首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Opheliid nuchal organs are composed of ciliated cells, retractor muscles, and sensory cells. The perikarya of sensory cells are located in the posterior portion of the brain, and their distal processes extend along the body wall, as the nuchal nerve, and terminate just anterior to the ciliated region. The nuchal nerve of the juvenile is composed of 30–35 dendrites; the adult nuchal nerve has 35–40 dendrites. The ends of the sensory dendrites form sensory bulbs which are clustered around the olfactory chamber, and each bulb bears a modified cilium. Sensory cilia lose their axonemes and extend as microvillous-like structures into the olfactory chamber. Supportive cells delineate approximately the posterior and dorsal portions of the chamber with sensory bulbs forming the remaining ventral and anterior portions. On the lateral aspect of the chamber, cuticular matrix extends into it, and in this area supportive cells bear microvilli which extend into the matrix. The adult nuchal organ is larger than that of the juvenile, and the sensory portion of the olfactory chamber wall is expanded. Expansion of the sensory area is apparently the result of size increase in sensory bulbs and by intrusion of supportive cells between sensory bulbs.  相似文献   

2.
Abstract. We examined the nuchal organs of adults of the nereidid polychaete Platynereis dumerilii by means of scanning and transmission electron microscopy. The most prominent features of the nuchal organs are paired ciliary bands located dorsolaterally at the posterior margin of the prostomium. They are composed of primary sensory cells and multiciliated supporting cells, both covered by a thin cuticle. The supporting cells have motile cilia that penetrate the cuticle and are responsible for the movement of water. Subapically, they have a narrowed neck region; the spaces between the neck regions of these supporting cells comprise the olfactory chamber. The dendrites of the sensory cells give rise to a single modified cilium that crosses the olfactory chamber; numerous thin microvillus-like processes, presumably extending from the sensory cells, also traverse the olfactory chamber. At the periphery of the ciliated epithelium runs a large nervous process between the ciliated supporting cells. It consists of smaller bundles of sensory dendrites that unite to form the nuchal nerve, which leaves the ciliated epithelium basally and runs toward the posterior part of the brain, where the perikarya of the sensory cells are located in clusters. The ciliated epithelium of the nuchal organs is surrounded by non-ciliated, peripheral epidermal cells. Those immediately adjacent to the ciliated supporting cells have a granular cuticle; those further away have a smooth cuticle. The nuchal organs of epitokous individuals of P. dumerilii are similar to those described previously in other species of polychaetes and are a useful model for understanding the development of nuchal organs in polychaetes.  相似文献   

3.
The structural differentiation of the nuchal organs during the post-embryonic development ofPygospio elegans is described. The sensory organs are composed of two cell types: ciliated cells and bipolar primary sensory cells, constituting the nuchal ganglion, which is associated with both the sensory epithelium and the brain. Since the sensory neurons are largely integrated into posterolateral parts of the cerebral ganglion, the nuchal organs are primary presegmental structures. The microvilli of the ciliated cells form a cover over the cuticle with a presumed protective function. An extracellular space extends between cuticle and sensory epithelium. The distal dendrites of the sensory cells terminate in sensory bulbs, bearing one modified sensory cilium each that projects into the olfactory chamber, embedded within the secretion of the ciliated cells. During development, the nuchal organs increase in size. This is accompanied by a shift in position, an expansion of the sensory area, and secretory activity of the ciliated cells. The nuchal ganglion differentiates into three nuchal centres forming three distinct sensory areas around the ciliated region. Each nuchal complex reveals two short nuchal nerves comprising the sensory axons, which enter the posterior circumesophageal connective. The sensory cells lying in the brain exhibit neurosecretory activity; the sensory cilia enlarge their surface area by dilating and branching. Nuchal organs accomplish the basic structural adaptions of chemoreceptors and show structural analogies to arthropod olfactory sensilla; thus, there is every reason to suppose chemoreceptor function.  相似文献   

