首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cDNA coding for human breast cancer cell cytosolic NADP+-dependent malic enzyme was obtained. This cDNA is composed of a length of 2084 base pairs, with 1698 base pairs coding for 565 amino acid residues and a length of 386 base pairs representing a 3-noncoding region. Comparing this nucleotide sequence with that from the normal human tissue [Loeber, G., Dworkin, M. B., Infante, A., and Ahorn, H. (1994),FEBS Lett. 344, 181–186] reveals that three nucleotides in the open reading frame and the length of 3-noncoding region of the cDNA are different. One of the changes results in a substitution of serine at position 438 for proline, which, however, may not cause significant changes in the predicted secondary structure. A partial cDNA lacking the first 84 nucleotides in the open reading frame was successfully cloned and expressed functionally inEscherichia coli cells. ItsK m value forl-malate (1.21±0.11 mM) is four times higher than that for the natural human breast cancer cell malic enzyme (0.29±0.04 mM) but similar to that for the full-length recombinant enzyme (1.06±0.07 mM). TheK m values for Mn2+ and NADP+ (0.26±0.03 and 0.97±0.4M, respectively) are similar to those for the natural enzyme (0.12±0.02 and 1.9±0.3M, respectively) or the recombinant wild-type enzyme (0.56±0.04 and 0.44±0.02M, respectively). A recombinant pigeon liver malic enzyme without the first 13 amino acid residues was used for comparison. TheK m values forl-malate and Mn2+ of the truncated enzyme (11.2±0.9 mM and 61.2±4.6M, respectively) are over 40 times larger than those for the natural pigeon liver malic enzyme (0.21±0.02 mM and 1.06±0.08M, respectively) or the recombinant wild-type enzyme (0.25±0.01 mM and 1.48±0.05M, respectively). We suggest that the N-terminus of malic enzyme may be required for the substrate binding during the catalytic cycle.  相似文献   

2.
We investigated the effect of external cations on the permeability characteristics and gating kinetics of the human ether-à-go-go-related gene (HERG) current using the whole-cell patch-clamp technique. Inward HERG currents were recorded on hyperpolarization in 140 mM external Cs+ and Rb+, as well as K+. The permeability ratios of Rb+ and Cs+ relative to K+ were 1.25 and 0.56, respectively. Biphasic outward currents were recorded on depolarization in 140 mM Cs+ and in Rb+ with much smaller amplitude. The voltage dependence of inactivation was affected by external cations, such that the half-inactivation voltage shifted from –69.4±3.7 mV in K+ to –30.7±1.6 mV in Cs+ and to –35.8±1.9 mV in Rb+ (n=5). The time constants of inactivation were also changed significantly by external cations; of inactivation at +40 mV was 16.4±2.2 ms in 140 mM K+, 181±20.3 ms in Cs+, and 94.1±7.6 ms in Rb+ (n=5). Voltage dependence of activation was not altered significantly. The inhibition of the rapid inactivation mechanism by large cations may suggest that the foot-in-the-door model of gating is involved in HERG channel inactivation.  相似文献   

3.
Old-growth stands of red spruce (Picea rubens) were sampled at the only four localities in the mountains of southwestern Virginia and central West Virginia where examples of such are known to exist. Based upon mean ages (±SE) of cored trees, sampled stands ranged in age from 164±18 to 201±10 yr. Dendro-ecological (tree-ring) analysis showed a marked decline in growth of trees at three localities during the late 1800s, followed by recovery to previous levels of growth within two decades. This growth-trend decline generally coincides with a period of extensive mortality of red spruce reported to have occurred in central West Virginia. Basal area of trees 2.5 cm DBH ranged from 35.4 to 46.1 m2/ha. These figures are considerably lower than those recorded at earlier dates for similar old-growth stands in the Appalachians, which suggests that a general decline has occurred over the last half-century.  相似文献   

