首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
Executive functions, higher-order cognitive functions needed for goal-directed behavior, have been studied extensively in the search for endophenotypes for ADHD, yet results have been inconclusive. We examine the performance of children with ADHD in task switching as an as yet understudied potential endophenotype. A group of 20 children with ADHD and a group of 23 children without ADHD (ages 7?C12) performed a task-switching paradigm and a Go/No-Go Task. Children with ADHD displayed significantly greater specific switch costs, that is, compared to control children they were especially impaired directly after task switches. There were no group differences with respect to the general switch costs, which are estimated by comparing performance on single task blocks to the block where both tasks are intermixed. Specific switch costs and Go/No-Go error rate were significantly correlated; yet, group differences in the task-switching paradigm remained significant even when inhibition was controlled for. This pattern of results suggests that children with ADHD are neither generally impaired in executive function nor only impaired with respect to inhibition. Instead, they display a highly specific deficit with regard to the flexible suppression and amplification of different task rules according to the context. Our conclusion that task switching has the potential to be added to the list of ADHD endophenotypes is strengthened by the independence of task-switching deficits and inhibition.  相似文献   

2.
Few studies have addressed action control training. In the current study, participants were trained over 19 days in an adaptive training task that demanded constant switching, maintenance and updating of novel action rules. Participants completed an executive functions battery before and after training that estimated processing speed, working memory updating, set-shifting, response inhibition and fluid intelligence. Participants in the training group showed greater improvement than a no-contact control group in processing speed, indicated by reduced reaction times in speeded classification tasks. No other systematic group differences were found across the different pre-post measurements. Ex-Gaussian fitting of the reaction-time distribution revealed that the reaction time reduction observed among trained participants was restricted to the right tail of the distribution, previously shown to be related to working memory. Furthermore, training effects were only found in classification tasks that required participants to maintain novel stimulus-response rules in mind, supporting the notion that the training improved working memory abilities. Training benefits were maintained in a 10-month follow-up, indicating relatively long-lasting effects. The authors conclude that training improved action-related working memory abilities.  相似文献   

3.
Caselli L  Chelazzi L 《PloS one》2011,6(6):e21489
The ability to swiftly and smoothly switch from one task set to another is central to intelligent behavior, because it allows an organism to flexibly adapt to ever changing environmental conditions and internal needs. For this reason, researchers interested in executive control processes have often relied on task-switching paradigms as powerful tools to uncover the underlying cognitive and brain architecture. In order to gather fundamental information at the single-cell level, it would be greatly helpful to demonstrate that non-human primates, especially the macaque monkey, share with us similar behavioral manifestations of task-switching and therefore, in all likelihood, similar underlying brain mechanisms. Unfortunately, prior attempts have provided negative results (e.g., Stoet & Snyder, 2003b), in that it was reported that macaques do not show the typical signature of task-switching operations at the behavioral level, represented by switch costs. If confirmed, this would indicate that the macaque cannot be used as a model approach to explore human executive control mechanisms by means of task-switching paradigms. We have therefore decided to re-explore this issue, by conducting a comparative experiment on a group of human participants and two macaque monkeys, whereby we measured and compared performance costs linked to task switching and resistance to interference across the two species. Contrary to what previously reported, we found that both species display robust task switching costs, thus supporting the claim that macaque monkeys provide an exquisitely suitable model to study the brain mechanisms responsible for maintaining and switching task sets.  相似文献   

4.
We tested the effectiveness of an intensive, on average 17-session, adaptive and computerized working-memory training program for improving performance on untrained, paper and pencil working memory tasks, standardized school achievement tasks, and teacher ratings of classroom behavior. Third-grade children received either a computerized working memory training for about 30 minutes per session (n = 156) or participated in regular classroom activities (n = 126). Results indicated strong gains in the training task. Further, pretest and posttest transfer measures of working memory and school achievement, as well as teacher ratings, showed substantial correlations with training task performance, suggesting that the training task captured abilities that were relevant for the transfer tasks. However, effect sizes of training-specific transfer gains were very small and not consistent across tasks. These results raise questions about the benefits of intensive working-memory training programs within a regular school context.  相似文献   