4.
Jacob Jelsing 《Zoomorphology》2002,121(4):213-220
The nuchal organs of Spio cf. filicornis from northern Europe have been studied by scanning and transmission electron microscopy. Spio cf. filicornis is the first species in which metameric nuchal organs are described. The nuchal organs consist of a distinct cephalic nuchal complex followed by metameric structures for a variable number of chaetigers. Their microanatomy corresponds to the general structural plan of nuchal organs: these are ciliated supporting cells and bipolar sensory cells with sensory cilia traversing an olfactory chamber. The organs are overlaid by a secondary paving-stone-like cover and innervated by longitudinally elongated paired nuchal nerves. The findings clearly favour the hypothesis that the paired metameric ciliated structures found in some Spionidae are in fact homologous with the prostomial nuchal organs characteristic of Polychaeta.  相似文献   

5.
The nuchal organs of annelid Laonice bahusiensis (Spionidae) from northern Europe have been studied using scanning and transmission electron microscopy. L. bahusiensis is the first spionid species in which extensively developed, continuous nuchal organs are described. The nuchal organs of this genus are the longest known among polychaete annelids. They consist of paired double bands extending from the prostomium on a mid‐dorsal caruncle for about 24–30 setigers. Their microanatomy corresponds to the general structural plan of nuchal organs: there are ciliated supporting cells and bipolar sensory cells with sensory cilia traversing an olfactory chamber. The organs are overlaid by a secondary paving‐stone‐like cover and innervated by one pair of longitudinally elongated nuchal nerves. These findings clearly favor the hypothesis that the paired, extensively developed ciliated structures found in some Spionidae are homologous with the prostomial nuchal organs characteristic of polychaete annelids. J. Morphol. 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Summary The olfactory organ of Helisoma trivolvis is located on the surface of the body at the base of the cephalic tentacles. An evagination of skin, the olfactory plica, at the base of the tentacle extends over the olfactory organ dorsally. The epithelium of the olfactory organs contains unspecialized epithelial cells, ciliated epithelial cells, basal cells, mucous secretory cells, and sensory dendrites. The surface of the epithelium has a complex brush border of thick plasmatic processes, which branch to form several terminal microvillar twigs. Long slender cytoplasmic processes form a dense spongy layer among the plasmatic processes beneath the level of the terminal twigs. Bipolar primary sensory neurons clustered beneath the epithelium of the olfactory organ send dendrites through the epithelium to the free surface. Some sensory endings have a few short cilia, but most bear only microvilli. Cilia of sensory endings and epithelial cells extend beyond the brush border of the epithelium. Small axons arise from the perikarya of the sensory neurons and enter a branch of the olfactory nerve. HRP tracing indicates that the axons pass to the cerebral ganglion without interruption. Histochemical tests indicate that the sensory neurons are neither aminergic nor cholinergic.  相似文献   

7.
Summary The differentiation of the dorsal organs as well as the structure of the nuchal organs and their relation to the central nervous system in adult Pygospio elegans were studied by electron microscopy and compared to the nuchal organs of the larvae. The nuchal organs are represented by paired ciliary bands on the dorsal side of the first setiger, delimiting a median caruncle that is completely filled with epidermal and nervous tissue. They are composed of ciliated supporting cells and bipolar primary sensory cells constituting the nuchal ganglia, which are integrated into the brain. Microvillus-like processes of the ciliated cells give rise to a secondary covering layer over the sensory epithelium. The size of the nuchal organs is a sexually dimorphic feature.Dorsal organ formation is concomitant with the onset of sexual maturation in the male sex only. They appear as metameric ciliary bands on the dorsal side of the anterior body region and consist of ciliated cells accompanied by lateral accumulations of tubular gland cells. In the gametogenic segments they are structurally associated with the male genital pores and may be involved in reproduction. The results refute previous theories that dorsal organs are sensory and have a common origin to nuchal organs.Abbreviations ac anterior commissure of the brain - ace anterior circumesophageal connective - bb basal body - bl basal lamina - c cuticle - ca caruncle - cc ciliated cell - ci sensory cilium - co microvillar cover - d septate desmosome - db dorsal blood vessel - dn dorsal nerve cord - ea efferent axons - ec epidermal cell - eg elementary granules - g Golgi complex - i filamentous inclusion - lm longitudinal muscles - ly lysosome - mc motile cilia - mv microvillus - n neuron - ng nuchal ganglion - nn nuchal nerve - nu nucleus - oc olfactory chamber - pa palp - pc posterior commissure of the brain - pce posterior circumesophageal connective - rer rough endoplasmic reticulum - sI setiger I - sb sensory bulb - sc sensory cell - sd sensory dendrite - ser smooth endoplasmic reticulum - tf tonofilament bundle - v clear vesicles - za zonula adherens  相似文献   