4.
The enzyme catalysing the first step in the anaerobic degradation pathway of phenylacetate was purified from a denitrifying Pseudomonas strain KB 740. It catalyses the reaction phenylacetate+CoA+ATP phenylacetyl-CoA+AMP+PPi and requires Mg2+. Phenylacetate-CoA ligase (AMP forming) was found in cells grown anaerobically with phenylacetate and nitrate. Maximal specific enzyme activity was 0.048 mol min-1 x mg-1 protein in the mid-exponential growth phase. After 640-fold purification with 18% yield, a specific activity of 24.4 mol min-1 mg-1 protein was achieved. The enzyme is a single polypeptide with Mr of 52 ±2 kDa. The purified enzyme shows high specificity towards the aromatic inducer substrate phenylacetate and uses ATP preferentially; Mn2+ can substitute for Mg2+. The apparent K m values for phenylacetate, CoA, and ATP are 60, 150, and 290 M, respectively. The soluble enzyme has an optimum pH of 8.5, is insensitive to oxygen, but is rather labile and requires the presence of glycerol and/or phenylacetate for stabilization. The N-terminal amino acid sequence showed no homology to other reported CoA-ligases. The expression of the enzye was studied by immunodetection. It is present in cells grown anaerobically with phenylacetate, but not with mandelate, phenylglyoxylate, benzoate; small amounts were detected in cells grown aerobically with phenylacetate.  相似文献   

5.
Summary Paired toad urinary bladders were prepared without or with an osmotic gradient (175 mosm) across them, stimulated for 2.5 (n=6), 5 (n=6), 30 (n=6) or 60 (n=6) min with ADH (20 mU/ml), and studied by freeze-fracture electron microscopy. Water permeability at these times was assessed in additional bladders (n=6 for each case) after tissue fixation according to the technique of Eggena. After both 60 and 30 min of ADH stimulation, the presence of a gradient compared with the absence of one was associated with fewer aggregates (242±35vs. 382±14 ×235 m–2 at 60 min,P<0.01; 279±36vs. 470±51 ×235 m–2 at 30 min,P<0.01) and lower water permeability (8.4±1.1vs. 18.8±1.8g×min–1×cm–1 ×mosm –1 at60min,P<0.005; 9.2±1.0vs. 22.0±2.1 g ×min–1×cm–2×mosm –1 at 30 min,P<0.001). In addition, with a gradient both maximum water permeability and maximum aggregate frequency were reached nearly together; a similar correspondence occurred without a gradient. We conclude that in the presence of an osmotic gradient both the ADH-associated aggregates and the water permeability response to ADH are prevented from reaching the higher levels observed in bladders not exposed to a gradient.  相似文献   

6.
Callus induction was obtained on Murashige and Skogg agar medium with 45 M 2,4-dichlorophenoxyacetic acid under dark at 25°C. Among the four explant types investigated, the best callus induction was obtained from two-week old fronds to which a surgical incision was applied in the basal (meristematic) region. This treatment resulted in 89.11% of fronds producing callus which continued to proliferate for another 24 months. To obtain plant regeneration pieces of calluses were transferred onto Murashige and Skoog agar medium containing 22 M indole-3-acetic acid and 4.6 M kinetin and maintained under 16-h photoperiod (irradiance of 30 mol m–2 s–1) at 23°C. Green fronds formed on all callus pieces. The regenerated fronds were later transferred onto Wang medium where they formed roots. The regenerated Lemna minor L. plants obtained through indirect organogenesis did not differ morphologically from individuals forming the stock collection.  相似文献   

7.
Summary The water and potassium content and the relative vacuolar volume ( = Vvacuole/Vcell) of mesophyll cells of the needles of healthy 21-yearold spruce trees [Picea abies (L.) Karst.] were determined. In 5-year-old needles was 0.626 ± 0.178 (ovx ± SD). Potassium concentrations in the bulk tissue water ranged from about 65 to 105 mM. Simulations were made using this information and a simple two-compartmental model of the cell with the bulk cytoplasm and the vacuole and assuming that the minimum cytoplasmic and vacuolar K+ concentrations are 100–150 mM and 10–15 mM respectively. It is shown that a K+ content of needles below 50 mmol/1 tissue water would be precarious for maintenance of normal physiological and metabolic performance.  相似文献   

