首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
熊克仁  郑培敏 《动物学报》1997,43(3):321-323
大鼠隔区一氧化氮合酶阳性神经元的分布和脑缺血后的变化DISTRIBUTIONANDISCHEMIAINDUCEDCHANGESOFNITRICOXIDESYNTHASEPOSITIVENEURONSINTHESEPTALAREAOFRAT关键词大鼠...  相似文献   

2.
一种简单的分离提取水稻叶片中IAA,ABA和GAs的方法   总被引:1,自引:0,他引:1  
一种简单的分离提取水稻叶片中IAA,ABA和GAs的方法赵玉锦,王台,童哲(中国科学院植物研究所,100044)ASIMPLIFIEDMETHODFOREXTRACTIONOFENDOGENOUSIAA,ABAANDGAsFROMRICELEAVE¥...  相似文献   

3.
评《植物进化生物学》一书李林初(复旦大学生物系上海200433)AREVIEWABOUT“PLANTEVOLUTIONARYBIOLOGY”EDITEDBYCHENGJIAKUANANDYANGJI¥LiLinchu(DepartmentofBiol...  相似文献   

4.
THEVERTICALBELTSOFNATURALVEGETATIONPARTITIONINGOFTHEGUANDIMOUNTAINSBYUSINGORDEREDPLOTCLUSTERING,SHANXI,NORTHCHINA⒇FengZhang1T...  相似文献   

5.
鳙团移核鱼的遗传性状与个体生长   总被引:4,自引:0,他引:4  
齐福印  许桂珍 《动物学报》1997,43(2):211-213
鳙团移核鱼的遗传性状与个体生长GENETICCHARACTERANDINDIVIDUALGROWTHOFTHETRANSNUCLEUSFISHOFTHEBIGHEADANDTHEBLUNTSNOUTBREAM关键词鳙团移核鱼遗传性状个体生长Key...  相似文献   

6.
STUDIESONTHEPATTERNOFMEGASPOROGENESISANDMICROTUBULARCYTOSKELETONCHANGESINCYMBIDIUMSINENSE¥S.Y.ZeeX.L.Ye(1BotanyDepartment,Uni...  相似文献   

7.
苏北麦田恶性杂草麦家公的生态习性研究   总被引:1,自引:0,他引:1  
钱希 《生态学报》1995,15(4):453-456
苏北麦田恶性杂草麦家公的生态习性研究钱希(江苏省国营黄海农场,响水县,224624)ASTUDYONECOLOGICALHABITSOFBADWEEDSLITHOSPERMUMARVENSEINWHEATFIELDSOFTHENORTHJIANGSU...  相似文献   

8.
不同株的熊蜂短膜虫与宿主生存的关系   总被引:1,自引:0,他引:1  
武文杰 《动物学报》1998,44(2):235-236
THERELATIONSHIPBETWEENDIFFERENTSTRAINSOFCRITHIDIABOMBIANDTHESURVIVALOFTHEIRHOSTBUMBLEBEES不同株的熊蜂短膜虫与宿主生存的关系KeywordsCrithidiabo...  相似文献   

9.
湖北、河南、安徽三省大别山区地理新分布植物何家庆(安徽大学生物系合肥230039)关键词大别山区,种子植物,地理新分布THENEWGEOGRAPHICALDISTRIBUTIONOFSPERMATOPHYTEINDABIESHANTHEREGIONS...  相似文献   

10.
棉纤维分化和发育研究进展   总被引:4,自引:3,他引:1  
棉纤维分化和发育研究进展邱金龙王隆华颜季琼(华东师范大学生物系,上海200062)ADVANCESINTHESTUDYONDIFFERENTIATIONANDDEVELOPMENTOFCOTTONFIBERQiuJin-longWangLong-h...  相似文献   

11.
用九种化学修饰剂研究了粘质赛氏菌SerratiaMarcescens41003(2)胞外蛋白酶分子中氨基酸侧链基团与酶催化活性的关系,结果表明组氨酸、丝氨酸、赖氨酸、精氨酸、谷氨酸及天冬氨酸等残基与酶活性无关;半胱氨酸残基与酶活性也无直接关系;而酪氨酸和色氨酸残基侧链的修饰引起酶活力大幅度下降,说明酪氨酸和色氨酸残基为酶活力必需.  相似文献   