8.
 The ultrastructure of the nuchal organ and cerebral organ is described for the first time in a species of the Sipuncula, Onchnesoma squamatum. The nuchal organ is an unpaired structure lying outside and dorsal to the tentacular crown; furrows give the organ a paired appearance. The cerebral organ is an unciliated pad anterior to the nuchal organ. The nuchal organ consists of ciliated supporting cells, non-ciliated supporting cells and bipolar primary sensory cells. The cerebral organ is composed of unciliated supporting cells and numerous bipolar sensory cells. This clearly favours the hypothesis that this structure has a sensory function in adults rather than being a vestige of a larval organ. The sensory cells are similar in both organs and exhibit features indicative of chemoreception. Since the density of the sensory cells is low in the nuchal organ, an exclusively sensory function is questioned. There is some evidence that the two organs represent a functional unit. The present findings do not support the view that the nuchal organs of Sipuncula and ”Polychaeta” are homologous, but instead suggest that they are convergent structures. Accepted: 18 September 1996  相似文献   

9.
D G Emery 《Tissue & cell》1975,7(2):357-367
The olfactory organ of the squid has a thick, pseudostratified epithelium containing five morphological types of ciliated receptors. In the simplest receptors the cilia originate separately in the distal pole of the cell. All other receptors have some type of cilia filled cavity, varying from a simple pocket of cilia at the surface to a completely closed vesicle filled with cilia in cells deep in the epithelium. The receptors are compared to cells in the rhinophore of Nautilus and the olfactory organs of coleoid cephalopods. Possible functions of the olfactory organ, based on its morphology, are discussed.  相似文献   

10.
Nuchal organs are epidermal sensory structures present in most polychaetes. They are situated at the posterior edge of the prostomium and may extend posteriorly onto the peristomium. Although there is considerable external variation, they all consist of ciliated supporting cells, bipolar primary sensory cells and retractor muscles. They are innervated directly from the brain by paired nerves. The sensory cells are usually monociliated; their sensory processes lie in subcuticular spaces, the olfactory chambers. Structural variability is to be observed in the location of the sensory cells, the course of the nuchal nerve, position of nuchal ganglia as well as in cytological features of sensory and supporting cells. These differences provide useful characters for phylogenetic considerations to establish supraspecific taxa within the phylogenetic system of the Annelida. Special emphasis is laid on the problem of whether the nuchal organs represent an autapomorphy of the Polychaeta or the Annelida and thus whether the lack of nuchal organs in Clitellata is primary or secondary. As is discussed, the probability of a loss of the nuchal organs in Clitellata is higher, which favours the second hypothesis: that nuchal organs are part of the ground pattern of the Annelida and very likely are an autapomorphy of this group.  相似文献   

