occupy more islands within the archipelago. We conclude that reduction of dispersal ability of species on islands may not be as general as previously expected and we need to take into account multiple species traits to understand the possible evolution of species dispersal potential.  相似文献   

11.
The rapid expansion of human altered landscapes affects biodiversity on every continent. A fundamental goal of conservation biologists is to understand why certain species are at risk of extinction while others are able to persist in human altered landscapes. Afforestation, the conversion of unforested lands to planted forest, is rapidly altering many natural landscapes worldwide. In the Cerrado (Brazilian savanna), a global biodiversity hotspot, a shortage of government incentives has the landscape riddled with abandoned plantation forests that are not subject to active restoration projects. Studies investigating the impacts of abandoned plantations on biodiversity are strikingly limited. We examine the effects of abandoned Eucalyptus plantations on the structure of Cerrado lizard communities. We assessed changes in lizard capture, richness and equitability along cerrado sensu strictoEucalyptus transects. Our results indicate abandoned Eucalyptus plantations have subsets of Cerrado species persisting with a great loss of endemic species. The cerrado sensu strictoEucalyptus linear transect analysis demonstrated distance from native habitat is positively correlated with loss of biodiversity. We performed correspondence analyses to summarize the variation in species captures across different sites, habitats and pitfall array positions. These analyses depicted strong species associations between habitats and their pitfall array positions. This study is the first to show the negative impacts of abandoned Eucalyptus plantations on Cerrado lizard communities, serving as a cautionary tale of Cerrado biodiversity non-resilience in abandoned Eucalyptus plantations. Mitigation requires that abandoned Eucalyptus plantations are made more suitable to Cerrado lizards by implementing targeted habitat heterogeneity restoration.  相似文献   

12.
Aim To determine whether different abundances of introduced species of Cinchona (Rubiaceae) affect species composition and facilitate species richness in managed tropical forests, to test whether any facilitative effects on understorey species depend on forest type, and to investigate whether facilitative effects can be attributed to the ‘substitutive facilitation model’. Location Makawao Forest Reserve on Maui, Hawai’i, USA. Methods Cinchona species (Cinchona pubescens and Cinchona calisaya) were mapped within various forest types. In three forest types (ageing Eucalyptus and Pinus plantations, and near‐natural Acacia koa forests), we analysed environmental parameters (e.g. canopy cover, litter cover, pH value and soil depth) and the species composition of Cinchona‐invaded and non‐invaded plots; data were compared based on Cinchona cover and forest types. Habitat modelling for several endemic species and tree ferns was carried out to test whether Cinchona cover is an important variable for the probability of occurrence of these endemics. Results Cinchona species have naturalized mainly in Eucalyptus and Pinus plantations and Acacia koa forests and here add an additional shrub layer. In contrast to other studies, we revealed facilitative effects of Cinchona on native species within all forest types. Species richness is about 20% higher in invaded plots than in non‐invaded plots, and these show a nearly 50% higher proportion of endemic species, including tree ferns. The proportion of endemics even increases with increasing Cinchona cover. For several endemics, Cinchona is found to be an important variable for the probability of occurrence, and the removal of Cinchona cover as an explanatory variable lowers the model fit. In addition to Cinchona, variables delineating vegetation structure and light availability have a strong effect on the model fit. Main conclusions In the structurally simplified Hawaiian forests studied, Cinchona facilitated endemic species in accordance with the ‘substitutive facilitation model’. This contrasts with the results of an earlier study in the naturally treeless Galápagos highlands, which revealed a sharp decrease in the abundance of endemics under Cinchona canopy. These results illustrate that, through the same structural change (addition of a vegetation layer), an invasive species may exert divergent effects across different ecosystem types. The facilitation of endemic understorey species by invasive tree species in managed forests leads to a dilemma in conservation but also to new perspectives for ecosystem restoration.  相似文献   

13.

Aim

Oceanic islands possess unique floras with high proportions of endemic species. Island floras are expected to be severely affected by changing climatic conditions as species on islands have limited distribution ranges and small population sizes and face the constraints of insularity to track their climatic niches. We aimed to assess how ongoing climate change affects the range sizes of oceanic island plants, identifying species of particular conservation concern.

Location

Canary Islands, Spain.