8.
In South Africa, more than 7000 t (f wt) of kelp (Ecklonia maxima) fronds are harvested annually to feed cultured abalone. Carpoblepharis flaccida, Gelidium vittatum and Polysiphonia virgata are conspicuous red algal epiphytes on older kelps and provide habitat and food for numerous animals. Over 4.5 y, we examined the effects of one destructive harvest of E. maxima on these 3 epiphytes. Two 20 × 20 m plots of kelp with similar epiphyte loads were demarcated. In one, all E. maxima sporophytes with stipes longer than 50 cm were harvested. The other plot served as a control. After 2.5 y the biomass of E. maxima in the harvested plot had recovered to control levels, but the epiphyte load (g epiphytes. Kg kelp−1) was statistically lower in the harvested plot after 2.5 and 3.5 y, and only recovered after 4.5 y. While most commercial harvesters cut through the “heads” (primary blades) of the kelp, effectively killing them, a new, non-lethal method removes secondary blades 20–30 cm from their bases, leaving the meristems and primary blades intact. At 5 sites studied, G. vittatum and P. virgata were found almost entirely on stipes and primary blades, and harvesting only distal parts of secondary blades limited losses to about 50% of C. flaccida biomass. To protect epiphytes, non-lethal harvesting is recommended and permanent non-harvest zones have been established in addition to limiting kelp yields and disallowing harvesting in Marine Protected Areas.  相似文献   

9.
Nutrient uptake by forest trees is dependent on ectomycorrhizal (EM) mycelia that grow out into the soil from the mycorrhizal root tips. We estimated the production of EM mycelia in root free samples of pure spruce and mixed spruce-oak stands in southern Sweden as mycelia grown into sand-filled mesh bags placed at three different soil depths (0–10, 10–20 and 20–30 cm). The mesh bags were collected after 12 months and we found that 590±70 kg ha–1 year–1 of pure mycelia was produced in spruce stands and 420±160 kg ha–1 year–1 in mixed stands. The production of EM mycelia in the mesh bags decreased with soil depth in both stand types but tended to be more concentrated in the top soil in the mixed stands compared to the spruce stands. The fungal biomass was also determined in soil samples taken from different depths by using phospholipid fatty acids as markers for fungal biomass. Subsamples were incubated at 20°C for 5 months and the amount of fungal biomass that degraded during the incubation period was used as an estimate of EM fungal biomass. The EM biomass in the soil profile decreased with soil depth and did not differ significantly between the two stand types. The total EM biomass in the pure spruce stands was estimated to be 4.8±0.9×103 kg ha–1 and in the mixed stands 5.8±1.1×103 kg ha–1 down to 70 cm depth. The biomass and production estimates of EM mycelia suggest a very long turnover time or that necromass has been included in the biomass estimates. The amount of N present in EM mycelia was estimated to be 121 kg N ha–1 in spruce stands and 187 kg N ha–1 in mixed stands. The 13C value for mycelia in mesh bags was not influenced by soil depth, indicating that the fungi obtained all their carbon from the tree roots. The 13C values in mycelia collected from mixed stands were intermediate to values from pure spruce and pure oak stands suggesting that the EM mycelia received carbon from both spruce and oak trees in the mixed stands. The 15N value for the EM mycelia and the surrounding soil increased with soil depth suggesting that they obtained their entire N from the surrounding soil.  相似文献   