11.
In mammals, cilia are critical for development, sensation, cell signaling, sperm motility, and fluid movement. Defects in cilia are causes of several congenital syndromes, providing additional reasons to identify cilia-related genes. We hypothesized that mRNAs selectively abundant in tissues rich in highly ciliated cells encode cilia proteins. Selective abundance in olfactory epithelium, testes, vomeronasal organ, trachea, and lung proved to be an expression pattern uniquely effective in identifying documented cilia-related genes. Known and suspected cilia-related genes were statistically overrepresented among the 99 genes identified, but the majority encoded proteins of unknown function, thereby predicting new cilia-related proteins. Evidence of expression in a highly ciliated cell, the olfactory sensory neuron, exists for 73 of the genes. In situ hybridization for 17 mRNAs confirmed expression of all 17 in olfactory sensory neurons. Most were also detected in vomeronasal sensory neurons and in neighboring tissues rich in ciliated cells such as respiratory epithelium. Immunoreactivity for one of the proteins identified, Spa17, colocalized with acetylated tubulin in the cilia layer of the olfactory epithelium. In contrast, the ciliary rootlet protein, Crocc, was located in discrete structures whose position was consistent with the dendritic knobs of the olfactory sensory neurons. A compilation of >2,000 mouse genes predicted to encode cilia-related proteins revealed a strong correlation (R = 0.99) between the number of studies predicting a gene's involvement in cilia and documented evidence of such involvement, a fact that simplifies the selection of genes for further study of the physiology of cilia.  相似文献   

12.
中华须鳗嗅觉器官形态学观察   总被引:2,自引:1,他引:1  
利用光学显微镜和扫描电镜观察了10尾不同体长中华须鳗嗅觉器官的结构.结果表明:中华须鳗嗅囊呈楔型;嗅囊膜和嗅囊腹面的透明膜共同围成嗅囊腔;嗅囊长径与眼径的平均比值为2.2倍;每侧嗅囊嗅板数变化范围在30~44之间;嗅板远轴端有一纤毛和嗅孔密集的舌状游离突;嗅板上皮纤毛密集,纤毛细胞表现为3种类型:纤毛感觉细胞、纤毛非感觉细胞和微绒毛感觉细胞;纤毛非感觉细胞和微绒毛细胞也出现在嗅囊壁.嗅板上大量的纤毛表明,中华须鳗嗅囊的水动力机制应属嗅板纤毛搅动型(isosmates).除观察到嗅囊壁表面有两种类型的微嵴外,还首次在嗅板上观察到一种呈荸荠状的杆状细胞.  相似文献   

13.
实验用鱼为全长35.5~40.0 cm的野生鲻(Mugil cephalus),采用石蜡切片以及透射电镜技术对鲻的嗅囊以及嗅板细胞进行观察。结果表明:鲻的嗅觉器官由左右两个呈扁平椭球形嗅囊构成,分别由前后两个鼻孔与外界相通。嗅囊长径与眼径之比为0.80,长径与短径之比为2.09。嗅囊的嗅轴左右两边分别有垂直于嗅轴并向上倾斜排列整齐的18~25个披针形嗅板,只有初级嗅板未见次级嗅板。嗅板由中央髓和两侧的嗅上皮两部分构成,中央髓由疏松的结缔组织和毛细血管组成。嗅上皮又分为感觉区和非感觉区,感觉区位于嗅板的内侧,具有发达纤毛,呈连续分布状态,非感觉区位于嗅板边缘,细胞纤毛较少。通过光镜和电镜的综合研究结果显示嗅上皮细胞大致可分为5类:基细胞、支持细胞、纤毛非感觉细胞、纤毛感觉细胞和柱状细胞。文章讨论了鲻的感官活动类型。  相似文献   

14.
Nine intraepithelial ciliated cell types that are presumed to be sensory cells were identified in the epithelium of the pre- and postocular tentacles, the digital tentacles, and the rhinophore of the juvenile tetrabranchiate cephalopod Nautilus pompilius L. The morphological diversity and specialization in distribution of the different ciliated cell types analyzed by SEM methods suggest that these cells include receptors of several sensory functions. Ciliated cell types in different organs that show similar surface features were combined in named groups. The most striking cell, type I, is characterized by a tuft of long and numerous cilia. The highest density of this cell type occurs in ciliary fields in the epithelium of the lamellae of the pre- and postocular tentacles, in the olfactory pits of the rhinophores, and in the lamellae of four pairs of lateral digital tentacles, but not in the epithelium of the medial digital tentacles. The similar morphological data, together with behavioral observations on feeding habits, suggest that this cell type may serve in long-distance chemosensory function. The other ciliated cell types are solitary cells with specific spatial distributions in the various organs. Cell types with tufts of relatively short, stiff cilia (types III, IV, VIII), which are distributed in the lateral and aboral areas of the tentacles and at the base of the tentacle-like process of the rhinophore, are considered to be employed in mechanosensory transduction, while the solitary cells with bristle-like cilia at the margin of the ciliary fields (type II) and at the base of the rhinophore (type IX) may be involved in chemoreception. Histological investigation of the epithelium and the nerve structures of the different organs shows the proportion and distribution of the sensory pathways. Two different types of digital tentacles can be distinguished according to their putative functions: lateral slender digital tentacles in four pairs, of which the lowermost are the so-called long digital tentacles, participate in distance chemoreception, and the medial digital tentacles, whose terminal axial nerve cord may represent a specialized neuromechanosensory structure, appear to have contact chemoreceptive abilities.  相似文献   