5.
Previous fMRI studies in English-speaking samples suggested that specific interventions may alter brain function in language-relevant networks in children with reading and spelling difficulties, but this research strongly focused on reading impaired individuals. Only few studies so far investigated characteristics of brain activation associated with poor spelling ability and whether a specific spelling intervention may also be associated with distinct changes in brain activity patterns. We here investigated such effects of a morpheme-based spelling intervention on brain function in 20 children with comparatively poor spelling and reading abilities using repeated fMRI. Relative to 10 matched controls, children with comparatively poor spelling and reading abilities showed increased activation in frontal medial and right hemispheric regions and decreased activation in left occipito-temporal regions prior to the intervention, during processing of a lexical decision task. After five weeks of intervention, spelling and reading comprehension significantly improved in the training group, along with increased activation in the left temporal, parahippocampal and hippocampal regions. Conversely, the waiting group showed increases in right posterior regions. Our findings could indicate an increased left temporal activation associated with the recollection of the new learnt morpheme-based strategy related to successful training.  相似文献   

6.
The ability to adjust behavior to sudden changes in the environment develops gradually in childhood and adolescence. For example, in the Dimensional Change Card Sort task, participants switch from sorting cards one way, such as shape, to sorting them a different way, such as color. Adjusting behavior in this way exacts a small performance cost, or switch cost, such that responses are typically slower and more error-prone on switch trials in which the sorting rule changes as compared to repeat trials in which the sorting rule remains the same. The ability to flexibly adjust behavior is often said to develop gradually, in part because behavioral costs such as switch costs typically decrease with increasing age. Why aspects of higher-order cognition, such as behavioral flexibility, develop so gradually remains an open question. One hypothesis is that these changes occur in association with functional changes in broad-scale cognitive control networks. On this view, complex mental operations, such as switching, involve rapid interactions between several distributed brain regions, including those that update and maintain task rules, re-orient attention, and select behaviors. With development, functional connections between these regions strengthen, leading to faster and more efficient switching operations. The current video describes a method of testing this hypothesis through the collection and multivariate analysis of fMRI data from participants of different ages.  相似文献   

7.
The very few cognitive training studies targeting an important executive function, set shifting, have reported performance improvements that also generalized to untrained tasks. The present randomized controlled trial extends set shifting training research by comparing previously used cued training with uncued training. A computerized adaptation of the Wisconsin Card Sorting Test was utilized as the training task in a pretest-posttest experimental design involving three groups of university students. One group received uncued training (n = 14), another received cued training (n = 14) and the control group (n = 14) only participated in pre- and posttests. The uncued training group showed posttraining performance increases on their training task, but neither training group showed statistically significant transfer effects. Nevertheless, comparison of effect sizes for transfer effects indicated that our results did not differ significantly from the previous studies. Our results suggest that the cognitive effects of computerized set shifting training are mostly task-specific, and would preclude any robust generalization effects with this training.  相似文献   

8.
Visuo-spatial training is considered a promising approach to provide young children with a sound foundation for later mathematical learning. We developed and implemented a tablet-based visuo-spatial intervention in kindergarten classrooms aiming to foster the development of children’s visuo-spatial and numerical abilities. A sample of N?=?125 children participated in the present study, 68 children were part of the intervention group and participated in 20 training sessions of 20?min over a 10-week period, 57 children formed a business as usual control group. Results show that, at this young age, visuo-spatial and early math skills are already strongly interlinked. However, the training effects were domain-specific as they only improved visuo-spatial skills, but did not transfer to early math performance in the present setting.  相似文献   

