首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
We determined if the photoperiod regime affects the thermal biology of the tadpoles of Odontophrynus occidentalis from the Monte desert (Argentina). Variables measured were: selected body temperature (Tsel), critical thermal maximum (CTmax) and thermal critical minimum (CTmin). The tadpoles were acclimated to 15±2 °C for 15 days, and they were divided in three experimental groups: 24 h light, 24 h dark and 12 h/12 h light/dark. Data indicate that the photoperiod had an important effect upon the thermal biology of the Odontophrynus occidentalis tadpoles. The treatment group exposed to 24 h of light showed the highest selected temperature and thermal extremes. We suggest that changes in photoperiod may allow these organisms to anticipate the future changes in their thermal environment, as longer days usually involve higher temperatures.  相似文献   

2.
Daily light and temperature cycles entrain adult eclosion rhythms in many insect species, but little is known about their interaction. We studied this problem in the onion fly, Delia antiqua. Pupae were subjected to various combinations of a photoperiod of 12L:12D and thermoperiods. The thermoperiods consisted of 12 h warm phase (W) and 12 h cool phase (C), giving a mean temperature of 25 °C with different temperature steps of 8, 4 and 1 °C. As the phase relation of the two Zeitgebers was varied, the phase of eclosion rhythm was shifted, depending on the phase angle with the light cycle and the amplitude of the temperature cycle. When the temperature step in the thermoperiod was 8 °C (WC 29:21 °C), the eclosion rhythm was entrained mainly to thermoperiod rather than photoperiod. In the regime with a 4 °C temperature step (WC 27:23 °C), both thermoperiod and photoperiod affected eclosion rhythm, and a phase jump of the eclosion rhythm occurred when the warm phase of thermoperiod was delayed 15-18 h from light-on. In regimes with a 1 °C temperature step (WC 25.5:24.5 °C), the eclosion rhythm was completely entrained to photoperiod. The observed interacting effect of light and temperature cycle on the eclosion rhythm in D. antiqua can be explained by the two-oscillator model proposed by Pittendrigh and Bruce (1959).  相似文献   

3.
The rice stem borer, Chilo suppressalis, enters facultative diapause as fully grown larvae in response to short-day conditions during the autumn. Our results showed that the critical night length for diapause induction in C. suppressalis was between 10 h 22 min and 10 h 45 min at 22, 25 and 28 °C, 11 h 18 min at 31 °C, and between 10 h 5 min and 10 h 20 min under field conditions (average temperature ranged from 27.2 to 30.7 °C). The diapause incidence declined in ultra-long nights (18-22 h scotophases) and DD, and increased in ultra-short nights (2-6 h scotophases) and LL. Moreover, we found that the third instar was the stage most sensitive to the photoperiod, and night length played an essential role in the initiation of diapause. Night-interruption experiments with a 1-h light pulse at LD 12:12 (light 12:dark 12) exhibited two troughs of diapause inhibition, with one occurring in early scotophase and the other in late scotophase. Field observations for six years showed that most larvae entered winter diapause in August in response to declining day lengths, despite the high temperatures prevailing during August. By periodically transferring the field-collected overwintering larvae to different photoperiods and temperatures, the results showed that photoperiod had a significant influence on diapause development during the early phase of diapause, while high temperature significantly accelerated the termination of larval diapause.  相似文献   

4.
Overwintering diapause in Helicoverpa armigera, a multivoltine species, is controlled by response to photoperiod and temperature. Photoperiodic responses from 5 different geographical populations showed that the variation in critical photoperiod for diapause induction was positively related to the latitudinal origin of the populations at 20, 22 and 25 °C. Diapause response to photoperiod and temperature was quite different between northern and southern populations, being highly sensitive to photoperiod in northern populations and temperature dependence in southern populations. Diapause pupae from southern population showed a significantly shorter diapause duration than from northern-most populations when they were cultured at 20, 22, 25, 28 and 31 °C; by contrast, overwintering pupae from southern populations emerged significantly later than from northern populations when they were maintained in natural conditions, showing a clinal latitudinal variation in diapause termination. Diapause-inducing temperature had a significant effect on diapause duration, but with a significant difference between southern and northern populations. The higher rearing temperature of 22 °C evoked a more intense diapause than did 20 °C in northern populations; but a less intense diapause in southern population. Cold exposure (chilling) is not necessary to break the pupal diapause. The higher the temperature, the quicker the diapause terminated. Response of diapause termination to chilling showed that northern populations were more sensitive to chilling than southern population.  相似文献   

