首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
Changes in soil carbon storage that accompany land‐cover change may have significant effects on the global carbon cycle. The objective of this work was to examine how assumptions about preconversion soil C storage and the effects of land‐cover change influence estimates of regional soil C storage. We applied three models of land‐cover change effects to two maps of preconversion soil C in a 140 000 ha area of northeastern Costa Rica. One preconversion soil C map was generated using values assigned to tropical wet forest from the literature, the second used values obtained from extensive field sampling. The first model of land‐cover change effects used values that are typically applied in global assessments, the second and third models used field data but differed in how the data were aggregated (one was based on land‐cover transitions and one was based on terrain attributes). Changes in regional soil C storage were estimated for each combination of model and preconversion soil C for three time periods defined by geo‐referenced land‐cover maps. The estimated regional soil C under forest vegetation (to 0.3 m) was higher in the map based on field data (10.03 Tg C) than in the map based on literature data (8.90 Tg C), although the range of values derived from propagating estimation errors was large (7.67–12.40 Tg C). Regional soil C storage declined through time due to forest clearing for pasture and crops. Estimated CO2 fluxes depended more on the model of land‐cover change effects than on preconversion soil C. Cumulative soil C losses (1950–1996) under the literature model of land‐cover effects exceeded estimates based on field data by factors of 3.8–8.0. In order to better constrain regional and global‐scale assessments of carbon fluxes from soils in the tropics, future research should focus on methods for extrapolating regional‐scale constraints on soil C dynamics to larger spatial and temporal scales.  相似文献   

2.
Tropical dry forest is the most widely distributed land-cover type in the tropics. As the rate of land-use/land-cover change from forest to pasture or agriculture accelerates worldwide, it is becoming increasingly important to quantify the ecosystem biomass and carbon (C) and nitrogen (N) pools of both intact forests and converted sites. In the central coastal region of México, we sampled total aboveground biomass (TAGB), and the N and C pools of two floodplain forests, three upland dry forests, and four pastures converted from dry forest. We also sampled belowground biomass and soil C and N pools in two sites of each land-cover type. The TAGB of floodplain forests was as high as 416 Mg ha–1, whereas the TAGB of the dry forest ranged from 94 to 126 Mg ha–1. The TAGB of pastures derived from dry forest ranged from 20 to 34 Mg ha–1. Dead wood (standing and downed combined) comprised 27%–29% of the TABG of dry forest but only about 10% in floodplain forest. Root biomass averaged 32.0 Mg ha–1 in floodplain forest, 17.1 Mg ha–1 in dry forest, and 5.8 Mg ha–1 in pasture. Although total root biomass was similar between sites within land-cover types, root distribution varied by depth and by size class. The highest proportion of root biomass occurred in the top 20 cm of soil in all sites. Total aboveground and root C pools, respectively, were 12 and 2.2 Mg ha–1 in pasture and reached 180 and 12.9 Mg ha–1 in floodplain forest. Total aboveground and root pools, respectively, were 149 and 47 kg ha–1 in pasture and reached 2623 and 264 kg ha–1 in floodplain forest. Soil organic C pools were greater in pastures than in dry forest, but soil N pools were similar when calculated for the same soil depths. Total ecosystem C pools were 306. The Mg ha–1 in floodplain forest, 141 Mg ha–1 in dry forest, and 124 Mg ha–1 in pasture. Soil C comprised 37%–90% of the total ecosystem C, whereas soil N comprised 85%–98% of the total. The N pools lack of a consistent decrease in soil pools caused by land-use change suggests that C and N losses result from the burning of aboveground biomass. We estimate that in México, dry forest landscapes store approximately 2.3 Pg C, which is about equal to the C stored by the evergreen forests of that country (approximately 2.4 Pg C). Potential C emissions to the atmosphere from the burning of biomass in the dry tropical landscapes of México may amount to 708 Tg C, as compared with 569 Tg C from evergreen forests.  相似文献   

3.
Contrary to large areas in Amazonia of tropical moist forests with a pronounced dry season, tropical wet forests in Costa Rica do not depend on deep roots to maintain an evergreen forest canopy through the year. At our Costa Rican tropical wet forest sites, we found a large carbon stock in the subsoil of deeply weathered Oxisols, even though only 0.04–0.2% of the measured root biomass (>2 mm diameter) to 3 m depth was below 2 m. In addition, we demonstrate that 20% or more of this deep soil carbon (depending on soil type) can be mobilized after forest clearing for pasture establishment. Microbial activity between 0.3 and 3 m depth contributed about 50% to the microbial activity in these soils, confirming the importance of the subsoil in C cycling. Depending on soil type, forest clearing for pasture establishment led from no change to a slight addition of carbon in the topsoil (0–0.3 m depth). However, this effect was countered by a substantial loss of C stocks in the subsoil (1–3 m depth). Our results show that large stocks of relatively labile carbon are not limited to areas with a prolonged dry season, but can also be found in deeply weathered soils below tropical wet forests. Forest clearing in such areas may produce unexpectedly high C losses from the subsoil.  相似文献   