15.
The larva of Loxosoma pectinaricola Franzén has been studied using scanning and transmission electron microscopy. The embryo develops surrounded by an egg envelope attached to the brood chamber. The newly released larva measures about 100 μm in length and is characterized by a prominent apical organ, stalked vesicles, paired lateral sense organs and a prototroch. The apical organ consists of at least four cell types: (1, 2) two types of ciliated cells, (3) vacuolated cells and (4) myoepithelial cells. The apical organ and frontal ganglion are tightly juxtaposed in the upper tier of the episphere. The stalked vesicles each consisting of two cells are unique evaginations of the epidermis. There are about twenty stalked vesicles with a maximum diameter of about 20.0 μm. The ciliated, knob-shaped, paired lateral sense organs are situated fronto-laterally on the episphere. The prototroch is comprised of a row of contiguous prototroch cells each containing about eighteen long cilia. The apical organ, frontal ganglion and paired lateral sense organs are suggested to be sensory structures that play an important role in active locomotion, settlement site selection and metamorphosis.  相似文献   

16.
Daniela Uthe 《Hydrobiologia》1995,309(1-3):45-52
The cephalic sensory organ (CSO) in planktonic veliger larvae of Littorina littorea is situated dorsally between the velar lobes at the level of the shell aperture. It consists of ciliated primary sensory cells, adjacent accessory cells and supporting epithelial cells. Cell bodies of the ciliated cells originate in the cerebral commissure and their dendrites pass to the epidermis. The flask-shaped sensory cells are characterized by a deep invaginated lumen with modified cilia arising from the cell surface in the lumen. These cilia are presumed to be non-motile because they lack striated rootlets and show a modified microtubular pattern (6 + 2, 7 + 2 and 8 + 2). The adjacent accessory cells never possess an invaginated lumen; occasionally cilia and branched microvilli arise from the apical surface. These cells may be sensory, but there is no obvious direct connection with the nervous system. The supporting epithelial cells are part of the epidermis and flank the apical necks of the sensory and accessory cells. Morphological evidence suggests that the CSO may function in chemoreception related to substrate selection at settlement, feeding or other behaviour.  相似文献   

17.
Birgit Rhode 《Zoomorphology》1989,108(5):315-322
Summary The nuchal organs of the protandric hermaphrodite Ophryotrocha puerilis were studied by electron microscopy. Ophryotrocha puerilis is the first species hitherto described which possesses four instead of two nuchal organs. These sensory structures are located as ciliary pits at the posterior margin of the prostomium. Histologically, the nuchal organs are composed of supporting cells with long motile cilia and bipolar sensory cells, the perikarya of which form four distinct nuchal ganglia adjoining the brain. These structural components are concentrically arranged around the central sensory area. This area is covered by a modified cuticle, whereas the cuticle above the peripheral region of the sense organ exhibits the appearance typical for polychaetes. Two types of vesicular material are produced in the basal supporting cells, a dense-cored one within the central supporting cells only and a clear irregular-shaped one in all of these cells. The first type is considered to be responsible for the formation of the modified cuticle. The significance of these most probably long-distance chemoreceptory organs and their possible role in reproductive behaviour is discussed.  相似文献   

