首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A recombinant gene expressing a Cry1Ac-GFP fusion protein with a molecular mass of approximately 160 kD was constructed to investigate the expression of cry1Ac, the localization of its gene product Cry1Ac, and its role in crystal development in Bacillus thuringiensis. The cry1Ac-gfp fusion gene under the control of the cry1Ac promoter was cloned into the plasmid pHT304, and this construct was designated pHTcry1Ac-gfp. pHTcry1Ac-gfp was transformed into the crystal-negative strain, HD-73 cry, and the resulting strain was named HD-73(pHTcry1Ac-gfp). The gfp gene was then inserted into the large HD-73 endogenous plasmid pHT73 and fused with the 3′ terminal of the cry1Ac gene by homologous recombination, yielding HD-73Φ(cry1Ac-gfp)3534. Laser confocal microscopy and Western blot analyses showed for the first time that the Cry1Ac-GFP fusion proteins in both HD-73(pHTcry1Ac-gfp) and HD-73Φ(cry1Ac-gfp)3534 were produced during asymmetric septum formation. Surprisingly, the Cry1Ac-GFP fusion protein showed polarity and was located near the septa in both strains. There was no significant difference between Cry1Ac-GFP and Cry1Ac in their toxicity to Plutella xylostella larvae.  相似文献   

2.
Bacillus thuringiensis strain BtMC28 was isolated from the soil sample in China. Two novel crystal protein genes were found by using the PCR-RFLP method. Moreover, the full-length sequences of two novel genes were obtained by a single oligonucleotide nested (SON)-PCR upstream and downstream strategy. Sequence analysis revealed that one gene encoded a polypeptide of 673 amino acid residues with a molecular mass of 76.3 kDa, 38% identical to Cry10Aa, and the other encoded a polypeptide of 687 amino acid residues with a molecular mass of 77.1 kDa, 74% identical to Cry30Aa. These two novel crystal protein genes were designated as cry54Aa1 and cry30Fa1 by Bt Insecticidal Crystal Proteins Nomenclature Committee, respectively. The Cry54Aa1 and Cry30Fa1 proteins retained five conserved regions commonly found in the existing Cry proteins. Cry54Aa1 protein exhibited insecticidal activities against Laphygma exigua (Lepidoptera), Helicoverpa armigera (Lepidoptera), and Aedes aegypti (Diptera) when its encoding gene was expressed in an Escherichia coli host strain. The authors, Furong Tan and Jun Zhu contributed equally to this work.  相似文献   

3.
Two novel cry8-type genes, cry8Ea1 and cry8Fa1, obtained from a Holotrichia parallela–specific Bacillus thuringiensis strain, BT185, were characterized. Findings showed that cry8Ea1 and cry8Fa1 encoded polypeptides of 1164 and 1174 amino acid residues, respectively. The deduced amino acid sequences of both Cry8Ea1 and Cry8Fa1 polypeptides are the most similar to that of Cry8Ba1. Eight conserved blocks (blocks 1–8) exist in Cry8Ea1 and Cry8Fa1 polypeptides compared with known Cry proteins. Cry8Ea1 and the Cry8Fa1 toxins could form spheric crystals when they were expressed in the acrystalliferous mutant strain HD73. The spores and crystals from the recombinant strain containing cry8Ea1 were toxic to Holotrichia parallela, with an LC50 of 0.0875 × 108 colony-forming units (CFU)/g. However, Cry8Fa1 expressed in the recombinant strain was not toxic to H. parallela, Anomala corpulenta, or H. oblita.  相似文献   