5.
Effects of photoperiod and cold exposure on diapause termination, post-diapause development and reproduction in Loxostege sticticalis were examined. Larvae were reared at diapause inducing condition (22 °C, L:D 12:12) consistently or transferred to long day photoperiod (L:D 16:8) and darkness (L:D 0:24) respectively, after entering into diapause. Diapause was terminated in approximately 40% of the larvae after 36 days, and no significant differences were observed between photoperiods, suggesting larval diapause was terminated spontaneously without being induced by photoperiods. Cold exposure significantly hastened diapause termination. The diapause termination incidence increased significantly with peaks of 98% at both 5 °C and 0 °C exposure for 30 days, as compared to 42% in controls not exposed to cold, while the mortality and number of days required for diapause termination decreased dramatically. The optimal low temperature exposure periods under 5 °C or 0 °C were 20 days and 30 days, showing a higher termination incidence and shorter time for diapause termination. This suggests that the low temperatures in winter play an important role in diapause termination under natural conditions. The threshold temperatures for post-diapause development in prepupae and pupae were 9.13 °C and 10.60 °C respectively, with corresponding accumulations of 125 and 200 degree-days. Adults that experienced larval diapause significantly delayed their first oviposition, oviposition period was prolonged, and the lifetime number of eggs laid was decreased, however both males and females have significantly longer longevity. The field validation of diapause termination, the degree-days model, and the relationship between diapause and migration in L. sticticalis were also discussed.  相似文献   

6.
Perkinsus marinus is a major cause of mortality in eastern oysters along the Gulf of Mexico and Atlantic coasts. It is also well documented that temperature and salinity are the primary environmental factors affecting P. marinus viability and proliferation. However, little is known about the effects of combined sub-optimal temperatures and salinities on P. marinus viability. This in vitro study examined those effects by acclimating P. marinus at three salinities (7, 15, 25 ppt) to 10 °C to represent the lowest temperatures generally reached in the Gulf of Mexico, and to 2 °C to represent the lowest temperatures reached along the mid-Atlantic coasts and by measuring changes in cell viability and density on days 1, 30, 60 and 90 following acclimation. Cell viability and density were also measured in 7 ppt cultures acclimated to each temperature and then transferred to 3.5 ppt. The largest decreases in cell viability occurred only with combined low temperature and salinity, indicating that there is clearly a synergistic effect. The largest decreases in cell viability occurred only with both low temperature and salinity after 30 days (3.5 ppt, 2 °C: 0% viability), 60 days (3.5 ppt, 10 °C: 0% viability) and 90 days (7 ppt, 2 °C: 0.6 ± 0.7%; 7 ppt, 10 °C: 0.2 ± 0.2%).  相似文献   

7.
The cgt gene encoding α-cyclodextrin glycosyltransferase (α-CGTase) from Paenibacillus macerans strain JFB05-01 was expressed in Escherichia coli as a C-terminal His-tagged protein. After 90 h of induction, the activity of α-CGTase in the culture medium reached 22.5 U/mL, which was approximately 42-fold higher than that from the parent strain. The recombinant α-CGTase was purified to homogeneity through either nickel affinity chromatography or a combination of ion-exchange and hydrophobic interaction chromatography. Then, the purified enzyme was characterized in detail with respect to its cyclization activity. It is a monomer in solution. Its optimum reaction temperature is 45 °C, and half-lives are approximately 8 h at 40 °C, 1.25 h at 45 °C and 0.5 h at 50 °C. The recombinant α-CGTase has an optimum pH of 5.5 with broad pH stability between pH 6 and 9.5. It is activated by Ca2+, Ba2+, and Zn2+ in a concentration-dependent manner, while it is dramatically inhibited by Hg2+. The kinetics of the α-CGTase-catalyzed cyclization reaction could be fairly well described by the Hill equation.  相似文献   