9.
This report presents data from two versions of the task switching procedure in which the separate influence of stimulus repetitions, response key repetitions, conceptual response repetitions, cue repetitions, task repetitions, and congruency are considered. Experiment 1 used a simple alternating runs procedure with parity judgments of digits and consonant/vowel decisions of letters as the two tasks. Results revealed sizable effects of stimulus and response repetitions, and controlling for these effects reduced the switch cost. Experiment 2 was a cued version of the task switch paradigm with parity and magnitude judgments of digits as the two tasks. Results again revealed large effects of stimulus and response repetitions, in addition to cue repetition effects. Controlling for these effects again reduced the switch cost. Congruency did not interact with our novel “unbiased” measure of switch costs. We discuss how the task switch paradigm might be thought of as a more complex version of the feature integration paradigm and propose an episodic learning account of the effect. We further consider to what extent appeals to higher-order control processes might be unnecessary and propose that controls for feature integration biases should be standard practice in task switching experiments.  相似文献   

10.
Task switch costs often show an asymmetry, with switch costs being larger when switching from a difficult task to an easier task. This asymmetry has been explained by difficult tasks being represented more strongly and consequently requiring more inhibition prior to switching to the easier task. The present study shows that switch cost asymmetries observed in arithmetic tasks (addition vs. subtraction) do not depend on task difficulty: Switch costs of similar magnitudes were obtained when participants were presented with unsolvable pseudo-equations that did not differ in task difficulty. Further experiments showed that neither task switch costs nor switch cost asymmetries were due to perceptual factors (e.g., perceptual priming effects). These findings suggest that asymmetrical switch costs can be brought about by the association of some tasks with greater difficulty than others. Moreover, the finding that asymmetrical switch costs were observed (1) in the absence of a task switch proper and (2) without differences in task difficulty, suggests that present theories of task switch costs and switch cost asymmetries are in important ways incomplete and need to be modified.  相似文献   

11.
Beneficial effects of napping or bright light exposure on cognitive performance have been reported in participants exposed to sleep loss. Nonetheless, few studies investigated the effect of these potential countermeasures against the temporary drop in performance observed in mid-afternoon, and even less so on cognitive flexibility, a crucial component of executive functions. This study investigated the impact of either an afternoon nap or bright light exposure on post-prandial alterations in task switching performance in well-rested participants. Twenty-five healthy adults participated in two randomized experimental conditions, either wake versus nap (n=15), or bright light versus placebo (n=10). Participants were tested on a switching task three times (morning, post-lunch and late afternoon sessions). The interventions occurred prior to the post-lunch session. In the nap/wake condition, participants either stayed awake watching a 30-minute documentary or had the opportunity to take a nap for 30 minutes. In the bright light/placebo condition, participants watched a documentary under either bright blue light or dim orange light (placebo) for 30 minutes. The switch cost estimates cognitive flexibility and measures task-switching efficiency. Increased switch cost scores indicate higher difficulties to switch between tasks. In both control conditions (wake or placebo), accuracy switch-cost score increased post lunch. Both interventions (nap or bright light) elicited a decrease in accuracy switch-cost score post lunch, which was associated with diminished fatigue and decreased variability in vigilance. Additionally, there was a trend for a post-lunch benefit of bright light with a decreased latency switch-cost score. In the nap group, improvements in accuracy switch-cost score were associated with more NREM sleep stage N1. Thus, exposure to bright light during the post-lunch dip, a countermeasure easily applicable in daily life, results in similar beneficial effects as a short nap on performance in the cognitive flexibility domain with possible additional benefits on latency switch-cost scores.  相似文献   