10.
This study assessed if mature leaves of Laguncularia racemosa were able to demonstrate salt secretion, and if the magnitude of secretion was a function of soil salinity. Thus, salinity influence on the osmolality of leaf tissue, xylem sap and leaf secretion was assessed in field and glasshouse experiments. As salinity increased, solutes were accumulated in sufficient quantity to decrease osmotic potential over the whole range of water potential. In the field, xylem osmolality (mol m–3) increased with salinity from 32.4±2.9 at 17 to 38.2±0.6 at 28. Similarly, in the glasshouse, xylem sap osmolality (mol m–3) increased from 33.4±1.8 (15) to 40.6±1.5 (30). Changes in Na+ concentration explained about 51–58% of increase in xylem osmolality. Rates of secretion (mmol m–2 day–1) in the field increased from 0.80±0.12 (17) to 1.16±0.14 (28), and in the glasshouse the secretion increased from 0.73±0.07 (15) to 1.25±0.07 (30). The Na+ accounted for 40–53% of total secretion. This study presented evidence of the capability of mature leaves of L. racemosa to secrete salt for the first time, and that the rates of secretion were enhanced as soil salinity increased.  相似文献   

11.
19F NMR spectra of sodium fluoride in suspensions of human erythrocytes were seen to yield separate resonances for the F- populations inside and outside the cells. Selective saturation of the magnetization of the intracellular population gave rise to transfer of that saturation to the extracellular population. The extent of magnetization transfer was high and it was blocked by the capnophorin (band 3) anion exchange inhibitor 4,4-dini-trostilbene-2,2-disulfonic acid (DNDS). A series of magnetization-inversion transfer experiments was carried out for the range of intracellular fluoride concentrations of 11 mM to 136 mM and analysed using one-dimensional overdetermined exchange analysis. This yielded an estimate of the equilibrium exchange Michaelis constant and maximal velocity of 27 ± 3 mM and 180 ± 5 × 10-16 mol cell-1 s-1, respectively. There was no alteration of exchange flux of fluoride at an intracellular concentration of 49 mM in the presence of 50 mM glucose; thus suggesting no interaction between glucose and anions in capnophorin-mediated exchange of solutes.  相似文献   

12.
Boar  R.R.  Harper  David M. 《Hydrobiologia》2002,488(1-3):81-88
On steep, unvegetated slopes, sands (particle sizes 0.063 to 2 mm) and gravels (2–64 mm) erode from the shoreline of Lake Naivasha (Kenya) and enter the lake basin. This occurred freely where fringing papyrus (Cyperus papyrus) swamp had been cleared in favour of landing jetties or agriculture. Gravel-sized particles have been recovered up to 60 m offshore and sands to 80 m. In an area where papyrus was undisturbed and the swamp margin was 52 m wide, gravel did not enter the lake and sands penetrated to around 35 m. Large particles are much easier to trace to source and to manage than the finer silts and clays (<0.63 m) that form the bulk of Lake Naivasha's sediment. The pattern of mass specific magnetic susceptibilities for the <63 m fraction of lake sediment around the southern shoreline of the lake suggests that fine particles enter open water directly from the shoreline and are not transported from the lake's only perennial inflow, the River Malewa in the north. Such particles originate from a hinterland that supports high intensity horticulture and are therefore a potential source of contamination. Mean ± SD susceptibility (If) immediately offshore papyrus fringe was 0.49 ± 0.08 × 10-6 m3 kg-1 compared with higher values of 1.33 ± 0.14 × 10-6 m3 kg-1 where there was no papyrus barrier (P<0.0001). The value for five sites in the middle parts of the lake was 0.45 ± 0.02 × 10-6 m3 kg-1 with 1.38 ± 0.10 × 10-6 m3 kg-1 near the mouth of the River Malewa. The results of this study are evidence, therefore, that conservation of a continuous papyrus margin of about 50 m width is a priority for intercepting particulate material.  相似文献   

