首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Lipopolysaccharide (LPS)-resistant mutants which did not respond to LPS were isolated from a macrophage-like mouse cell line, J774.1. Unlike the parental J774.1 cells, these mutants grew even in LPS added medium as well as in normal growth medium without any morphological changes. Assay of 125I-LPS binding to the cell monolayers revealed that one of these LPS-resistant mutants (LR-9) was strikingly defective in LPS-binding activity. Scatchard plot showed that LR-9 cells lacked the high affinity binding sites which were present in J774.1. The high affinity binding was inhibited by addition of excess unlabeled LPS, lipid A, lipid IVA (tetraacyl-beta(1'-6)-linked D-glucosamine disaccharide-1,4'-bisphosphate), and lipid X (2,3-diacylglucosamine 1-phosphate) and sensitive to proteinase K. LPS enhanced O2- generation and the release of arachidonic acid in J774.1 cells but not in LR-9 cells. Other stimulants such as zymosan and 12-O-tetradecanoylphorbol 13-acetate, however, induced the release of arachidonic acid in LR-9 cells as well as in J774.1 cells. LPS-photocross-linked assay allowed the identification of 65- and 55-kDa LPS-binding proteins in the membrane fraction of J774.1 cells. Both of the bands were not detectable in that of LR-9 cells and disappeared by competing with unlabeled LPS or lipid X. These results show that one or both of the two LPS-binding proteins might relate to the specific membrane receptor for LPS.  相似文献   

2.
Diphosphoryl lipid A derived from the nontoxic LPS of Rhodobacter sphaeroides (RsDPLA) has been shown to be a powerful LPS antagonist in both human and murine cell lines. In addition, RsDPLA also can protect mice against the lethal effects of toxic LPS. In this study, we complexed both the deep rough LPS from Escherichia coli D31 m4 (ReLPS) and RsDPLA with 5- and 30-nm colloidal gold and compared their binding to the RAW 264.7 cell line by electron microscopy. Both ReLPS and RsDPLA bound to the cells with the following observations. First, binding studies revealed that pretreatment with RsDPLA completely blocked the binding and thus internalization of ReLPS-gold conjugates to these cells at both 37 degrees C and 4 degrees C. Second, ReLPS was internalized via micropinocytosis (noncoated plasma membrane invaginations) involving formation of caveolae-like structures and leading to the formation of micropinocytotic vesicles, macropinocytosis (or phagocytosis), formation of clathrin-coated pits (receptor mediated), and penetration through plasma membrane into cytoplasm. Third, in contrast, RsDPLA was internalized predominantly via macropinocytosis. These studies show for the first time that RsDPLA blocks the binding and thus internalization of LPS as observed by scanning and transmission electron microscopy.  相似文献   

3.
Lipopolysaccharide from E. Coli (LPS) and BCG cell walls (BCGcw) are recognized immunoadjuvants that directly stimulate some macrophage functions. The macrophage cell line J774.1 and peritoneal exudate cells (PEC) from mice can be stimulated by LPS or other adjuvants in vitro to synthesize and release protein factor(s) that activate thymus-derived lymphocytes. We have utilized J774.1 cells and PEC to demonstrate that an increase in ornithine decarboxylase (ODC) activity is a marker of early biochemical changes in adjuvant-stimulated macrophages. BCGcw and LPS increased ODC within 2 hours in J774.1 cells as well as murine peritoneal exudate macrophages. Maximal increases in ODC were detected 4 hours after the addition of adjuvants to J774.1 cells. The marked increases (12–23 fold) in ODC observed with BCGcw (20 μg/ml) did not appear to involve an effect on cell proliferation which was suppressed by this adjuvant. Cycloheximide inhibited the induction of ODC by LPS and BCGcw in the macrophage cell line. Evidence that the induction of ODC may be promoted by an increase in cyclic AMP was provided by experiments demonstrating that prostaglandin E1 (PGE1) and 8-bromo-adenosine-3′:5′-monophosphate (8Br-cyclic AMP) can mimic the effects of LPS and BCGcw in J774.1 cells. These observations indicate that one of the early biochemical changes in macrophages promoted by adjuvants is an induction of ODC.  相似文献   