12.
The present study examined the use of foreknowledge in a task-cueing protocol while manipulating sensory updating and executive control in both, informatively and non-informatively pre-cued trials. Foreknowledge, sensory updating (cue switch effects) and task-switching were orthogonally manipulated in order to address the question of whether, and to which extent, the sensory processing of cue changes can partly or totally explain the final task switch costs. Participants responded faster when they could prepare for the upcoming task and if no task-set updating was necessary. Sensory cue switches influenced cue-locked ERPs only when they contained conceptual information about the upcoming task: frontal P2 amplitudes were modulated by task-relevant cue changes, mid-parietal P3 amplitudes by the anticipatory updating of stimulus-response mappings, and P3 peak latencies were modulated by task switching. Task preparation was advantageous for efficient stimulus-response re-mapping at target-onset as mirrored in target N2 amplitudes. However, N2 peak latencies indicate that this process is faster for all repeat trials. The results provide evidence to support a very fast detection of task-relevance in sensory (cue) changes and argue against the view of task repetition benefits as secondary to purely perceptual repetition priming. Advanced preparation may have a stronger influence on behavioral performance and target-locked brain activity than the local effect of repeating or switching the task-set in the current trial.  相似文献   

13.
Pain interferes and disrupts attention. What is less clear is how pain affects performance on complex tasks, and the strategies used to ensure optimal outcomes. The aim of the current study was to examine the effect of pain on higher-order executive control processes involved in managing complex tasks. Sixty-two adult volunteers (40 female) completed two computer-based tasks: a breakfast making task and a word generation puzzle. Both were complex, involving executive control functions, including goal-directed planning and switching. Half of those recruited performed the tasks under conditions of thermal heat pain, and half with no accompanying pain. Whilst pain did not affect central performance on either task, it did have indirect effects. For the breakfast task, pain resulted in a decreased ability to multitask, with performance decrements found on the secondary task. However, no effects of pain were found on the processes thought to underpin this task. For the word generation puzzle, pain did not affect task performance, but did alter subjective accounts of the processes used to complete the task; pain affected the perceived allocation of time to the task, as well as switching perceptions. Sex differences were also found. When studying higher-order cognitive processes, pain-related interference effects are varied, and may result in subtle or indirect changes in cognition.  相似文献   

14.
目的:研究颈动脉狭窄对认知功能的影响,探讨颈动脉支架置入术(CAS)患者术后不同时期认知功能的变化及其可能的机制。方法:选取2010年1月至2012年12月我院神经内科收住的急性脑梗死(前循环)患者75例,按颈内动脉狭窄程度,分成无狭窄组,轻度狭窄组(狭窄程度〈30%),中度狭窄组(30-69%)和治疗组(70.99%),前三组给予药物治疗,治疗组同时给予颈内动脉支架置入术,应用蒙特利尔认知评估量表(MoCA)、简易精神状态检查表(MMSE)、搭火柴测验(stickTest),对患者进行认知功能评估,比较术前、术后不同时期认知功能的变化,同时利用SPECT/CT对治疗组20例患者术后局部脑血流改善状况进行评价。结果:治疗组和对照组在术前比较MoCA总分、MMSE评分、StickTest评分,发现治疗组评分低于对照组,且随着颈动脉狭窄程度的加重,认知功能受损越明显;治疗组在术后1周与术前比较,评分反而降低,差异有统计学意义;术后3个月、术后6个月与术前比较,评分均有所提高,差异有统计学意义;通过SPECT/CT对治疗组术前感兴趣区血流量与同侧小脑平均脑血流量比较,术后再与同侧小脑比较,结果显示术后脑灌注明显改善。结论:颈动脉狭窄与血管性认知功能障碍有关,而且认知功能障碍的程度与颈动脉狭窄程度呈正相关,颈内动脉支架置入术可最终改善认知功能,尤其表现在视空间/执行能力,延迟回忆能力,注意力等方面。  相似文献   