Methods

We combined species occurrence data from single-island endemic, archipelago endemic and nonendemic native plant species of the Canary Islands with data on current and future climatic conditions. Bayesian Additive Regression Trees were used to assess the effect of climate change on species distributions; 71% (n = 502 species) of the native Canary Island species had models deemed good enough. To further assess how climate change affects plant functional strategies, we collected data on woodiness and succulence.

Results

Single-island endemic species were projected to lose a greater proportion of their climatically suitable area (x ̃ = −0.36) than archipelago endemics (x ̃ = −0.28) or nonendemic native species (x ̃ = −0.26), especially on Lanzarote and Fuerteventura, which are expected to experience less annual precipitation in the future. Moreover, herbaceous single-island endemics were projected to gain less and lose more climatically suitable area than insular woody single-island endemics. By contrast, we found that succulent single-island endemics and nonendemic natives gain more and lose less climatically suitable area.

Main Conclusions

While all native species are of conservation importance, we emphasise single-island endemic species not characterised by functional strategies associated with water use efficiency. Our results are particularly critical for other oceanic island floras that are not constituted by such a vast diversity of insular woody species as the Canary Islands.  相似文献   

14.
Roadsides are habitats with very specific environmental conditions, often substantially differing from their natural surroundings. However, roads can have a positive effect on local vascular plant species richness. Endemic species on oceanic islands are considered to be less disturbance-adapted than native non-endemics and thus should be negatively affected by roads. Islands provide optimal conditions for testing this, as they possess a large share of clearly defined endemic species. This study focuses on a comparison of endemic plant species in roadside and surrounding communities and the interacting effects of elevation, vegetation type and trade wind-induced precipitation differences. We applied 96 circular plots with 50 m radius along two elevational gradients on the eastern (humid) and western (dry) slope of La Palma, Canary Islands, ranging from 100 to 2,400 m. Interestingly, we found roads to have a significant positive effect on endemic richness and the percentage of endemics as well as the same tendency for plant species richness after correcting for elevation and precipitation. Endemic species turnover was relatively high. The opening of cliffs during construction and, not to be overlooked, the protection from disturbances such as fire and omnipresent introduced herbivores (mainly rabbits or goats) probably leads to a positive effect of roads on endemics. In addition, many endemics might profit from species-specific dispersal capabilities well suited for roadside conditions. However, we do not argue for the use or even construction of roads for nature conservation but suggest protecting existing endemic populations because natural areas have a higher conservation value.  相似文献   

15.
Emerging infectious disease outbreaks are increasingly suspected to be a consequence of human pressures exerted on natural ecosystems. Previously, host taxonomic communities have been used as indicators of infectious disease emergence, and the loss of their diversity has been implicated as a driver of increased presence. The mechanistic details in how such pathogen–host systems function, however, may not always be explained by taxonomic variation or loss. Here we used machine learning and methods based on Gower’s dissimilarity to quantify metrics of invertebrate functional diversity, in addition to functional groups and their taxonomic diversity at sites endemic and non-endemic for the model generalist pathogen Mycobacterium ulcerans, the causative agent of Buruli ulcer. Changes in these metrics allowed the rapid categorisation of the ecological niche of the mycobacterium’s hosts and the ability to relate specific host traits to its presence in aquatic ecosystems. We found that taxonomic diversity of hosts and overall functional diversity loss and evenness had no bearing on the mycobacterium’s presence, or whether the site was in an endemic area. These findings, however, provide strong evidence that generalist environmentally persistent bacteria such as M. ulcerans can be associated with specific functional traits rather than taxonomic groups of organisms, increasing our understanding of emerging disease ecology and origin.  相似文献   

16.
Plant life on serpentine soils has been a topic of research for decades, but the evolutionary dynamics of adaptation to such a stressful habitat is still incompletely understood, especially in old-world groups. We present a study addressing this issue using Onosma (Boraginaceae) as the model system and a molecular phylogenetic approach. Original ITS sequences were generated for all the obligate endemics allopatrically distributed on the ophiolitic ??islands?? of the southeastern Euro-Mediterranean region, in addition to most of the species facultatively growing on ultramafics and a broad sample of non-serpentine species. Parsimony and Bayesian reconstructions showed that obligate endemics belonged to six distantly related clades, five continental and one insular in the Aegean sea (Cyprus). Lack of a common ancestor and of correlation between geographic and genetic distances between the endemics suggested polyphyletic and polytopic evolution on the different outcrops. Preference for non-serpentine habitats appeared as the ancestral condition, but constitutive preadaptive traits such as drought tolerance and ability to cope with high soil concentrations of magnesium have probably favoured multiple events in the colonization of ultramafics. Tree topology and absolute age estimations suggest that xerophytic Onosma underwent a rapid radiation in correspondence with the Messinian salinity crisis of the Mediterranean (6?C5.3?mya), and that the endemic lineages originated at the beginning of the Pleistocene. Serpentine ??islands?? may have acted as refugial habitats during the cold climatic phases, and then as major determinants of adaptive speciation due to isolation of populations and the selective pressure of soil constraints.  相似文献   