12.
嗜水气单胞菌胞外蛋白酶的化学修饰   总被引:9,自引:1,他引:8  
 蛋白酶是嗜水气单胞菌 (Aeromonashydrophila)的重要致病因子 .为研究其结构与功能之间的关系 ,用DEPC、EDC、PMSF、N AI等 9种化学修饰剂处理嗜水气单胞菌J 1株胞外蛋白酶ECPase54,然后检测残余酶活力 ,借以研究酶分子中氨基酸侧链基团与酶活性中心的关系 .结果表明 ,羧基、丝氨酸、ε 氨基、胍基等残基与酶活性无关 ;半胱氨酸残基与酶活性也无直接关系 ;而色氨酸、组氨酸、酪氨酸残基侧链以及二硫键的化学修饰引起酶活性的大幅度的下降 ,说明色氨酸、组氨酸、酪氨酸残基以及二硫键是酶活力所必需的基团  相似文献   

13.
α-半乳糖苷酶进行氨基酸组分分析,结果为含有较多的酸性及巯水性氨基酸,较少的组氨酸、酪氨酸及半胱氨酸。 用几种蛋白质侧链修饰试剂对α-半乳糖苷酶进行化学修饰。在一定条件下,当巯基及酪氨酸残基分别被NEM、IAA及NAI修饰后,酶活力不受影响,说明这些基团与活力无关。当羟基、组氨酸及色氨酸残基分别被EDC、DEP、NBS及HNBB修饰后,酶活力大幅度下降,说明这些基团或者参与了酯催化作用或者位于酯活性位区附近。  相似文献   

14.
Exposed thiol groups of rabbit muscle aldolase A were modified by 5,5'-dithiobis(2-nitrobenzoic) acid with concomittant loss of enzyme activity. When 5-thio-2-nitrobenzoate residues bound to enzyme SH groups were replaced by small and uncharged cyanide residues the enzyme activity was restored by more than 50%. The removal of a bulky C-terminal tyrosine residue from the active site of aldolase A resulted in enzyme which was inhibited by 5,5'-dithiobis(2-nitrobenzoic) acid only by 50% and its activity was nearly unchanged after modification of its thiol groups with cyanide. The results obtained show directly that rabbit muscle aldolase A does not possess functional cysteine residues and that the inactivation of the enzyme caused by sulfhydryl group modification reported previously can be attributed most likely to steric hindrance of a catalytic site by modifying agents.  相似文献   

15.
豆壳过氧化物酶的盐酸胍变性与化学修饰研究   总被引:2,自引:0,他引:2  
研究了盐酸胍对豆壳过氧化物酶(soybeanhullperoxidase,SHP,EC1.11.1.7)构象与活力的影响,发现去辅基SHP的盐酸胍变(复)性及荧光变化关系与SHP全酶分子的盐酸胍变(复)性及荧光变化关系明显不同。应用过碘酸氧化法去除SHP分子表面糖链,研究糖链去除对酶性质的影响,则证实了SHP分子表面的糖链去除导致酶热稳定性下降。应用不同的蛋白质侧链修饰剂对SHP进行化学修饰则表明,巯基、酪氨酸和色氨酸残基为酶活力非必需,而羧基、组氨酸和精氨酸残基为酶活力所必需。  相似文献   

16.
An essential tryptophan residue for rabbit muscle creatine kinase   总被引:1,自引:0,他引:1  
The tryptophan residues in rabbit muscle creatine kinase (ATP:creatine N-phosphotransferase, EC 2.7.3.2) have been modified by dimethyl(2-hydroxy-5-nitrobenzyl) sulfonium bromide after reversible protection of the reactive SH groups. The modification of two tryptophan residues as measured by spectrophotometric titration leads to complete loss of enzymatic activity. Control experiments show that reversible protection of the reactive SH groups as S-sulfonates followed by reduction results in nearly quantitative recovery of enzyme activity. The presence of a 410 nm absorption maximum and the decrease in fluorescence of the modified enzyme indicate the modification of tryptophan residues. At the same time, SH determinations after reduction of the modified enzyme show that the reagent has not affected the protected SH groups. Quantitative treatment of the data (Tsou, C.-L. (1962) Sci. Sin. 11, 1535 1558) shows that among the tryptophan residues modified, one is essential for its catalytic activity. The presence of substrates partially protects the modification of tryptophan residues as well as the inactivation, suggesting that the essential tryptophan residue is situated at the active site of this enzyme.  相似文献   