13.
Gitahi  S. M.  Harper  D. M.  Muchiri  S. M.  Tole  M. P.  Ng'ang'a  R. N. 《Hydrobiologia》2002,488(1-3):123-128
Water, sediment, red swamp crayfish (Procambarus clarkii) and black bass (Micropterus salmoides) from Lake Naivasha were analyzed for selected organochlorine and organophosphorus pesticide residues. The mean p,p'-DDT, o,p'-DDT and p,p'-DDE residue levels recorded in black bass (28.3 (± 30.0), 34.2 (±54.0) and 16.1 (±16.1) g kg–1, respectively) and crayfish (4.6 (±5.1), 3.2 (±2.8), and 1.4 (±1.1) g kg–1, respectively), were higher than previously recorded. This indicated recent usage of technical DDT in the lake's catchment. Levels of p,p'-DDT, higher than those of p,p'-DDE further emphasized this. Mean lindane, dieldrin, -endosulfan and aldrin concentrations in black bass were 100.5, 34.6, 21.6 and 16.7 g kg–1, respectively. The same residues were detected at lower concentrations in crayfish at 2.0, 2.0, 2.0 and 1.9 g kg–1, respectively. The higher fat content (3.7 ± 2.7% SD) in black bass (compared to 0.6 ± 0.3% in crayfish) accounted for the significantly higher residue concentrations in black bass. Organophosphate pesticides were the most commonly used pesticides in the lake's catchment, but none was detected in any of the samples. The results indicate that there is need for further work to identify sources and fate of pesticide contaminants, as well as to improve monitoring of pesticide use throughout the catchment.  相似文献   

14.
Summary To characterize the molecular properties conveyed by the isoforms of the subunit of Na,K-ATPase, the two major transepithelial transporting organs in the brine shrimp (Artemia salina), the salt glands and intestines, were isolated in pure form. The isoforms were quantified by ATP-sensitive fluorescein isothiocyanate (FITC) labeling. The salt gland enzyme exhibits only the 1 isoform, whereas the intestinal enzyme exhibits both the 1 and the 2 isoforms. After 32 hours of development, Na,K-ATPase activity [in mol Pi/mg protein/hr (1u)] in whole homogenates was 32±6 in the salt glands and 12±3 in the intestinal preparations (mean±sem). The apparent half-maximal activation constants (K 1/2) of the salt gland enzyme as compared to the intestinal enzyme were 3.7±0.6mm vs. 23.5±4mm (P<0.01) for Na+, 16.6±2.2mm vs. 8.29±1.5mm for K+ (P<0.01), and 0.87±0.8mm vs. 0.79±1.1mm for ATP (NS). The apparentK i's for ouabain inhibition were 1.1×10–4 m vs. 2×10–5 m, respectively. Treatment of whole homogenates with deoxycholic acid (DOC) produced a maximal Na,K-ATPase activation of 46% in the salt gland as compared to 23% in the intestinal enzyme. Similar differences were found with sodium dodecyl sulfate (SDS). The two distinct forms of Na,K-ATPase isolated from the brine shrimp differed markedly in three kinetic parameters as well as in detergent sensitivity. The differences inK 1/2 for Na+ and K+ are more marked than those reported for the mammalian Na,K-ATPase isoforms. These differences may be attributed to the relative abundances of the subunit isoforms; other potential determinants (e.g. differences in membrane lipids), however, have not been investigated.During the tenure of an Educational Commission For Foreign Medical Graduates Visiting Associate Professorship.  相似文献   

15.
Large carbonate, bryozoan-serpulid constructions, made by Pentapora fascialis and Salmacina dysteri respectively, were found around karstic freshwater springs, called vruljas, in the Senj Archipelago (Velebit Channel, Croatia). In June 2002, several sites were investigated by SCUBA divers on the rocky cliffs of Grmac and dralova at depths ranging from 19 to 32 m. Mean colony diameter decreased with increasing distance from the vruljas: in the vicinity the mean diameter was 65.8±21 cm, at 2-m distance it was 40.4±8.2. Carbonate contribution was to a great extent due to the bryozoan (5,784±1,186 gm–2 CaCO3) rather than to the serpulid (383±218 gm–2 CaCO3). P. fascialis carbonate standing stock was remarkably high if compared with data from literature for shallow carbonate producers. The bryozoan-serpulid constructions can be indicated as important, even if localised, contributions to the carbonate budget in the Adriatic Sea.  相似文献   