8.
Dermal glands (sensilla sagittiformia) secrete when brown dog ticks, Rhipicephalus sanguineus, are mechanically disturbed, presumably as a defensive mechanism. Recently, we observed that these glands secrete due to the pressure stimulation of engorgement. In this study, we examine how dermal gland secretion alters the physiology of R. sanguineus, particularly if this secretion is an important mechanism during blood feeding. The ability of ticks to retain water was not modified by dermal gland secretion, but heat tolerance was enhanced. Short-term heat shock was improved slightly (1 h at 50 °C to 1 h at 56 °C) and featured reduced injury responses and greater recovery after heat shock. When exposed to their host body temperature (37 °C) for prolonged periods, individuals that had secreted survived over 1 week longer than individuals that did not secrete. Dorsal application of squalene, the main component of dermal gland secretion, did not increase temperature tolerance, suggesting that the act of secreting rather than the physical properties of the secretion itself is responsible for the increase in heat tolerance. Based on our results, dermal gland secretion may be an essential mechanism in certain tick species (Amblyomma, Dermacentor, Hyalomma, Rhipicephalus, but not Ixodes) for tolerating body temperature and not succumbing to heat stress during the extended time periods of feeding on a mammalian host, serving as a mechanism to prevent heat damage from the host during feeding.  相似文献   

9.
To assess the potential gestational effects on post-hatching morphology, locomotor performance, and early growth rate, we maintained gravid Eremias multiocellata under four constant treatment temperatures (25, 29, 31, and 35 °C). Ambient temperature had significant effects on some morphometric traits of offspring, including tail length, head size, forelimb length and hindlimb length, but not on body mass or snout-vent length. The data of females' body temperature indirectly support the maternal manipulation hypothesis. Juvenile E. multiocellata had better locomotor performance and faster early growth rate at 29 °C than at the other three treatment temperatures (25, 31, and 35 °C). Our results suggest that gestation temperature may be optimized at 29 °C for E. multiocellata from Tianzhu, Gansu Province, China.  相似文献   

10.
This study reports body temperature regulation (Tb) and circadian rhythms of undisturbed feral cats in their natural environment in Australia over a continuous period of three months. It furthermore compares these data with Tb data collected of feral cats, after a period of one year in captivity. In free-ranging, undisturbed feral cats, a distinct robust, regular circadian rhythm (strength of rhythm) (21–59.8%) with higher body temperature in the dark (active) phase (mean±STD: 39.2±0.27 °C) and significantly lower body temperature during the light (rest) phase (mean±STD: 38.1±0.47 °C, P<0.001) was found. The acrophase (time of the daily peak) of the three free-ranging cats investigated varied from 22:34 h (LG 2), 22:57 h (LG 1) to 23:17 h (LG 3). In the course of captivity, the cats’ circadian rhythms shifted from nocturnality to a diurnal tendency, with an acrophase ranging from 12:00 h (MtK 2), 12:23 h (MtK 1) to 16:25 h (MtK 3). This change in rhythmicity was accompanied by a significant decrease in robustness (1.7–5.2%) and mean body temperature levels (37.77±0.34 °C) as well as minima and maxima (36–39 °C versus 35.5–41.9 °C, free-ranging cats) of three captive cats, resulting in a significant shift towards a decrease in amplitude.  相似文献   

11.
We examined mortality and feeding inhibition response of Lymantria dispar L. (Lepidoptera: Lymantriidae) larvae to ingested doses of Bacillus thuringiensis subsp. kurstaki as a function of dose, instar and temperature. We developed generalized (logistic) linear mixed models and a mixture survival model, commonly used in medical statistics, to analyze the complex data set. We conducted bioassays of Foray 48B with larvae from the NJSS laboratory stock, using droplet imbibing or force-feeding to ensure dose ingestion. The dose causing mortality in 50% of the test population (LD50) under standard test conditions (22 °C) ranged from 0.019 International Units (IU)/larva for first instar larvae (L1) to 1.6 IU/larva for L4. Temperature affected larval mortality in two ways. Mortality occurred sooner and progressed more rapidly with increasing temperature (13-25 °C) at each dose level and instar, while the maximum level of mortality attained by each instar decreased with increasing rearing temperature. The mechanisms underlying this effect are being investigated. Larvae that survived exposure to B. thuringiensis resumed feeding after a period that was dependent on instar, dose, and temperature. The equations describing observed mortality and feeding recovery responses were used to construct a simulation model, which was able to predict both processes, and which forms the basis for a process-oriented model that can be used as a decision support tool in aerial sprays.  相似文献   