4.
The crystal morphology and the profiles of genes encoding protein toxins (Cry and Cyt) were analyzed in 12 Bacillus thuringiensis strains isolated during epizootics in laboratory culture lines of Cydia pomonella, 2 isolates cultured from Leucoma salicis larvae, and 9 reference strains. Epizootic isolates produced crystals of the same bipyramidal shape; however, they revealed a variety of number and type of cry genes. Genes cry1I, cry2Ab, and cry9B were the most frequently observed in epizootic strains. Gene cry1I was noted in of 50% epizootic isolates. Eighty-three percent of them harbored gene cry2Ab. Gene cry9B was found for 42% of strains isolated during epizootics. Three isolates showed the largest number of cry genes and their variety; hence, they were chosen for the toxicity assay of their crystals and spores on C. pomonella larvae. One of them had approximately sixfold higher insecticidal activity than the reference strain B. thuringiensis subsp. kurstaki BTK STANDARD.  相似文献   

5.
Bacillus thuringiensis (Bt) Berliner is a promising agent for microbial control of agriculturally and medically important insects. This study aimed at searching for Bt strains encoding Cry proteins that act more efficiently against fall armyworm. Thirty Bt strains were isolated from soil samples in Pernambuco State and evaluated through bioassays. Among these, strain I4A7 was the most efficient against the fall armyworm, Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae), and thus it was characterized by biochemical sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) and molecular (polymerase chain reaction (PCR) and sequencing reaction) methods. The protein pattern of this strain on a SDS–PAGE was similar to that of B. thuringiensis israelensis (Bti). Moreover, I4A7 cry DNA sequence showed high identity (99–100%) to genes cry4Aa, 4Ba, 10Aa, 11Aa, cyt1Aa and cyt2B from Bti. The toxicity of the newly isolated Bti-like strain upon S. frugiperda should be considered as this strain might be used in combination with other Bt strains, such as B. thuringiensis var. kurstaki (Btk). Handling Editor: Helen Roy.  相似文献   

6.
The cry8C-type gene designated cry8Ca2, which was cloned and sequenced from a Bacillus thuringiensis isolate HBF-1 in China, consisted of an open reading frame of 3483 bp encoding a protein of 1160 amino-acid residues. Sequence analysis showed that the Cry8Ca2 protoxin of 130.5 kDa had 99.9% sequence homology with the previously reported Cry8Ca1 protein, with one mismatch between the two amino-acid sequences. When the Cry8Ca2 toxin was expressed in a crystal-negative strain of B. thuringiensis (HD-73), elliptical crystals were produced. Cell extracts from this recombinant strain showed insecticidal activity against Anomala corpulenta larva. Mutant cry8Ca2 genes, produced by polymerase chain reaction amplification with Taq DNA polymerase, were used to develop recombinant B. thuringiensis strains. Mutants producing higher levels of insecticidal activity were identified by bioassay. Thirty-five mutants forming crystals were characterized, and two of them showed significantly increased insecticidal activity against A. corpulenta larva. The 50% lethality concentrations (LC50) of the two mutants were 0.2334 × 108 and 0.2591 × 108 colony-forming units g−1, considerably lower than the LC50 of the wild-type strain HBF-1 (0.9583 × 108 CFU g−1) and that of B. thuringiensis serovar japonensis strain Buibui (1.0752 × 108 CFU g−1).  相似文献   

7.
Cry4Aa produced by Bacillus thuringiensis is a dipteran-specific toxin and is, therefore, of great interest for developing a bioinsecticide to control mosquitoes. However, the expression of Cry4Aa in Escherichia coli is relatively low, which is a major disadvantage in its development as a bioinsecticide. In this study, to establish an effective production system, a 1,914-bp modified gene (cry4Aa-S1) encoding Cry4Aa was designed and synthesized in accordance with the G + C content and codon preference of E. coli genes without altering the encoded amino acid sequence. The cry4Aa-S1 gene allowed a significant improvement in expression level, over five-fold, compared to that of the original cry4Aa gene. The product of the cry4Aa-S1 gene showed the same level of insecticidal activity against Culex pipiens larvae as that from cry4Aa. This suggested that unfavorable codon usage was one of the reasons for poor expression of cry4Aa in E. coli, and, therefore, changing the cry4Aa codons to accord with the codon usage in E. coli led to efficient production of Cry4Aa. Efficient production of Cry4Aa in E. coli can be a powerful measure to prepare a sufficient amount of Cry4Aa protein for both basic analytical and applied researches.  相似文献   

