首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salinity effects on microbial community structure and on potential rates of arsenate reduction, arsenite oxidation, sulfate reduction, denitrification, and methanogenesis were examined in sediment slurries from two California soda lakes. We conducted experiments with Mono Lake and Searles Lake sediments over a wide range of salt concentrations (25 to 346 g liter(-1)). With the exception of sulfate reduction, rates of all processes demonstrated an inverse relationship to total salinity. However, each of these processes persisted at low but detectable rates at salt saturation. Denaturing gradient gel electrophoresis analysis of partial 16S rRNA genes amplified from As(V) reduction slurries revealed that distinct microbial populations grew at low (25 to 50 g liter(-1)), intermediate (100 to 200 g liter(-1)), and high (>300 g liter(-1)) salinity. At intermediate and high salinities, a close relative of a cultivated As-respiring halophile was present. These results suggest that organisms adapted to more dilute conditions can remain viable at high salinity and rapidly repopulate the lake during periods of rising lake level. In contrast to As reduction, sulfate reduction in Mono Lake slurries was undetectable at salt saturation. Furthermore, sulfate reduction was excluded from Searles Lake sediments at any salinity despite the presence of abundant sulfate. Sulfate reduction occurred in Searles Lake sediment slurries only following inoculation with Mono Lake sediment, indicating the absence of sulfate-reducing flora. Experiments with borate-amended Mono Lake slurries suggest that the notably high (0.46 molal) concentration of borate in the Searles Lake brine was responsible for the exclusion of sulfate reducers from that ecosystem.  相似文献   

2.
A radioisotope method was devised to study bacterial respiratory reduction of arsenate in sediments. The following two arsenic-rich soda lakes in California were chosen for comparison on the basis of their different salinities: Mono Lake (~90 g/liter) and Searles Lake (~340 g/liter). Profiles of arsenate reduction and sulfate reduction were constructed for both lakes. Reduction of [73As]arsenate occurred at all depth intervals in the cores from Mono Lake (rate constant [k] = 0.103 to 0.04 h−1) and Searles Lake (k = 0.012 to 0.002 h−1), and the highest activities occurred in the top sections of each core. In contrast, [35S]sulfate reduction was measurable in Mono Lake (k = 7.6 ×104 to 3.2 × 10−6 h−1) but not in Searles Lake. Sediment DNA was extracted, PCR amplified, and separated by denaturing gradient gel electrophoresis (DGGE) to obtain phylogenetic markers (i.e., 16S rRNA genes) and a partial functional gene for dissimilatory arsenate reduction (arrA). The amplified arrA gene product showed a similar trend in both lakes; the signal was strongest in surface sediments and decreased to undetectable levels deeper in the sediments. More arrA gene signal was observed in Mono Lake and was detectable at a greater depth, despite the higher arsenate reduction activity observed in Searles Lake. A partial sequence (about 900 bp) was obtained for a clone (SLAS-3) that matched the dominant DGGE band found in deeper parts of the Searles Lake sample (below 3 cm), and this clone was found to be closely related to SLAS-1, a novel extremophilic arsenate respirer previously cultivated from Searles Lake.  相似文献   

3.
We measured potential rates of bacterial dissimilatory reduction of 75SeO42− to 75Se0 in a diversity of sediment types, with salinities ranging from freshwater (salinity = 1 g/liter) to hypersaline (salinity = 320 g/liter and with pH values ranging from 7.1 to 9.8. Significant biological selenate reduction occurred in all samples with salinities from 1 to 250 g/liter but not in samples with a salinity of 320 g/liter. Potential selenate reduction rates (25 nmol of SeO42− per ml of sediment added with isotope) ranged from 0.07 to 22 μmol of SeO42− reduced liter−1 h−1. Activity followed Michaelis-Menten kinetics in relation to SeO42− concentration (Km of selenate = 7.9 to 720 μM). There was no linear correlation between potential rates of SeO42− reduction and salinity, pH, concentrations of total Se, porosity, or organic carbon in the sediments. However, potential selenate reduction was correlated with apparent Km for selenate and with potential rates of denitrification (r = 0.92 and 0.81, respectively). NO3, NO2, MoO42−, and WO42− inhibited selenate reduction activity to different extents in sediments from both Hunter Drain and Massie Slough, Nev. Sulfate partially inhibited activity in sediment from freshwater (salinity = 1 g/liter) Massie Slough samples but not from the saline (salinity = 60 g/liter) Hunter Drain samples. We conclude that dissimilatory selenate reduction in sediments is widespread in nature. In addition, in situ selenate reduction is a first-order reaction, because the ambient concentrations of selenium oxyanions in the sediments were orders of magnitude less than their Kms.  相似文献   