15.
Swift switching, along with atypical ability on updating and inhibition, has been found in non-clinical dissociators. However, whether swift switching is a cognitive endophenotype that intertwines with traumatisation and pathological dissociation remains unknown. Unspecified acute psychiatric patients were recruited to verify a hypothesis that pathological dissociation is associated with swift switching and traumatisation may explain this relationship. Behavioural measures of intellectual function and three executive functions including updating, switching and inhibition were administered, together with standardised scales to evaluate pathological dissociation and traumatisation. Our results showed superior control ability on switching and updating in inpatients who displayed more symptoms of pathological dissociation. When all three executive functions were entered as predictors, in addition to intellectual quotient and demographic variables to regress upon pathological dissociation, switching rather than updating remained the significant predictor. Importantly, the relationship between pathological dissociation and switching became non-significant when the effect of childhood trauma were controlled. The results support a trauma-related switching hypothesis which postulates swift switching as a cognitive endophenotype of pathological dissociation; traumatisation in childhood may explain the importance of swift switching.  相似文献   

16.
This article presents the results of a longitudinal population-based neuropsychological study of the development of higher mental functions (HMFs) in primary school children from grades 1 through 3 at a Moscow public school (n = 84). We monitored changes in HMFs in the total sample and in groups of children with different baseline HMFs (high, medium, low), as measured in the first grade, using seven indexes that reflect individual HMF components such as executive functions (voluntary regulation of activity), serial organization of movements and actions, processing of kinesthetic, auditory, visual, and visual-spatial information, and regulation of activation, at three time points (first, second, and third grades). The study found a generally positive trend in the structural and functional components of HMFs in the children who were tested. Groups of children with different baseline levels of HMFs steadily maintained their differences in the degree of development of the HMFs at each evaluation time point, although the greatest change in HMF components was found in children with initially low scores, and the least change was in children with initially high HMF scores. Among the components with the least change was voluntary regulation—that is, the programming, regulation, and control of one's activity. The fact that children with high baseline functioning did not change significantly in a given function from first to third grades may be related to a decline in learning motivation, insofar as their learning is then occurring in the zone of actual and not proximal development.  相似文献   

17.
String-pulling and patterned-string tasks are often used to analyse perceptual and cognitive abilities in animals. In addition, the paradigm can be used to test the interrelation between visual-spatial and motor performance. Two Australian parrot species, the galah (Eolophus roseicapilla) and the cockatiel (Nymphicus hollandicus), forage on the ground, but only the galah uses its feet to manipulate food. I used a set of string pulling and patterned-string tasks to test whether usage of the feet during foraging is a prerequisite for solving the vertical string pulling problem. Indeed, the two species used techniques that clearly differed in the extent of beak-foot coordination but did not differ in terms of their success in solving the string pulling task. However, when the visual-spatial skills of the subjects were tested, the galahs outperformed the cockatiels. This supports the hypothesis that the fine motor skills needed for advanced beak-foot coordination may be interrelated with certain visual-spatial abilities needed for solving patterned-string tasks. This pattern was also found within each of the two species on the individual level: higher motor abilities positively correlated with performance in patterned-string tasks. This is the first evidence of an interrelation between visual-spatial and motor abilities in non-mammalian animals.  相似文献   

18.
Turner syndrome (TS) is a human genetic disorder involving females who lack all or part of one X chromosome. The complex phenotype includes ovarian failure, a characteristic neurocognitive profile and typical physical features. TS features are associated not only with complete monosomy X but also with partial deletions of either the short (Xp) or long (Xq) arm (partial monosomy X). Impaired visual-spatial/perceptual abilities are characteristic of TS children and adults of varying races and socioeconomic status, but global developmental delay is uncommon. The cognitive phenotype generally includes normal verbal function with relatively impaired visual-spatial ability, attention, working memory, and spatially dependent executive function. The constellation of neurocognitive deficits observed in TS is most likely multifactorial and related to a complex interaction between genetic abnormalities and hormonal deficiencies. Furthermore, other determinants, including an additional genetic mechanism, imprinting, may also contribute to cognitive deficits associated with monosomy X. As a relatively common genetic disorder with well-defined manifestations, TS presents an opportunity to investigate genetic and hormonal factors that influence female cognitive development. TS is an excellent model for such studies because of its prevalence, the well-characterized phenotype, and the wealth of molecular resources available for the X chromosome. In the current review, we summarize the hormonal and genetic factors that may contribute to the TS neurocognitive phenotype. The hormonal determinants of cognition in TS are related to estrogen and androgen deficiency. Our genetic hypothesis is that haploinsufficiency for gene/genes on the short arm of the X chromosome (Xp) is responsible for the hallmark features of the TS cognitive phenotype. Careful clinical and molecular characterization of adult subjects missing part of Xp links the TS phenotype of impaired visual spatial/perceptual ability to specific distal Xp chromosome regions. We demonstrate that small, nonmosaic deletion of the distal short arm of the X chromosome in adult women is associated with the same hallmark cognitive profile seen in adult women with TS. Future studies will elucidate the cognitive deficits and the underlying etiology. These results should allow us to begin to design cognitive interventions that might lessen those deficits in the TS population.  相似文献   