8.
A new polymerase chain reaction–restriction fragment length polymorphism method for the identification of cry8-type genes from Bacillus thuringiensis has been established by designing a pair of new universal primers. By this method, a novel gene, cry8Ga1, encoding a polypeptide of 1,157 amino acids with a deduced molecular mass of 131.2 kDa was identified and cloned from B. thuringiensis HBF-18. Recombinant B. thuringiensis strain HD8G, harboring cry8Ga1, has insecticidal activity against larvae of Melolonthidae pests: Holotrichia oblita and Holotrichia parallela. This is the first report of a Cry toxin that has insecticidal activity to Melolonthidae pest H. oblita.  相似文献   

9.
A fusion gene was constructed by combining the cry1Ac gene of Bacillus thuringiensis strain 4.0718 with a neurotoxin gene, hwtx-1, which was synthesized chemically. In this process, an enterokinase recognition site sequence was inserted in frame between two genes, and the fusion gene, including the promoter and the terminator of the cry1Ac gene, was cloned into the shuttle vector pHT304 to obtain a new expression vector, pXL43. A 138-kDa fusion protein was mass-expressed in the recombinant strain XL002, which was generated by transforming pXL43 into B. thuringiensis acrystalliferous strain XBU001. Quantitative analysis indicated that the expressed protein accounted for 61.38% of total cellular proteins. Under atomic force microscopy, there were some bipyramidal crystals with a size of 1.0 × 2.0 μm. Bioassay showed that the fusion crystals from recombinant strain XL002 had a higher toxicity than the original Cry1Ac crystal protein against third-instar larvae of Plutella xylostella, with an LC50 (after 48 h) value of 5.12 μg/mL. The study will enhance the toxicity of B. thuringiensis Cry toxins and set the groundwork for constructing fusion genes of the B. thuringiensis cry gene and other foreign toxin genes and recombinant strains with high toxicity. LiQiu Xia and XiaoShan Long contributed equally to this work.  相似文献   

10.
A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method for identification of cry2 genes from Bacillus thuringiensis (Bt) was established. Strains from different sources of Argentina were analyzed to study the distribution of cry2 genes. The results showed that cry2Aa/cry2Ab profile was the most abundant irrespective of source and represented 56 of 59 Bt isolates (94.9%). Three different cry2 profiles were found in this collection, one of which was novel.  相似文献   

11.
12.
The cry2Aa and cry2Ab genes from a Brazilian Bacillus thuringiensis strain were introduced into the genome of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) in order to evaluate the heterologous proteins expression in insect cells and their toxicity to different insects. The recombinant viruses (vAcCry2Aa and vSynCry2Ab) were amplified in Trichoplusia ni (BTI-Tn5B1-4) cells and used to infect Spodoptera frugiperda larvae. Total extracts from S. frugiperda infected with the recombinant viruses were analysed by SDS-PAGE, which detected the presence of polypeptides around 65 kDa. Cuboid-shaped protein crystals were observed in insect extracts by light and scanning electron microscopy. Bioassays, using the heterologous proteins showed toxicity against second instar A. gemmatalis larvae (Cry2Aa) with a LC50 of 1.03 μg/ml and second instar S. frugiperda larvae (Cry2Ab) with a LC50 of 3.45 μg/ml. No toxic activity was detected for Aedes aegypti and Culex quinquenfaciatus.  相似文献   