4.
A radioisotope method was devised to study bacterial respiratory reduction of arsenate in sediments. The following two arsenic-rich soda lakes in California were chosen for comparison on the basis of their different salinities: Mono Lake (approximately 90 g/liter) and Searles Lake (approximately 340 g/liter). Profiles of arsenate reduction and sulfate reduction were constructed for both lakes. Reduction of [73As]arsenate occurred at all depth intervals in the cores from Mono Lake (rate constant [k] = 0.103 to 0.04 h(-1)) and Searles Lake (k = 0.012 to 0.002 h(-1)), and the highest activities occurred in the top sections of each core. In contrast, [35S]sulfate reduction was measurable in Mono Lake (k = 7.6 x10(4) to 3.2 x 10(-6) h(-1)) but not in Searles Lake. Sediment DNA was extracted, PCR amplified, and separated by denaturing gradient gel electrophoresis (DGGE) to obtain phylogenetic markers (i.e., 16S rRNA genes) and a partial functional gene for dissimilatory arsenate reduction (arrA). The amplified arrA gene product showed a similar trend in both lakes; the signal was strongest in surface sediments and decreased to undetectable levels deeper in the sediments. More arrA gene signal was observed in Mono Lake and was detectable at a greater depth, despite the higher arsenate reduction activity observed in Searles Lake. A partial sequence (about 900 bp) was obtained for a clone (SLAS-3) that matched the dominant DGGE band found in deeper parts of the Searles Lake sample (below 3 cm), and this clone was found to be closely related to SLAS-1, a novel extremophilic arsenate respirer previously cultivated from Searles Lake.  相似文献   

5.
Anaerobic bacteria and anoxic sediments from soda lakes produced electricity in microbial fuel cells (MFCs). No electricity was generated in the absence of bacterial metabolism. Arsenate respiring bacteria isolated from moderately hypersaline Mono Lake (Bacillus selenitireducens), and salt-saturated Searles Lake, CA (strain SLAS-1) oxidized lactate using arsenate as the electron acceptor. However, these cultures grew equally well without added arsenate using the MFC anode as their electron acceptor, and in the process oxidized lactate more efficiently. The decrease in electricity generation by consumption of added alternative electron acceptors (i.e. arsenate) which competed with the anode for available electrons proved to be a useful indicator of microbial activity and hence life in the fuel cells. Shaken sediment slurries from these two lakes also generated electricity, with or without added lactate. Hydrogen added to sediment slurries was consumed but did not stimulate electricity production. Finally, electricity was generated in statically incubated “intact” sediment cores from these lakes. More power was produced in sediment from Mono Lake than from Searles Lake, however microbial fuel cells could detect low levels of metabolism operating under moderate and extreme conditions of salt stress.  相似文献   

6.
Bacterial sulfate reduction activity (SRA) was measured in surface sediments and slurries from three sites in the Great Salt Lake (Utah, USA) using radiolabeled 35S-sulfate. High rates of sulfate reduction (363 ± 103 and 6,131 ± 835 nmol cm-3 d-1) were measured at two sites in the moderately hypersaline southern arm of the lake, whereas significantly lower rates (32 ± 9 nmol cm-3 d-1) were measured in the extremely hypersaline northern arm. Bacterial sulfate reduction was strongly affected by salinity and showed an optimum around 5-6% NaCl in the southern arm and an optimum of around 12% NaCl in the more hypersaline northern arm of the lake. High densities of sulfate-reducing bacteria (SRB) ranging from 2.2 × 107 to 6.7 × 108 cells cm-3 were determined by a newly developed tracer MPN-technique (T-MPN) employing sediment media and 35S-sulfate. Calculation of specific sulfate reduction rates yielded values comparable to those obtained in pure cultures of SRB. However, when using a conventional MPN technique with synthetic media containing high amounts of Fe(II), the numbers of SRB were underestimated by 1-4 orders of magnitude as compared to the T-MPN method. Our results suggest that high densities of slightly to moderately halophilic and extremely halotolerant SRB are responsible for the high rates of sulfate reduction measured in Great Salt Lake sediments.  相似文献   