12.
Facultative diapause, a strategy that allows insects to initiate additional generations when conditions are favorable or to enter diapause when they are not, has a profound effect on the ecology and evolution of species. Most previous studies have concentrated on the role of photoperiod and temperature in inducing facultative diapause in insects. In contrast, here we studied pupal diapause mediated by larval host plants in the cotton bollworm Helicoverpa armigera, and confirmed that pupal weight is a critical factor. Two groups of third instar H. armigera larvae, kept at 25 °C with L:D = 8:16 and 20 °C with photoperiod of L:D = 8:16, respectively, were fed on six host plants and on artificial diet (as a control) to determine how larval host plants affect diapause incidence and related traits (such as pupal weight and developmental duration). The data showed larval host plants affected diapause incidence significantly and the effects could be masked by low temperature. Further analysis showed that pupal size, not the length of the sensitive stage, affected the decision to enter diapause. In a further experiment, third-instar to final-stage larvae deprived of artificial diet for 2 days demonstrated a direct relationship between pupal weight and diapause incidence. These results suggest that larval host plants, by affecting pupal size, may influence diapause occurrence in H. armigera. This has important adaptive significance for both over-wintering survival and the possibility for completing an additional generation.  相似文献   

13.
This study reports temperature effects on paralarvae from a benthic octopus species, Octopus huttoni, found throughout New Zealand and temperate Australia. We quantified the thermal tolerance, thermal preference and temperature-dependent respiration rates in 1-5 days old paralarvae. Thermal stress (1 °C increase h−1) and thermal selection (∼10-24 °C vertical gradient) experiments were conducted with paralarvae reared for 4 days at 16 °C. In addition, measurement of oxygen consumption at 10, 15, 20 and 25 °C was made for paralarvae aged 1, 4 and 5 days using microrespirometry. Onset of spasms, rigour (CTmax) and mortality (upper lethal limit) occurred for 50% of experimental animals at, respectively, 26.0±0.2 °C, 27.8±0.2 °C and 31.4±0.1 °C. The upper, 23.1±0.2 °C, and lower, 15.0±1.7 °C, temperatures actively avoided by paralarvae correspond with the temperature range over which normal behaviours were observed in the thermal stress experiments. Over the temperature range of 10 °C-25 °C, respiration rates, standardized for an individual larva, increased with age, from 54.0 to 165.2 nmol larvae−1 h−1 in one-day old larvae to 40.1-99.4 nmol h−1 at five days. Older larvae showed a lesser response to increased temperature: the effect of increasing temperature from 20 to 25 °C (Q10) on 5 days old larvae (Q10=1.35) was lower when compared with the 1 day old larvae (Q10=1.68). The lower Q10 in older larvae may reflect age-related changes in metabolic processes or a greater scope of older larvae to respond to thermal stress such as by reducing activity. Collectively, our data indicate that temperatures >25 °C may be a critical temperature. Further studies on the population-level variation in thermal tolerance in this species are warranted to predict how continued increases in ocean temperature will limit O. huttoni at early larval stages across the range of this species.  相似文献   