18.
Summary The epithelia of the olfactory organ of two cyprinodontoid fish species were studied both by transmission and scanning electron microscopy. The relatively flat floor of the organ is covered by sensory and nonsensory epithelia. The latter is distributed in the form of bands or ridges separating distinct areas of sensory epithelium. Differences between the olfactory organs of the two species investigated related only to the topography and quantitative distribution of the epithelia. Their ultrastructural features are very similar. The nonsensory stratified squamous epithelium contains numerous goblet cells and surface cells provided with microridges. A hypothetical function of the microridges is discussed. The sensory epithelium consists mainly of basal, supporting, and two types of sensory cells, i.e., ciliated and microvillous receptor cells. The cilia exhibit a predominant 9+0 microtubule pattern. Both epithelia are covered by a mucus layer in which all surface structures seem to be embedded. The possible nature, origin, and movement mechanisms of the mucus are discussed.This work was supported by the Deutsche ForschungsgemeinschaftDedicated to Prof. Dr. med. W. Bargmann on the occasion of his 70th birthday  相似文献   

19.
Polychaetes normally possess one pair of nuchal organs at the posterior edge of the prostomium or peristomium. They have been regarded as chemosensory organs. The nuchal organs of four marine polychaete species with different habits were investigated by electron microscopy. Although the shapes of nuchal organs can vary greatly from simple ciliary bands (Scolelepis squamata, Spionidae) to retractile tongue-like, piston- or finger-shaped forms (Eteone longa, Anaitides mucosa, Phyllodocidae; Heteromastus filiformis, Capitellidae), the structural components, including the ciliated supporting cells, sensory cells, and nuchal epidermal cells, are essentially similar. The differences basically concern 1) the position of the sensory cells with relation to the ciliated supporting cells, 2) the location and structure of the nuchal nerve, and 3) the structure of the nuchal cuticle. The diverging nature of this modified cuticle is described and discussed in detail. Comparisons are made with the fine structure of nuchal organs of other polychaete species. Similarities of cellular components of nuchal organs are found not only in the four species studied here but also in all nuchal organs investigated so far. This is hypothesized to be due to the fact that the polychaete stem species already possessed nuchal organs with the respective cell types. Differences in the number and distribution of cellular components and in the overall shape of nuchal organs are thought to have evolved in correlation with the equipment of other cephalic appendages and with different habits and modes of nutrition.  相似文献   

20.
This first comprehensive study of the peripheral olfactory organ from a representative of the large and economically important order of teleost fishes, the Perciformes, shows a compact structure with olfactory sensory neurons distributed widely throughout the olfactory chamber. The spatial organization of the nasal cavity in the bottom-dwelling round goby (Gobiidae, Neogobius melanostomus) was examined using impression material injection, immunocytochemistry, and transmission electron microscopy. The olfactory chamber contains a single olfactory lamella; prominent dorsocaudal lachrymal and ethmoidal accessory nasal sacs are situated ventrocaudal to the chamber. The location of the olfactory mucosa within the olfactory chamber is novel for teleost fish, as it extends beyond the ventral surface to the lateral and dorsal regions. Microvillar olfactory sensory neurons and ciliated olfactory sensory neurons were identified by transmission electron microscopy and the spatial distribution of these two cell types was assessed through immunocytochemistry against olfactory receptor coupled G-proteins. Both G(alphaolf)-immunoreactive ciliated olfactory sensory neurons and the G(alphao)-immunoreactive microvillar form were located throughout the olfactory epithelium. Ciliated crypt cells were G(alphao) immunoreactive and were found throughout the olfactory epithelium of some specimens. The widespread occurrence of olfactory sensory neurons in the olfactory chamber supports the idea that olfactory signaling is important to the survival of the round goby. The prominence of the lachrymal and ethmoidal accessory nasal sacs indicates the capacity to regulate the flow of odorant molecules over the sensory surface of the olfactory sensory neurons, possibly through a pump-like mechanism driven by opercular activity associated with gill ventilation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号