7.
Dynamics of Bacterial Sulfate Reduction in a Eutrophic Lake   总被引:22,自引:13,他引:9       下载免费PDF全文
Bacterial sulfate reduction in the surface sediment and the water column of Lake Mendota, Madison, Wis., was studied by using radioactive sulfate (35SO42−). High rates of sulfate reduction were observed at the sediment surface, where the sulfate pool (0.2 mM SO42−) had a turnover time of 10 to 24 h. Daily sulfate reduction rates in Lake Mendota sediment varied from 50 to 600 nmol of SO42− cm−3, depending on temperature and sampling date. Rates of sulfate reduction in the water column were 103 times lower than that for the surface sediment and, on an areal basis, accounted for less than 18% of the total sulfate reduction in the hypolimnion during summer stratification. Rates of bacterial sulfate reduction in the sediment were not sulfate limited at sulfate concentrations greater than 0.1 mM in short-term experiments. Although sulfate reduction seemed to be sulfate limited below 0.1 mM, Michaelis-Menten kinetics were not observed. The optimum temperature (36 to 37°C) for sulfate reduction in the sediment was considerably higher than in situ temperatures (1 to 13°C). The response of sulfate reduction to the addition of various electron donors metabolized by sulfate-reducing bacteria in pure culture was investigated. The degree of stimulation was in this order: H2 > n-butanol > n-propanol > ethanol > glucose. Acetate and lactate caused no stimulation.  相似文献   

8.
Indirect photometric chromatography and microdistillation enabled a simultaneous measurement of sulfate depletion and sulfide production in the top 3 cm of freshwater sediments to be made. The simultaneous measurement of sulfate depletion and sulfide production rates provided added insight into microbial sulfur metabolism. The lower sulfate reduction rates, as derived from the production of acid-volatile 35S2− only, were explained by a conversion of this pool to an undistillable fraction under acidic conditions during incubation. A mathematical model was applied to calculate sulfate reduction from sulfate gradients at the sediment-water interface. To avoid disturbance of these gradients, the sample volume was reduced to 0.2 g (wet weight) of sediment. Sulfate diffusion coefficients in the model were determined (Ds = 0.3 × 10−5 cm2 s−1 at 6°C). The results of the model were compared with those of radioactive sulfate turnover experiments by assessing the actual turnover rate constants (2 to 5 day−1) and pool sizes of sulfate at different sediment depths.  相似文献   

9.
Mining-impacted sediments of Lake Coeur d'Alene, Idaho, contain more than 10% metals on a dry weight basis, approximately 80% of which is iron. Since iron (hydr)oxides adsorb toxic, ore-associated elements, such as arsenic, iron (hydr)oxide reduction may in part control the mobility and bioavailability of these elements. Geochemical and microbiological data were collected to examine the ecological role of dissimilatory Fe(III)-reducing bacteria in this habitat. The concentration of mild-acid-extractable Fe(II) increased with sediment depth up to 50 g kg−1, suggesting that iron reduction has occurred recently. The maximum concentrations of dissolved Fe(II) in interstitial water (41 mg liter−1) occurred 10 to 15 cm beneath the sediment-water interface, suggesting that sulfidogenesis may not be the predominant terminal electron-accepting process in this environment and that dissolved Fe(II) arises from biological reductive dissolution of iron (hydr)oxides. The concentration of sedimentary magnetite (Fe3O4), a common product of bacterial Fe(III) hydroxide reduction, was as much as 15.5 g kg−1. Most-probable-number enrichment cultures revealed that the mean density of Fe(III)-reducing bacteria was 8.3 × 105 cells g (dry weight) of sediment−1. Two new strains of dissimilatory Fe(III)-reducing bacteria were isolated from surface sediments. Collectively, the results of this study support the hypothesis that dissimilatory reduction of iron has been and continues to be an important biogeochemical process in the environment examined.  相似文献   

10.
Flowthrough reactor flasks are described that allow continuous low-level nutrient input to mixed anoxic sediments without dilution of the sediment. The flasks were tested by simulating sulfate inputs into sediments collected from a freshwater eutrophic lake. After an initial 2-day adaptation within the reactor system, rates of methane production and sulfate consumption were constant for the duration of a 12-day incubation. A sulfate input rate of 0.15 mmol liter of sediment−1 day−1 resulted in an equivalent rate of sulfate removal, which was unaffected by inputs of acetate (1.0 mmol liter of sediment−1 day−1). The rate of methane production in control reactors, 0.18 mmol liter of sediment−1 day−1, was doubled by the addition of acetate, whereas sulfate consumption was only stimulated by additions of high concentrations of sulfate plus acetate (1.5 and 1.0 mmol liter of sediment−1 day−1, respectively). The reactor system appears to be effective in maintaining the balance between sulfate reduction and methane production in freshwater sediments and is potentially useful for study of the response of sediment populations to varying inputs of naturally occurring substrates, selected inhibitors, or xenobiotic compounds.  相似文献   