13.
Nucleotide sequence encoding the truncated insecticidal Cry1Ca1 protein from Bacillus thuringiensis was extensively modified based on the codon usage of rice genes. The overall G + C contents of the synthetic cry1Ca1 coding sequence were raised to 65% with an additional bias of enriching for G and C ending codons as preferred by monocots. The synthetic gene was introduced into the Chinese japonica variety, Xiushui 11, by Agrobacterium-mediated transformation. Transgenic rice plants harboring this gene were highly resistant to Chilo suppressalis and Spodoptera litura larvae as revealed by insect bioassays. High levels of Cry1Ca1 protein were obtained in the leaves of transgenic rice, which were effective in achieving 100% mortality of S. litura and C. suppressalis larvae. The levels of Cry1Ca1 expression in the leaves of these transgenic plants were up to 0.34% of the total soluble proteins. The larvae of C. suppressalis and S. litura could consume a maximum of 1.89  and 4.89 mm2 of transgenic leaf area whereas the consumption of non-transgenic leaves by these larvae was significantly higher; 58.33 and 61.22 mm2, respectively. Analysis of R1 transgenic plants indicated that the cry1Ca1 was inherited by the progeny plants and provided complete protection against C. suppressalis and S. litura larvae.  相似文献   

14.
Parasporins represent a new functional class of Cry (crystal protein) toxins produced by the bacterium Bacillus thuringiensis (Bt). Unlike Cry toxins that demonstrate activity mainly against some insect cells, parasporins are characterized as being non-hemolytic, yet capable of preferentially killing some human cancer cells. Globally, six different parasporin types, PS1–PS6, based on protein sequence homology, have been identified in only four countries (Japan, Vietnam, India, and Canada). Herein we report the results of a screening study of 160 Bt isolates collected from the Caribbean island of Trinidad. One isolate (strain 64-1-94) was shown to kill human cancer cells and to contain one ps6 and two ps1 parasporin genes. The two ps1 genes were located approximately 6 kb apart from each other, sharing a similar spatial arrangement, and high sequence homology, with two plasmid-located ps1 genes, ps1Aa6 and ps1Ad1, recently isolated from a Japanese strain. Evidence is also presented that a parasporin gene reported previously for a Canadian strain, ps1Aa2, is most likely derived from a recombination event between these same two genes found in the Trinidadian and Japanese strains. Notably, all three strains share a ps6 parasporin gene, presumably located on a separate plasmid. These data suggest that the global population of ps1 genes may be have originated from a single pair of parasporin genes. Given the large geographical distance between the collection sites, which are located on both continental land masses and islands at sea, ps1 genes are able to retain a remarkable level of homology not easily explained.  相似文献   

15.
16.
Vegetable Indian mustard (Brassica juncea cv. “Green Wave”) plants that control Plutella xylostella (diamondback moth) (DBM) were produced by introduction of one or two Bacillus thuringiensis (Bt) genes. A cry1Ac Bt gene associated with the nptII gene for kanamycin selection or a cry1C Bt gene with the hpt gene for hygromycin selection was introduced individually through Agrobacterium-mediated transformation of seedling explants. A cry1C line was then transformed with the cry1Ac gene to produce pyramided cry1Ac + cry1C plants. Sixteen cry1C, five cry1Ac, and six cry1Ac + cry1C plants were produced. PCR and Southern analyses confirmed the presence of the cry1C, cry1Ac or pyramided cry1Ac + cry1C genes in the Indian mustard genome. ELISA analysis showed that production of Bt proteins varied greatly among individual transgenic plants, ranging from undetectable to over 1,000 ng Bt/mg total soluble protein. The levels of the Bt proteins were correlated with the effectiveness of control of diamondback moth (DBM) larvae. Insect bioassays indicated that both the cry1C and cry1Ac plants were toxic to susceptible DBM. The cry1C plants also controlled Cry1A-resistant DBM while cry1Ac plants controlled Cry1C-resistant DBM, and the pyramided cry1Ac + cry1C plants effectively controlled all three types of DBM. These Bt-transgenic plants could be used either for direct control of DBM and other lepidopteran insect pests or for tests of “dead-end” trap crops as protection of high value non-transgenic crucifer vegetables such as cabbage.  相似文献   