16.
Summary The transepithelial water permeability in frog urinary bladder is believed to be essentially dependent on the ADH-regulated apical water permeability. To get a better understanding of the transmural water movement, the diffusional water permeability (P d) of the basolateral membrane of urinary bladder was studied. Access to this post-luminal barrier was made possible by perforating the apical membrane with amphotericin B. The addition of this antibiotic increasedP d from 1.12±0.10×10–4 cm/sec (n=7) to 4.08±0.33×10–4 cm/sec (n=7). The effect of mercuric sulfhydryl reagents, which are commonly used to characterize water channels, was tested on amphotericin B-treated bladders. HgCl2 (10–3 m) decreasedP d by 52% andpara-chloromercuribenzoic acid (pCMB) (1.4×10–4 m) by 34%. The activation energy for the diffusional water transport was found to increase from 4.52±0.23 kcal/mol (n=3), in the control situation, to 9.99±0.91 kcal/mol (n=4) in the presence of 1.4×10–4 m pCMB. Our second approach was to measure the kinetics of water efflux, by stop-flow light scattering, on isolated epithelial cells from urinary bladders.pCMB (0.5 or 1.4×10–4 m) was found to inhibit water exit by 91±2%. These data strongly support the existence of proteins responsible for water transport across the basolateral membrane, which are permanently present.  相似文献   

17.
In consideration of their origin the adaptive strategies of the evergreen species of the Mediterranean maquis were analysed. Rosmarinus officinalis L., Erica arborea L., and Erica multiflora L. had the lowest net photosynthetic rate (PN) in the favourable period [7.8±0.6 mol(CO2) m–2s–1, mean value], the highest PN decrease (on an average 86 % of the maximum) but the highest recovery capacity (>70 % of the maximum) at the first rainfall in September. Cistus incanus L. and Arbutus unedo L. had the highest PN during the favourable period [15.5±5.2 mol(CO2) m–2s–1, mean value], 79 % decrease during drought, and a lower recovery capacity (on an average 54 %). Quercus ilex L., Phillyrea latifolia L., and Pistacia lentiscus L. had an intermediate PN in the favourable period [9.2±1.3 mol(CO2) m–2s–1, mean value], a lower reduction during drought (on an average 63 %), and a range from 62 % (Q. ilex and P. latifolia) to 39 % (P. lentiscus) of recovery capacity. The Mediterranean species had higher decrease in PN and stomatal conductance during drought and a higher recovery capacity than the pre-Mediterranean species. Among the pre-Mediterranean species, P. latifoliahad the best adaptation to long drought periods also by its higher leaf mass per area (LMA) which lowered leaf temperature thus decreasing transpiration rate during drought. Moreover, its leaf longevity determined a more stable leaf biomass during the year. Among the Mediteranean species, R. officinalis was the best adapted species to short drought periods by its ability to rapidly recover. Nevertheless, R. officinalis had the lowest tolerance to high temperatures by its PN dropping below half its maximum value when leaf temperature was over 33.6°C. R. officinalismay be used as a bioindicator species of global change.This revised version was published online in March 2005 with corrections to the page numbers.  相似文献   

18.
Laurencia brongniartii is usually found at depths below 4 m, but can be found in shallow subtidal areas in crevices and on the walls of a coral reef in Amami Oshima Island, Kagoshima Prefecture, Japan, where irradiances were significantly lower than those at similar depths in open water. In preparation for the possible cultivation of this species for its antibiotic compounds, the effects of temperature and irradiance on photosynthesis and growth were measured. Photosynthesis and growth rates of L. brongniartii explants were highest at 26 and 28 °C, which closely corresponded to temperatures found during August to late December when it was most abundant. The estimated maximum photosynthesis rate (P max) was 4.41 mol photon m–2 s–1 at 26 °C and 4.07 mol photon m–2 s–1 at 28 °C. Saturating irradiance occurred at 95 mol photon m–2 s–1 at 26 °C and 65 mol photon m–2 s–1 at 28 °C. In contrast, growth experiments at 41.7 mol photon m–2 s–1 caused bleaching of explants and the maximum growth rate observed during the study was 3.02 ± 0.75% day–1 at 28 °C and 25 mol photon m–2 s–1. The difference in the saturating irradiance for photosynthesis and the irradiance that caused bleaching in growth experiments suggests that long-term exposure to high irradiance was detrimental and should be addressed before the initiation of large scale cultivation.  相似文献   