11.
Rates of primary and bacterial secondary production in Lake Arlington, Texas, were determined. The lake is a warm (annual temperature range, 7 to 32°C), shallow, monomictic reservoir with limited macrophyte development in the littoral zone. Samples were collected from six depths within the photic zone from a site located over the deepest portion of the lake. Primary production and bacterial production were calculated from NaH14CO3 and [methyl-3H]thymidine incorporation, respectively. Peak instantaneous production ranged between 14.8 and 220.5 μg of C liter−1 h−1. There were two distinct periods of high rates of production. From May through July, production near the metalimnion exceeded 100 μg of C liter−1 h−1. During holomixis, production throughout the water column was in excess of 100 μg of C liter−1 h−1 and above 150 μg of C liter−1 h−1 near the surface. Annual areal primary production was 588 g of C m−2. Bacterial production was markedly seasonal. Growth rates during late fall through spring were typically around 0.002 h−1, and production rates were typically 5 μg of C liter−1 h−1. Growth rates were higher during warmer parts of the year and reached 0.03 h−1 by August. The maximum instantaneous rate of bacterial production was approximately 45 μg of C liter−1 h−1. Annual areal bacterial production was 125 g of C m−2. Temporal and spatial distributions of bacterial numbers and activities coincided with temporal and spatial distributions of primary production. Areal primary and bacterial secondary production were highly correlated (r = 0.77, n = 15, P < 0.002).  相似文献   

12.
Sulfate Reduction in Peat from a New Jersey Pinelands Cedar Swamp   总被引:2,自引:0,他引:2       下载免费PDF全文
Microbial sulfate reduction rates in acidic peat from a New Jersey Pine Barrens cedar swamp in 1986 were similar to sulfate reduction rates in freshwater lake sediments. The rates ranged from a low of 1.0 nmol cm−3 day−1 in February at 7.5- to 10.0-cm depth to 173.4 nmol cm−3 day−1 in July at 5.0- to 7.5-cm depth. The presence of living Sphagnum moss at the surface generally resulted in reduced rates of sulfate reduction. Pore water sulfate concentrations and water table height also apparently affected the sulfate reduction rate. Concentrations of sulfate in pore water were nearly always higher than those in surface water and groundwater, ranging from 26 to 522 μM. The elevated pore water sulfate levels did not result from the evapotranspiratory concentration of infiltrating stream water or groundwater, but probably resulted from oxidation of reduced sulfur compounds, hydrolysis of ester sulfates present in the peat, or both. The total sulfur content of peat that had no living moss at the surface was 164.64 ± 1.5 and 195.8 ± 21.7 μmol g (dry weight)−1 for peat collected from 2.5 to 5.0 and 7.5 to 10.0 cm, respectively. Organosulfur compounds accounted for 84 to 88% of the total sulfur that was present in the peat. C-bonded sulfur accounted for 91 to 94% of the organic sulfur, with ester sulfate being only a minor constituent. Reduced inorganic sulfur species in peat from 2.5 to 7.5 cm were dominated by H2S-FeS (68%), while pyritic sulfide was the predominant inorganic sulfur species in the peat from depths of 7.5 to 10.0 cm (75%).  相似文献   

13.
Concentrations of various sulfur compounds (SO42−, H2S, S0, acid-volatile sulfide, and total sulfur) were determined in the profundal sediments and overlying water column of a shallow eutrophic lake. Low concentrations of sulfate relative to those of acid-volatile sulfide and total sulfur and a decrease in total sulfur with sediment depth implied that the contribution of dissimilatory sulfur reduction to H2S production was relatively minor. Addition of 1.0 mM Na235SO4 to upper sediments in laboratory experiments resulted in the production of H235S with no apparent lag. Kinetic experiments with 35S demonstrated an apparent Km of 0.068 mmol of SO42− reduced per liter of sediment per day, whereas tracer experiments with 35S indicated an average turnover time of the sediment sulfate pool of 1.5 h. Total sulfate reduction in a sediment depth profile to 15 cm was 15.3 mmol of sulfate reduced per m2 per day, which corresponds to a mineralization of 30% of the particulate organic matter entering the sediment. Reduction of 35S0 occurred at a slower rate. These results demonstrated that high rates of sulfate reduction occur in these sediments despite low concentrations of oxidized inorganic compounds and that this reduction can be important in the anaerobic mineralization of organic carbon.  相似文献   