14.
Evaporative water loss (EWL) and energy metabolism were measured at different temperatures in Eothenomys miletus and Apodemus chevrieri in dry air. The thermal neutral zone (TNZ) of E. miletus was 22.5–30 °C and that of A. chevrieri was 20–27.5 °C. Mean body temperatures of the two species were 35.75±0.5 and 36.54±0.61 °C. Basal metabolic rates (BMR) were 1.92±0.17 and 2.7±0.5 ml O2/g h, respectively. Average minimum thermal conductance (Cm) were 0.23±0.08 and 0.25±0.06 ml O2/g h °C. EWL in E. miletus and A. chevrieri increased with the increase in temperature; the maximal EWL at 35 °C was 4.78±0.6 mg H2O/g h in E. miletus, and 5.92±0.43 mg H2O/g h in A. chevrieri. Percentage of evaporative heat loss to total heat production (EHL/HP) increased with the increase in temperature; the maximal EHL/HP was 22.45% at 30 °C in E. miletus, and in A. chevrieri it was 19.96% at 27.5 °C. The results may reflect features of small rodents in the Hengduan mountains region: both E. miletus and A. chevrieri have high levels of BMR and high levels of total thermal conductance, compared with the predicted values based on their body masses, while their body temperatures are relatively low. EWL plays an important role in temperature regulation.  相似文献   

15.
We evaluated the effect of autotomy on feeding, energy storage and growth of juvenile Stichaster striatus kept in the laboratory for five months with a limited supply of the mussel Semimytilus algosus. Autotomy strongly decreased feeding, energy storage and growth. Intact juveniles showed a ∼ 3 fold higher feeding rate than autotomized individuals throughout the experiment. Intact juveniles also had a higher (∼ 5 fold) energy content per pyloric caeca in each arm. This was mainly due to higher lipid content, the main proximate constituent of pyloric caeca. Intact juveniles showed a greater growth rate and reached a greater size than autotomized individuals, more evident for underwater mass than radius length. The reduced capacity to feed reduced energy intake in autotomized individuals. However, low energy reserves along with low growth in autotomized sea stars, support the hypothesis that juveniles of this species allocate energy to regeneration to the detriment of growth. This was also supported by the ∼ 25% of arm length regeneration after 5 mo. Remaining small could increase risk of lethal predation, however, S. striatus may reduce predation risk by using crevices and kelp holdfasts as refuges from predators. Given the strong impact of autotomy on feeding, regeneration of arms to recover full capacity to forage and grow seems a better strategy for juvenile S. striatus, than merely growing.  相似文献   

16.
The effects of temperature, water level and burial depth on seed germination of two submerged species, Myriophyllum spicatum and Potamogeton malaianus, were investigated under controlled laboratory conditions. There was no significant difference in final germination of M. spicatum among water level treatments, but P. malaianus germinations at 1 cm and 12 cm water levels were better than at 0 cm water level at temperatures of 20 °C and 30 °C. Little to no germination was observed for either species at the temperature of 10 °C. At 15 °C, however, germination increased significantly to 66.3-70.6% for M. spicatum and to 29.4-48.1% for P. malaianus under all three water level treatments. Increased temperature from 15 °C to 30 °C had no significant effect on the final germination of M. spicatum except at the 1 cm water level, but enhanced significantly the germination of P. malaianus. Analysis of the mean time to germination revealed that M. spicatum was a faster germinator relative to P. malaianus. The two species’ germination differed markedly in response to burial depth. Germination percentage of M. spicatum was 71.3% at 0 cm burial depth, but decreased to 5.0% and to 2.5% at depths of 1 cm and 2 cm, respectively; whereas germination percentages of P. malaianus were 40.0%, 23.8%, 12.5%, 7.5% and 1.3% at depths of 0 cm, 1 cm, 2 cm, 3 cm and 5 cm, respectively. We concluded that the two species respond differently to germination strategies. The findings provided further insight into how germination strategy contributes to the seed bank formation and species invasion.  相似文献   

17.
This study investigated both laboratory-reared and pond-cultured subjects to explore the habit and hibernation patterns of the sea slug Onchidium struma (Mollusca, Gastropoda, Systellommatophora, Onchidioidea, Onchidiidae) from Shanghai and Zhejiang in China. Movement and feeding habits and the process of hibernation were observed in culturing tanks from June 2004 to March 2008. Our results showed that the conditions of movement are as follows: a minimum air temperature of 12 °C; a maximum light intensity of 25 lux and a minimum relative air humidity of 72%. Major movement is usually at dusk and during the night, and the average temperatures for fasting and beginning hibernation are 13.8 °C and 11.4 °C respectively. The analysis showed that the temperature is an essential factor affecting movement and feeding of O. struma and that RH and light intensity also play an important role, but are not necessarily required at the same time. In this study, the survival rate of O. struma through hibernation in high-biodiversity culturing tanks is 77.57% ± 2.86%.  相似文献   