19.
Summary Permeabilities of ammonia (NH3), methylamine (CH3NH2) and ethylamine (CH3CH2NH2) in the cyanobacterium (cyanophyte)Synechococcus R-2 (Anacystis nidulans) have been measured. Based on net uptake rates of DCMU (dichlorophenyldimethylurea) treated cells, the permeability of ammonia was 6.44±1.22 m sec–1 (n=13). The permeabilities of methylamine and ethylamine, based on steady-state14C labeling were more than ten times that of ammonia (P methylamine=84.6±9.47 m sec–1 (76),P ethylamine=109±11 m sec–1 (55)). The apparent permeabilities based on net uptake rates of methylamine and ethylamine uptake were significantly lower, but this effect was partially reversible by ammonia, suggesting that net amine fluxes are rate limited by proton fluxes to an upper limit of about 700 nmol m–2 sec–1. Increasing concentrations of amines in alkaline conditions partially dissipated the pH gradient across the cell membrane, and this property could be used to calculate the relative permeabilities of different amines. The ratio of ethylamine to methylamine permeabilities was not significantly different from that calculated from the direct measurements of permeabilities; ammonia was much less effective in dissipating the pH gradient across the cell membrane than methylamine or ethylamine. An apparent permeability of ammonia of 5.7±0.9 m sec–1 could be calculated from the permeability ratio of ammonia to methylamine and the experimentally measured permeability of methylamine. The permeability properties of ammonia and methylamine are very different; this poses problems in the interpretation of experiments where14C-methylamine is used as an ammonia analogue.  相似文献   

20.
The regulation of Crassulacean acid metabolism (CAM) in the fern Pyrrosia piloselloides (L.) Price was investigated in Singapore on two epiphytic populations acclimated to sun and shade conditions. The shade fronds were less succulent and had a higher chlorophyll content although the chlorophyll a:b ratio was lower and light compensation points and dark-respiration rates were reduced. Dawn-dusk variations in titratable acidity and carbohydrate pools were two to three times greater in fronds acclimated to high photosynthetically active radiation (PAR), although water deficits were also higher than in shade fronds. External and internal CO2 supply to attached fronds of the fern was varied so as to regulate the magnitude of CAM activity. A significant proportion of titratable acidity was derived from the refixation of respiratory CO2 (27% and 35% recycling for sun and shade populations, respectively), as measured directly under CO2-free conditions. Starch was shown to be the storage carbodydrate for CAM in Pyrrosia, with a stoichiometric reduction of C3-skeleton units in proportion to malic-acid accumulation. Measurements of photosynthetic O2 evolution under saturating CO2 were used to compare the light responses of sun and shade fronds for each CO2 supply regime, and also following the imposition of a photoinhibitory PAR treatment (1600 mol·m-2·s-1 for 3 h). Apparent quantum yield declined following the high-PAR treatment for sun- and shade-adapted plants, although for sun fronds CAM activity derived from respiratory CO2 prevented any further reduction in photosynthetic efficiency. Recycling of respiratory CO2 by shade plants could only partly prevent photoinhibitory damage. These observations provide experimental evidence that respiratory CO2 recycling, ubiquitous in CAM plants, may have developed so as to alleviate photoinhibition.Abbreviations and symbols CAM Crassulacean acid metabolism - FM maximal photosystem II fluorescence - FT terminal steady-state fluorescence - PAR photosynthetically active radiation, 400–700 nm - H+ (dawn-dusk) variation in titratable acidity  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号