4.
5.
6.
Despite intensified interest in conservation of tropical forests, knowledge of the population genetics of tropical forest trees remains limited. We used random amplified polymorphic DNA (RAPD) data to evaluate trends in genetic diversity and differentiation for four tropical tree species, Alchornea latifolia, Dendropanax arboreus, Inga thibaudiana and Protium glabrum . These species occur at contrasting population densities along an elevational gradient and we use RAPD and ecological data to examine natural levels of genetic diversity of each species, trends in genetic variability with population density and structure, genetic differentiation along the elevation gradient, and the relationship between genetic diversity and such factors as seed dispersal and pollination syndrome. At the distances we examined (plot distances ranging from 0.8 to 8.6 km) there was very little genetic structuring at any distance along the gradient. All four species exhibited levels of variation expected for spatial distribution, mating system and pollinator syndrome; greater than 96% of the genetic variation occurred within plots for Inga thibaudiana, Protium glabrum and Dendropanax arboreus. Alchornea latifolia only occurred in a single plot. The results of this study contribute to a growing database of genetic diversity data that can be utilized to make predictions about the effect of disturbance and subsequent reductions in population size on genetic variation and structure in tropical tree species.  相似文献   

7.
Anthropologists have long been interested in the survival of Indian cultural traits in the New World. In this article, we present results of an ongoing project with a Costa Rican community that descends from East Indian indentured servants. We focus on the group's marriage patterns and how these patterns might have helped keep the community as a cohesive ethnic group. We investigate the group's level of inbreeding by computing the inbreeding coefficient using two different methods. We show that the community has been successful at keeping its inbreeding low, despite its small size, by allowing marriage with nonmembers of the community. We propose that unless consanguineous marriages are allowed virtually all of the community's marriages will be with noncommunity members. Absorption into tourism, as well as the community's staunch avoidance of consanguineous marriages and virtually universal marriage with noncommunity members, will likely contribute to their disappearance as a viable ethnic group.  相似文献   

8.
We evaluated the relative importance of habitat size and diversity and distance from the ocean in explaining longitudinal patterns of fish distribution and community structure (species richness, evenness, and diversity) in the lower 5 km of the Rio Claro. The Rio Claro is a small coastal river in Corcovado National Park, southwestern Costa Rica, with a depauperate freshwater fish fauna. We observed 22 species in pools, 19 of which occured during quantitative sampling. Most of these species probably spent part of their lives in the Pacific Ocean. We observed no species in riffles, although these habitats were common and several taxa (e.g., Gobiesocidae, Gobiidae) were adapted for life in fast turbulent water. Fish abundance, and species richness, evenness, and diversity were highest near the ocean, where high tides influenced river levels and salinity. Eight species were not observed further than 2900 m from the ocean, whereas 6 species were not encountered in samples nearest the ocean; the remaining 8 species were present throughout the study area. Distance from the ocean was a better predictor of fish abundance and community structure than were pool width, pool depth, pool surface area, pool volume, amount of cover present, substrate diversity, or depth diversity. Based in qualitative comparisons of our data with previously published data from 1980–1986, the fish assemblage of the Rio Claro is persistent in both species composition and relative abundance.  相似文献   

9.
Soil carbon (C) dynamics and sequestration are controlled by interactions of chemical, physical and biological factors. These factors include biomass quantity and quality, physical environment and the biota. Management can alter these factors in ways that alter C dynamics. We have focused on a range of managed sites with documented land use change from agriculture or grassland to forest. Our results suggest that interactions of soil type, plant and environment impact soil C sequestration. Above and below ground C storage varied widely across sites. Results were related to plant type and calcium on sandy soils in our Northern sites. Predictors of sequestration were more difficult to detect over the temperature range of 12.4°C in the present study. Accrual of litter under pines in the moist Mississippi site limited C storage in a similar manner to our dry Nebraska site. Pre-planting heterogeneity of agricultural fields such as found in Illinois influences C contents. Manipulation of controls on C sequestration such as species planted or amelioration of soil quality before planting within managed sites could increase soil C to provide gains in terrestrial C storage. Cost effective management would also improve soil C pools positively affecting soil fertility and site productivity.  相似文献   

10.
Traditional explanations of extensive land use on large unproductive estates in Latin American have failed to understand important aspects of the economic and political logic behind such enterprises. This article examines the reasons for the low productivity of cattle ranches over a period which spans the consolidation of haciendas in a frontier zone and their subsequent integration into the international beef market. The persistence of extensive land use in a modern export economy is explained as resulting from characteristics of the world beef market, local ecology, the Costa Rican credit and tax systems, and the social composition and political power of the landowning class.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号