17.
18.
The morphologically remarkable endemic fauna within ancient lakes has received much attention in the literature. More inconspicuous taxa, however, often lack detailed molecular and morphometrical examination, although their proportion of the endemic fauna of an ancient lake must not be underestimated. Consequently, a better understanding of evolutionary patterns and processes within these lakes requires more knowledge about the often-neglected inconspicuous taxa. In the present study, we focus on the notoriously cryptic pea clam genus Pisidium (Bivalvia: Sphaeriidae). Though the genus is widely distributed, most endemic species are reported only from ancient lakes, including the European ancient sister lake system of Ohrid and Prespa on the Balkan Peninsula. Here we test for the first time hypotheses on the evolution of the endemic pea clams in this European biodiversity hotspot by molecular means. Combining a broad 16S phylogeny (comprising most European pea clam species), network analyses and morphometrical analyses, we found interesting biogeographical patterns and provide evidence for cryptic species in both lakes. Furthermore, we confirmed the proposed sister-species relationship of the endemics P. edlaueri in Lake Ohrid and P. maasseni in Lake Prespa, and we suggest scenarios of the endemic pea clam evolution within both lakes. The patterns of speciation found in the genus Pisidium are compared to patterns in morphologically distinct molluscan groups in lakes Ohrid und Prespa.  相似文献   

19.
Greece is characterized by high plant diversity (5800 species) and endemism (15.6%). This study attempts a first overall assessment of the taxonomy, distribution, traits and conservation status of the Greek endemic plants. The endemic species belong to 56 families and 242 genera. Most of the endemic plants have a narrow geographical and altitudinal distribution range. The southern floristic regions are richer in endemic species. The species area relationships for endemics (EARs) for island and continental floristic regions explain over 50% of the variation in number of species and are characterized by steep curves. Analysis of the distributional pattern of the endemics by similarity coefficients offers useful insights into the palaeogeography and biogeography of Greece. The endemic species occur at all altitudes, but the altitudinal distribution shows a predominance of local endemics at 0–600 m in the island regions and in higher zones in the continental regions. The life form spectra show a predominance of hemicryptophytes and chamaephytes. This trait seems indicative of their habitat and adaptive strategy and may be related to speciation processes. The overview of the conservation status of the Greek endemics indicates that over 40% of the taxa are threatened or near threatened. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 162 , 130–422.  相似文献   

20.

Background and Aims

Worldwide, many plant species are confined to open, shallow-soil, rocky habitats. Although several hypotheses have been proposed to explain this habitat specificity, none has been convincing. We suggest that the high level of endemism on shallow soils is related to the edaphic specialization needed to survive in these often extremely drought-prone habitats. Previous research has shown that species endemic to ironstone communities in SW Australia have a specialized root morphology that enhances their chance to access fissures in the underlying rock. Here we test the generality of these findings for species that are confined to a shallow-soil habitat that is of much greater global significance: granite outcrops.

Methods

We compared temporal and spatial root growth and allocation of three endemic woody perennials of SW Australian granite outcrop communities with those of congeners occurring on nearby deeper soils. Seedlings of all species were grown in 1·2 m long custom-made containers with a transparent bottom that allowed monitoring of root growth over time.

Key Results

The granite outcrop endemics mostly differed in a predictable way from their congeners from deeper soils. They generally invested a larger portion of their biomass in roots, distributed their roots faster and more evenly over the container and had a lower specific root length. In different species pairs the outcrop endemics achieved their apparent advantage by a different combination of the aforementioned traits.

Conclusions

Our results are consistent with earlier work, indicating that species restricted to different types of drought-prone shallow-soil communities have undergone similar selection pressures. Although adaptive in their own habitat in terms of obtaining access to fissures in the underlying rock, these root system traits are likely to be maladaptive in deeper soil habitats. Therefore, our results may provide an explanation for the narrow endemism of many shallow-soil endemics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号