18.
Patterns of caudal-autotomy evolution in lizards   总被引:5,自引:1,他引:4  
Peter A.  Zani 《Journal of Zoology》1996,240(2):201-220
Using comparative techniques to account for phylogenetic effects, I examined patterns of evolution of caudal autotomy and foraging in 39 lizard species to test the hypothesis that caudal autotomy has co-evolved with morphology, locomotor performance, and foraging behaviour. There were significant positive associations between evolution of the point on the tail (distance from cloaca) at which tail loss occurs (an indirect measure of caudal autotomy) and evolution of each of the following: tail length, caudifemoralis longus (CFL) muscle length, and jump distance. The correlation with the evolution of sprint speed approached significance. These relationships primarily were due to the influence of tail-length evolution on autotomy-point evolution. With the effect of tail-length evolution removed, autotomy-point evolution was negatively correlated with the evolution of tail-loss frequency. The CFL restricts tail loss to portions of the tail posterior to the most distal point of its insertion in the tail. In addition, with the effect of tail-length evolution removed, CFL length co-evolved with sprint speed. These results indicate that tail morphology has co-evolved with caudal autotomy such that the evolution of the CFL has reduced caudal autotomy in certain groups of lizards.
Ambush foraging, the ability to lose the tail, intermediate CFL length, and low locomotor performance (i.e. slow sprint speed and short jump distance) are hypothesized to be the ancestral conditions in lizards using outgroup rooting. The diversification of lizard taxa has resulted in some lineages moving away from ancestral character states (i.e. family Teiidae, superfamily Varanoidea), while others are very similar or identical to their ancestors (i.e. superfamily Iguania).  相似文献   

19.
Surf clam, Mactra veneriformis is one of the crucial fishery resources in Korea. This study was performed to examine the immune functions of the surf clam under the stress of water temperature changes at 10 °C, 20 °C or 30 °C for 24 h. Viable bacterial counts (VBC), total haemocyte count (THC), phagocytic activity, lysozyme activity, NRR times and SOD activity were assessed in three different water temperature groups. Clams held at 10 °C decreased in THC, lysozyme activity and NRR times, but phagocytic activity was increased. The highest temperature (30 °C) significantly increased in THC, whereas it decreased in phagocytic activity, lysozyme activity and NRR times. In clams maintained at 20 °C, phagocytic activity, lysozyme activity and NRR times were increased whereas THC was somewhat decreased with respect to clams held at 30 °C. However, water temperature changes did not elicit any alteration of VBC and SOD activity. The present study demonstrates that acute water temperature change affects the haemocytic and haemolymphatic functions, reducing immunosurveillance in stressed surf clam, M. veneriformis.  相似文献   

20.
Proper adjustment of thermoregulatory mechanisms ensures the survival of mammals when they are subjected to seasonal changes in their natural environment. To understand the physiological and ecological adaptations of Eothenomys olitor, we measured their metabolic rate, thermal conductance, body temperature (Tb) and evaporative water loss at a temperature range of 5–30 °C in summer. The thermal neutral zone (TNZ) of E. olitor was 20–27.5 °C, and the mean body temperature was 35.81±0.15 °C. Basal metabolic rate (BMR) was 2.81±0.11 ml O2/g h and mean minimum thermal conductance (Cm) was 0.18±0.01 ml O2/g h °C. Evaporative water loss (EWL) in E. olitor increased when the ambient temperature increased. The maximal evaporative water loss was 6.74±0.19 mg H2O/g h at 30 °C. These results indicated that E. olitor have relatively high BMR, low body temperature, low lower critical temperature, and normal thermal conductance. EWL plays an inportant role in temperature regulation. These characteristics are closely related to the living habitat of the species, and represent its adaptive strategy to the climate of the Yunnan-Kweichow Plateau, a low-latitude, high-altitude region where annual temperature fluctuations are small, but daily temperature fluctuations are greater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号