17.
The beta-glucosidase from Schizophyllum commune was purified to homogeneity by a modified procedure that employed Con A-Sepharose. The participation of carboxyl groups in the mechanism of action of the enzyme was delineated through kinetic and chemical modification studies. The rates of beta-glucosidase-catalyzed hydrolysis of p-nitrophenyl-beta-D-glucoside were determined at 27 degrees C and 70 mM ionic strength over the pH range 3.0-8.0. The pH profile gave apparent pK values of 3.3 and 6.9 for the enzyme-substrate complex and 3.3 and 6.6 for the free enzyme. The enzyme is inactivated by Woodward's K reagent and various water-soluble carbodiimides; chemical reagents selective for carboxyl groups. Of these reagents, 1-ethyl-3-(4-azonia-4,4-dimethylpentyl)carbodiimide iodide in the absence of added nucleophile was the most effective and a kinetic analysis of the modification indicated that one molecule of carbodiimide is required to bind to the beta-glucosidase for inactivation. Employing a tritiated derivative of the carbodiimide, 44 carboxyl groups in the enzyme were found to be labelled while the competitive inhibitor deoxynojirimycin protected three residues from modification. Treatment of the enzyme with tetranitromethane resulted in the modification of five tyrosine residues with approx. 28% diminution of enzymic activity. Titration of denatured enzyme with dithiobis(2-nitro-benzoic acid) indicated the absence of free thiol groups. Reaction of the enzyme with diethyl pyrocarbonate resulted in the modification of four histidine residues with the retention of 78% of the original enzymatic activity. The divalent transition metals Cu2+ and Hg2+ were found to be potent inhibitors of the enzyme, binding in an apparent irreversible manner.  相似文献   

18.
Amino acid residues His and Cys of the NAD-dependent hydrogenase from the hydrogen-oxidizing bacterium Ralstonia eutropha H16 were chemically modified with specific reagents. The modification of His residues of the nonactivated hydrogenase resulted in decrease in both hydrogenase and diaphorase activities of the enzyme. Activation of NADH hydrogenase under anaerobic conditions additionally modified a His residue (or residues) significant only for the hydrogenase activity. The rate of decrease in the diaphorase activity was unchanged. The modification of thiol groups of the nonactivated enzyme did not affect the hydrogenase activity. The effect of thiol-modifying agents on the activated hydrogenase was accompanied by inactivation of both diaphorase and hydrogenase activities. The modification degree and changes in the corresponding catalytic activities depended on conditions of the enzyme activation. Data on the modification of cysteine and histidine residues of the hydrogenase suggested that the enzyme activation should be associated with significant conformational changes in the protein globule.  相似文献   

19.
Amino acid residues that are essential for the activity of rat liver microsomal glutathione transferase have been identified using chemical modification with various group-selective reagents. The enzyme reconstituted into phosphatidylcholine liposomes does not require stabilization with glutathione for activity (in contrast with the purified enzyme in detergent) and can thus be used for modification of active-site residues. Protection by the product analogue and inhibitor S-hexylglutathione was used as a criterion for specificity. It was shown that the histidine-selective reagent diethylpyrocarbonate inactivated the enzyme and that S-hexylglutathione partially protected against this inactivation. All three histidine residues in microsomal glutathione transferase could be modified, albeit at different rates. Inactivation of 90% of enzyme activity was achieved within the time period required for modification of the most reactive histidine, indicating the functional importance of this residue in catalysis. The arginine-selective reagents phenylglyoxal and 2,3-butanedione inhibited the enzyme, but the latter with very low efficiency; therefore no definitive assignment of arginine as essential for the activity of microsomal glutathione transferase can be made. The amino-group-selective reagents 2,4,6-trinitrobenzenesulphonate and pyridoxal 5'-phosphate inactivated the enzyme. Thus histidine residues and amino groups are suggested to be present in the active site of the microsomal glutathione transferase.  相似文献   

20.
E. coli DNA dependent RNA polymerase was modified by diethylpyrocarbonate. Binding to a double-stranded DNA and unwinding of the DNA at the enzyme binding site by the modified enzyme were examined. It was found that RNA polymerase reversibly lost the ability to unwind DNA helix as well as the RNA synthetic activity when 9 to 11 histidyl residues of the enzyme were modified. In addition ot modification of the most reactive sulfhydryl or amino groups of the enzyme accompanying histidyl residues modification results in irreversible decrease of the salt concentration which is necessary to remove the enzyme from DNA cellulose column. Further modification of the less reactive sulfhydryl or amino groups leads to irreversible loss of the DNA binding ability and to the enzyme structure alteration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号