17.
We characterized a novel Bacillus thuringiensis isolate native to Argentina (FCC 41) that exhibits a mosquitocidal activity higher than the reference B. thuringiensis subsp. israelensis. This isolate shows a rounded crystal harboring two major proteins of about 70–80 kDa. Moreover, we cloned and sequenced the encoding gene of one of the crystal proteins (Cry) consisting of an open reading frame of 2061 pb that encodes a protein of 687 amino acid residues. The deduced amino acid sequence has a predicted relative molecular mass of 78 kDa and is 52% and 45% identical to those of the reported Cry24Aa and Cry24Ba sequences, respectively. The novel Cry protein was designated as Cry24Ca, which also exhibited larvicidal activity against Aedes aegypti when its encoding gene was expressed in an Escherichia coli host strain.  相似文献   

18.
We have isolated a strain of Bacillus thuringiensis (Bt) from Indian soil samples that was shown to be toxic to Achaea janata larvae. The isolate, named B. thuringiensis DOR4, serotypically identified with the standard subspecies kurstaki (H3a3b3c) and produced bipyramidal inclusions along with an amorphous type. Although the plasmid pattern of DOR4 was different from that of the reference strain, a crystal protein profile showed the presence of two major bands (130 and 65 kDa) similar to those of Bt subsp. kurstaki HD-1. To verify the cry gene content of DOR4, triplex PCR analysis was performed; it showed amplification of the cry1C gene in addition to cry1Aa, cry1Ac, cry2A, and cry2B genes, but not the cry1Ab gene. RT-PCR analysis showed the expression of cry1Aa and cry1Ac genes. In vitro proteolysis of DOR4 protoxin with midgut extract generated products of different sizes. Zymogram analysis of DOR4 protoxin as substrate pointed to a number of distinct proteases that were responsible for activation of protoxins. Furthermore, toxin overlay analysis revealed the presence of multiple toxin-binding proteins in midgut epithelium. Based on all these characterizations, we suggest that the Bt DOR4 strain can be exploited for an A. janata control program.  相似文献   

19.
Insecticidal proteins produced by strains of Bacillus thuringenesis are specific toward target pests. One of the Bt proteins, Cry 1Ac has been used successfully for controlling crop predation by polyphagous pests Helicoverpa armigera. Structurally, Bt proteins consist of three domains; domain I and III are fairly homologous in various Bt proteins while domain II is hypervariable. The hypervariable domain II is believed to be responsible for specificity toward target pest. Successful deployment of Bt proteins requires knowledge of its specificity toward the insect. Various Bt proteins have been characterized for activity against coleopteran pests. Some Bt proteins of class Cry6 have been found to be active against potato weevil. We have evaluated the activity of Cry6B protein (BGSC-4D8) against lucerne weevil, Hypera postica, which is a major pest of forage crop Medicago sativa. Results revealed that the purified Cry6B protein is significantly active against the coleopteran pest with LC50 value 280 ng/μl. The leaves coated with the purified Cry6 toxin were three times less damaged as compared with the negative control.  相似文献   

20.
Characterization of cry gene contents can help to predict the insecticidal activities of Bacillus thuringiensis isolates and in the searching of new cry genes. PCR-Single-strand conformation polymorphism (SSCP) profiling and sequencing of the highly variable cry gene regions were used to characterize cry gene content of B. thuringiensis strain ly4a3. The highly variable regions with about 1100 bp in sizes were amplified using a degenerate primer pair for cry genes, OL2(d) and OL5(r). A library of the PCR product was constructed, and all white colonies were subjected to PCR using another degenerate primer pair for cry genes, OL3(d) and OL5(r), with products about 250 bp in sizes. Two different profiles were observed based on SSCP profiling for the PCR products. The cry genes in the two corresponding colonies were sequenced and their deduced amino acids showed high identities to Cry1Ab (84.5%∼98.4%) and Cry1I (88.78%∼98.4%), respectively. This method allows the quick characterization of cry gene content of B. thuringiensis isolates and the detection of new cry genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号