19.
For some authors, the human sensitivity to numerosities would be grounded in our ability to process non-numerical magnitudes. In the present study, the developmental relationships between non numerical and numerical magnitude processing are examined in people with Williams syndrome (WS), a genetic disorder known to associate visuo-spatial and math learning disabilities. Twenty patients with WS and 40 typically developing children matched on verbal or non-verbal abilities were administered three comparison tasks in which they had to compare numerosities, lengths or durations. Participants with WS showed lower acuity (manifested by a higher Weber fraction) than their verbal matched peers when processing numerical and spatial but not temporal magnitudes, indicating that they do not present a domain-general dysfunction of all magnitude processing. Conversely, they do not differ from non-verbal matched participants in any of the three tasks. Finally, correlational analyses revealed that non-numerical and numerical acuity indexes were both related to the first mathematical acquisitions but not with later arithmetical skills.  相似文献   

20.

Aims

To assess the cognitive and behavioral aspects of executive functioning (EF) and learning skills in extremely preterm (EPT) children compared with term control children aged 10 to 15 years.

Methods

A total of 132 of 134 (98% of all eligible survivors) EPT children born at the 2 Swedish regional tertiary care centers from 1992 to 1998 (mean age = 12 years, mean birth weight = 718 g, and mean gestational age = 24.4 weeks) and 103 matched term controls were assessed. General intelligence was assessed using the Wechsler Intelligence Scale for Children (WISC-III-R), and cognitive aspects of EF were analyzed using EF-sensitive subscales of the WISC-III-R and Tower test of the Delis-Kaplan Executive Function Scale (D-KEFS). Behaviors related to EF and learning skills were assessed using the Five to Fifteen questionnaire, which is a validated parent and teacher instrument. Academic performance in school was assessed by teachers’ responses on Achenbach’s Teachers Report Form. Analyses performed included multivariate analyses of covariance (ANCOVA and MANCOVA) and logistic regression analyses.

Results

The EPT children displayed significant deficits in cognitive aspects of EF compared with the controls, exhibiting decreases on the order of 0.9 SD to 1.2 SD for tasks of verbal conceptual reasoning, verbal and non-verbal working memory, processing speed and planning ability (P <0.001 for all). After excluding the children with major neurosensory impairment (NSI) or a Full Scale intelligence quotient (FSIQ) of < 70, significant differences were observed on all tests. Compared with controls, parents and teachers of EPT children reported significantly more EF-related behavioral problems. MANCOVA of teacher-reported learning skills in children with FSIQ >70 and without major NSI revealed no interactions, but significant main effects were observed for the behavioral composite executive function score, group status (EPT vs control) and FSIQ, for which all effect sizes were medium to large. The corresponding findings of MANCOVA of the parent-reported learning skills were very similar. According to the teachers’ ratings, the EPT children were less well adjusted to the school environment.

Conclusion

EPT children born in the 1990s who received active perinatal care are at an increased risk of executive dysfunction, even after excluding children with significant neurodevelopmental disabilities. Even mild to moderate executive dysfunctions has a significant impact on learning skills. These findings suggest the need for timely interventions that address specific cognitive vulnerabilities and executive dysfunctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号