14.
A method was developed to follow bacterial nitrate reduction in freshwater sediments by using common high-performance liquid chromatographic equipment. The low detection limit (14 pmol) of the method enabled us to study concentration profiles and reaction kinetics under natural conditions. Significant nitrate concentrations (1 to 27 μM) were observed in the sediment of Lake Vechten during the nonstratified period; the concentration profiles showed a successive depletion of oxygen, nitrate, and sulfate with depth. The profiles were restricted to the upper 3 cm of the sediment which is rich in organics and loosely structured. Nitrate reduction in the sediment-water interface followed first-order reaction kinetics at in situ concentrations. Remarkably high potential nitrate-reducing activity was observed in the part of the sediment in which nitrate did not diffuse. This activity was also observed throughout the whole year. Estimates of Km varied between 17 and 100 μM and Vmax varied between 7.2 and 36 μmol cm−3 day−1 for samples taken at different depths. The diffusion coefficient of nitrate ([10 ± 0.4] × 10−6 cm2 s−1) across the sediment-water interface was estimated by a constant-source technique and applied to a mathematical model to estimate the net nitrate reduction during the nonstratified period. In this period, observed nitrate reduction rates by the model, 0.2 to 0.4 mmol m−2 day−1, were lower than those found for oxygen (27 mmol m−2 day−1) and sulfate (0.4 mmol m−2 day−1). During the summer stratification, nitrate was absent in the sediment and reduction could not be estimated by the model.  相似文献   

15.
Sulfate Reduction in Freshwater Sediments Receiving Acid Mine Drainage   总被引:24,自引:8,他引:16       下载免费PDF全文
One arm of Lake Anna, Va., receives acid mine drainage (AMD) from Contrary Creek (SO42− concentration = 2 to 20 mM, pH = 2.5 to 3.5). Acid-volatile sulfide concentrations, SO42− reduction rates, and interstitial SO42− concentrations were measured at various depths in the sediment at four stations in four seasons to assess the effects of the AMD-added SO42− on bacterial SO42− reduction. Acid-volatile sulfide concentrations were always an order of magnitude higher at the stations receiving AMD than at a control station in another arm of the lake that received no AMD. Summer SO42− reduction rates were also an order of magnitude higher at stations that received AMD than at the control station (226 versus 13.5 mmol m−2 day−1), but winter values were inconclusive, probably due to low sediment temperature (6°C). Profiles of interstitial SO42− concentrations at the AMD stations showed a rapid decrease with depth (from 1,270 to 6 μM in the top 6 cm) due to rapid SO42− reduction. Bottom-water SO42− concentrations in the AMD-receiving arm were highest in winter and lowest in summer. These data support the conclusion that there is a significant enhancement of SO42− reduction in sediments receiving high SO42− inputs from AMD.  相似文献   

16.
An investigation of the terminal anaerobic processes occurring in polluted intertidal sediments indicated that terminal carbon flow was mainly mediated by sulfate-reducing organisms in sediments with high sulfate concentrations (>10 mM in the interstitial water) exposed to low loadings of nutrient (equivalent to <102 kg of N · day−1) and biochemical oxygen demand (<0.7 × 103 kg · day−1) in effluents from different pollution sources. However, in sediments exposed to high loadings of nutrient (>102 kg of N · day−1) and biochemical oxygen demand (>0.7 × 103 kg · day−1), methanogenesis was the major process in the mediation of terminal carbon flow, and sulfate concentrations were low (≤2 mM). The respiratory index [14CO2/(14CO2 + 14CH4)] for [2-14C]acetate catabolism, a measure of terminal carbon flow, was ≥0.96 for sediment with high sulfate, but in sediments with sulfate as little as 10 μM in the interstitial water, respiratory index values of ≤0.22 were obtained. In the latter sediment, methane production rates as high as 3 μmol · g−1 (dry weight) · h−1 were obtained, and there was a potential for active sulfate reduction.  相似文献   