4.
The ornithine-containing lipids (OL)-induced cytokine production pattern in macrophage-like J774.1 and RAW 264.7 cells was different from that in the peritoneal macrophages previously reported. OLs, as well as lipopolysaccharide (LPS) of Escherichia coli, strongly induced tumor necrosis factor (TNF) alpha but not interleukin (IL)-1beta in J774.1 cells. In the RAW cells, IL-1beta, TNF-alpha and prostaglandin E(2) were strongly induced by the OLs and LPS. OL- and serine-glycine-containing lipid (SGL)-induced TNF-alpha production in J774.1 and RAW 264.7 cells required serum. However, in CD14-deficient LR-9 cells, TNF-alpha was not induced by the OLs in the presence or absence of serum. OLs and a SGL almost completely inhibited the binding of (125)I-LPS to J774.1 cells. These results suggested that OLs and SGL activate macrophages via the CD14-dependent pathway.  相似文献   

5.
The kinetics of the interaction of lipopolysaccharide (LPS), lipopolysaccharide binding protein (LBP) and CD14 was studied using surface plasmon resonance. The association and dissociation rate constants for the binding of LPS and rsCD14 were 2.9 x 10(4) M(-1) s(-1) and 0.07 s(-1) respectively, yielding a binding constant of 4.2 x 10(5) M(-1). Significantly, the presence of LBP increased not only the association rate but also the association constant for the interaction between LPS and CD14 by three orders of magnitude. Our experimental results suggest that LBP interacts with LPS and CD14 to form a stable trimolecular complex that has significant functional implications as it allows monocytes to detect the presence of LPS at a concentration as low as 10 pg/ml or 2 pM, and to respond by secreting interleukin-6. Thus, LBP is not merely transferring LPS to CD14 but it forms an integral part of the LPS-rLBP-rsCD14 complex.  相似文献   

6.
Abstract Natural partial structures of lipopolysaccharide (LPS) as well as synthetic analogues and derivatives of lipid A were compared with respect to inhibit the binding of 125I-labelled Re-chemotype LPS to mouse macrophage-like J774.1 cells to induce cytokine-release in J774.1 cells. LPS, synthetic Escherichia coli -type lipid A (compound 506) and tetraacyl percursor Ia (compound 406) inhibited the binding of 125I-LPS to macrophage-like J774.1 cells and induced the release of tumor ncerosis factor α (TNFα) and interleukin 6 (IL-6). Deacylated R-chemotype LPS preparations were completely inactive in inhibiting binding and in inducing cytokine-release. Among tetraacyl compounds, the inhibition-capacity of LPS-binding was in decreasing order: PE-4 ( α -phosphonooxyethyl analogue of 406)>406⪢>404(4′-monophosphoryl partial structure of 406)>405 (1-monophosphoryl partial structure of 406). In the case of hexaccyl preparations, compounds 506, PE-1 (α-phosphonooxyethyl analogue of 506) and PE-2 (differing from PE-1 in having 14:0 at positions 2 and 3 of the reducing GlcN) inhibited LPS-binding and induced cytokine release equally well, whereas preparation PE-3 (differing from PE-2 in containing a β-phosphhonooxyethyl group) showed a substantially lower capacity in binding-inhibition and cytokine-induction. The conclusion is that chemical changes in the hydrophilic lipid A backbone reduce the capacity of lipid A to bind to cells, whereas the number of fatty acids determines the capacity of lipid A to activate cells. These results indicate that the bisphosphorylated hexosamine backbone of lipid A is essential for specific binding of LPS to macrophages and that the acylation pattern plays a critical role for LPS-promoted cell activation, i.e. cytokine induction.  相似文献   

7.
The role of CD14 in the phagocytosis and killing of microorganisms was investigated using macrophage-like cell lines, CD14-positive J774.1 cells and CD14-negative mutant J7.DEF3 cells derived from J744.1 cells. The cells were infected with Salmonella typhimurium organisms of the smooth (S)-form LT2, mutant rough (R)-form TV148 or Staphylococcus aureus 248βH. At 30 or 180 min incubation, the cells were washed and disrupted. Colony-forming units (CFUs) liberated from the disrupted cells were determined by quantitative cultivation, and the phagocytic index and killing rate were calculated. Both the phagocytic index and killing rate of J774.1 cells against LT2 organisms were greater than those of J7.DEF.3 cells. However, the index and rate of J774.1 cells against TV148 and 248βH organisms were similar to those of the J7.DEF.3 cells. The phagocytosis of LT2 organisms by J774.1 cells was partially inhibited by S-form LPS (S-LPS) and anti-CD14 antibody, but not by R-chemotype LPS (R-LPS). These results suggest that CD14 participates in the phagocytosis of S-form Salmonella.  相似文献   

8.
Lipopolysaccharide (LPS, or endotoxin), is a major constituent of the outer membrane of Gram-negative bacteria. Bacteria express either smooth LPS, which is composed of O-antigen (O-Ag), complete core oligosaccharides, and the lipid A, or rough LPS which lack O-Ag but possess lipid A and progressively shorter core oligosaccharides. CD14 has been described as the receptor for complexes of LPS with LPS-binding protein (LBP). Using flow cytometry we have compared the binding of Salmonella minnesota rough LPS (ReLPS) and Escherichia coli smooth LPS labelled with fluorescein isothiocyanate (FITC-LPS) to Chinese hamster ovary (CHO) cells transfected with human CD14 gene (hCD14-CHO), to MonoMac 6 cells and to endothelial cells. Our results showed that both forms of LPS display the same binding characteristics, and that the binding of FITC-LPS to cells was both CD14- and LBP-dependent for LPS concentrations up to 100 ng.mL-1. At LPS concentrations higher than 100 ng.mL-1 we observed CD14/LBP-independent binding. CD14/LBP-dependent binding was dose dependent, saturable, and enhanced in the presence of human pooled serum (HPS), and the monoclonal anti-CD14 antibody (MY4) or unlabelled LPS could outcompete it.  相似文献   

9.
The binding of rough LPS (ReLPS from Salmonella minnesota R595) to human peripheral blood polymorphonuclear leukocytes (PMN), monocytes, and lymphocytes was examined by using fluorescein-labeled LPS and flow cytometry. At 4 degrees C, FITC-ReLPS bound rapidly in a concentration- and time-dependent way to PMN, monocytes, and lymphocytes. Because mononuclear cells showed both binding and nonbinding cell populations, FITC-ReLPS was used in conjunction with specific phycoerythrin-labeled mAb to identify these cell subpopulations. In contrast to T lymphocytes and NK cells, all monocytes and B lymphocytes efficiently bound FITC-ReLPS. PMN and monocytes showed two to three times more cell-associated FITC-ReLPS when cells were incubated at 37 degrees C compared with incubation at 4 degrees C. Binding of FITC-ReLPS to lymphocytes was similar for both 4 degrees C and 37 degrees C incubation conditions. In contrast to 4 degrees C, at 37 degrees C cell-associated LPS reflects surface-bound as well as internalized LPS, as demonstrated with fluorescence quenching of extracellular FITC-ReLPS by trypan blue. At 4 degrees C, binding of FITC-ReLPS was inhibited by polymyxin B. In addition, purified IgM mAb directed against hydrophobic acyl residues of ReLPS showed more than 95% inhibition of ReLPS binding to leukocytes, indicating the ability of specific mAb to prevent LPS-cell interactions necessary to exert biologic effects. The use of mAb, directed against different parts of the LPS molecule, provides an alternative method for LPS binding-inhibition studies.  相似文献   

10.
We have previously reported that a well-characterized glycoprotein fraction containing fucose residues in an extract of Ganoderma lucidum polysaccharides (EORP) exerts certain immuno-modulation activity by stimulating the expression of inflammatory cytokines via TLR4. Continuing our studies, we have demonstrated that EORP increases the surface expression of CD14 and TLR4 within murine macrophages J774A.1 cells in vitro, and further promotes LPS binding and uptake by J774A.1 cells in a CD14-dependent fashion. Moreover, we observed the co-localization of internalized LPS with lysosome- and Golgi-apparatus markers within 5 min after J774A.1 cells stimulated with LPS. In addition, EORP pretreatment of J774A.1 cells and human blood-derived primary macrophages, followed by LPS stimulation, results in the super-induction of interleukin-1beta (IL-1) expression. Endocytosis inhibitors: such as cytochalasin D and colchicine effectively block EORP-enhanced LPS internalization by J774A.1 cells; yet they fail to decrease the LPS-induced phosphorylation of certain mitogen-activated protein kinases, and IL-1 mRNA and proIL-1 protein expression, indicating that LPS internalization by J774A.1 cells is not associated with LPS-dependent activation. Our current results could provide a potential EORP-associated protection mechanism for bacteria infection by enhancing IL-1 expression and the clearance of contaminated LPS by macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号