17.
NO3 concentration profiles were measured in the sediments of a meso-eutrophic lake with a newly developed microelectrode. The depth of penetration of NO3 varied from only 1.3 mm in organic-rich profundal silty sediments to 5 mm in organic-poor littoral sandy sediments. The thickness of the zone of denitrification in the organic-rich sediments was <500 μm. Oxygen profiles measured simultaneously revealed that the zone of denitrification was directly adjacent to the aerobic zone. The results demonstrate high denitrification rates (0.26 to 1.31 mmol m−2 day−1) at in situ nitrate concentrations in the overlying water (0.030 mmol liter−1) and limitation of denitrification by nitrate availability.  相似文献   

18.
The salinity responses of cyanobacteria, anoxygenic phototrophs, sulfate reducers, and methanogens from the laminated endoevaporitic community in the solar salterns of Eilat, Israel, were studied in situ with oxygen microelectrodes and in the laboratory in slurries. The optimum salinity for the sulfate reduction rate in sediment slurries was between 100 and 120‰, and sulfate reduction was strongly inhibited at an in situ salinity of 215‰. Nevertheless, sulfate reduction was an important respiratory process in the crust, and reoxidation of formed sulfide accounted for a major part of the oxygen budget. Methanogens were well adapted to the in situ salinity but contributed little to the anaerobic mineralization in the crust. In slurries with a salinity of 180‰ or less, methanogens were inhibited by increased activity of sulfate-reducing bacteria. Unicellular and filamentous cyanobacteria metabolized at near-optimum rates at the in situ salinity, whereas the optimum salinity for anoxygenic phototrophs was between 100 and 120‰.  相似文献   

19.
We sought to determine factors relating to the survival of heterotrophic microorganisms from the high-dissolved-oxygen (HDO) waters of Lake Hoare, Antarctica. This lake contains perpetual HDO about three times that of normal saturation (40 to 50 mg liter−1). Five isolates, one yeast and four bacteria, were selected from Lake Hoare waters by growth with the membrane filter technique with oxygen added to yield dissolved concentrations 14 times that in situ, 175 mg liter−1. One bacterial isolate was obtained from the microbial mat beneath the HDO waters. This organism was isolated at normal atmospheric oxygen saturation. The bacteria were gram-negative rods, motile, oxidase positive, catalase positive, and superoxide dismutase positive; they contained carotenoids. The planktonic isolates grew in media containing 10 mg of Trypticase soy (BBL Microbiology Systems)-peptone (2:1) liter−1 but not at 10 g liter−1. Under low-nutrient levels simulating Lake Hoare waters (10 mg liter−1), two of the planktonic isolates tested were not inhibited by HDO. Growth inhibition by HDO increased as nutrient concentration was increased. A carotenoid-negative mutant of one isolate demonstrated a decreased growth rate, maximal cell density, and increased cell lysis in the death phase under HDO compared with the parent strain. The specific activity of superoxide dismutase was increased by HDO in four of the five bacterial isolates. The superoxide dismutase was of the manganese type on the basis of inhibition and electrophoretic studies. The bacterial isolates from Lake Hoare possess several adaptations which may aid their survival in the HDO waters, as well as protection due to the oligotrophic nature of the lake.  相似文献   

20.
Anoxic bottom water from Mono Lake, California, can biologically reduce added arsenate without any addition of electron donors. Of the possible in situ inorganic electron donors present, only sulfide was sufficiently abundant to drive this reaction. We tested the ability of sulfide to serve as an electron donor for arsenate reduction in experiments with lake water. Reduction of arsenate to arsenite occurred simultaneously with the removal of sulfide. No loss of sulfide occurred in controls without arsenate or in sterilized samples containing both arsenate and sulfide. The rate of arsenate reduction in lake water was dependent on the amount of available arsenate. We enriched for a bacterium that could achieve growth with sulfide and arsenate in a defined, mineral medium and purified it by serial dilution. The isolate, strain MLMS-1, is a gram-negative, motile curved rod that grows by oxidizing sulfide to sulfate while reducing arsenate to arsenite. Chemoautotrophy was confirmed by the incorporation of H14CO3 into dark-incubated cells, but preliminary gene probing tests with primers for ribulose-1,5-biphosphate carboxylase/oxygenase did not yield PCR-amplified products. Alignment of 16S rRNA sequences indicated that strain MLMS-1 was in the δ-Proteobacteria, located near sulfate reducers like Desulfobulbus sp. (88 to 90% similarity) but more closely related (97%) to unidentified sequences amplified previously from Mono Lake. However, strain MLMS-1 does not grow with sulfate as its electron acceptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号