首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Broad-band radiation from a high-pressure Hg-vapor lamp, including ultraviolet wavelengths from 290 to 400 nm, blue, green and red wavelengths, did not induce the synthesis of H2O2 in cultured rose cells. This was in contrast to the effects of shortwave (254 nm) ultraviolet radiation, even though, like shortwave ultraviolet radiation, the UV-B component of the broadband radiation induced a striking K+ efflux from the cells, and this efflux has been associated with H2O2 synthesis in a previous report. The UV-A and visible wavelengths were shown to inhibit the synthesis of H2O2. This effect was associated with inhibition of peroxidase, an enzyme reported to be involved in the synthesis of H2O2 in cell walls. UV-B radiation inhibited the alternate pathway for mitochondrial electron transport, but there was no evidence that this effect contributed to the inhibition of H2O2 synthesis in cells treated with broad-band radiation.  相似文献   

2.
紫外辐射诱导植物叶片DNA损伤敏感性差异   总被引:2,自引:1,他引:1  
单细胞凝胶电泳(彗星检测, comet assay)技术已广泛应用于动物细胞DNA损伤检测, 但在植物细胞DNA损伤检测中的应用尚不多见。本研究通过对动物细胞彗星检测方法的改进, 利用植物细胞原生质体作为材料, 研究了不同发育期九里香(Murraya panicuata)叶片对UV-B诱导的DNA损伤的敏感性差异。彗星检测结果表明, 九里香叶片DNA的损伤程度与UV-B辐射的剂量呈正相关; 在相同UV-B辐射剂量下, 九里香幼嫩叶片比成熟叶片的DNA损伤量大, 表明其幼嫩叶片对UV-B辐射的敏感性比成熟叶片高。  相似文献   

3.
紫外辐射诱导植物叶片DNA损伤敏感性差异   总被引:3,自引:0,他引:3  
王静  蒋磊  王艳  李韶山 《植物学通报》2007,24(2):189-193
单细胞凝胶电泳(彗星检测,cometassay)技术已广泛应用于动物细胞DNA损伤检测,但在植物细胞DNA损伤检测中的应用尚不多见。本研究通过对动物细胞彗星检测方法的改进,利用植物细胞原生质体作为材料,研究了不同发育期九里香(Murraya panicuata)叶片对UV-B诱导的DNA损伤的敏感性差异。彗星检测结果表明,九里香叶片DNA的损伤程度与UV-B辐射的剂量呈正相关:在相同UV—B辐射剂量下,九里香幼嫩叶片比成熟叶片的DNA损伤量大,表明其幼嫩叶片对UV-B辐射的敏感性比成熟叶片高。  相似文献   

4.
5.
Abstract Bacteroides fragilis Bf-2 cells were more sensitive to far-UV radiation, N -methyl- N '-nitrosoguanidine, ethylmethane sulphonate, acriflavine and mitomycin C under aerobic conditions than under anaerobic conditions. The opposite effect was observed with H2O2-treated cells and exposure to O2 enhanced the survival of H2O2-treated cells. Pretreatment of cells with sublethal concentrations of H2O2 also increased the survival of H2O2-treated cells. Reactivation of UV- and X-irradiated and methylmethane sulphonate and H2O2-treated phage b-1 was induced by O2 and H2O2 in B. fragilis .  相似文献   

6.
Endonuclease activity specific for UV damaged DNA was isolated from tobacco leaf nuclei and detected by relaxation of supercoiled pUC 19 plasmid DNA. The activity did not require divalent cations or ATP. It acted on photoproducts induced by as little as 24 J m−2 of UV-C (primarily 254 nm) radiation. but not on photoproducts produced by UV-B (290–320 nm) radiation in the presence of acetophenone and a N2 atmosphere or by UV-A (320–400 nm) radiation in the presence of 4'-methoxy-methyltrioxsalen in a N2 atmosphere and not on the products of OsO4 oxidation of the DNA. Using end-labeled DNA of defined sequence, it was possible to identify sites in UV-C-irradiated DNA that were cut by the endonuclease preparation: most sites were assocrated with pyrimidine pairs. Cleavage by the tobacco endonuclease was not eliminated by treatment with Escherichia coli photolyase and light, suggesting that the endonuclease did not recognize cyclobutadipyrimidines.  相似文献   

7.
Abstract Reactivation of UV-irradiated phage b-1 was induced by H2O2 and UV in Bacteroides fragilis . The characteristics of H2O2 and UV induced phage reactivation differ from a previously reported oxygen induced reactivation system. The survival of B. fragilis cells after UV irradiation was also increased by pretreatment with H2O2. DNA synthesis was not inhibited in the host cells exposed to H2O2 concentrations which induced phage reactivation. The pattern of DNA degradation and synthesis after UV irradiation with and without H2O2 differed from the effect of O2 on DNA synthesis in irradiated B. fragilis cells.  相似文献   

8.
A method for estimating DNA strand breakage and subsequent repair based on alkaline gel electrophoresis was developed and tested with isogenic strains of Escherichia coli deficient in DNA repair enzymes. Samples from a cell suspension were removed at 2 min intervals following a 15 min exposure to 20 mmol l-1 H2O2. Catalase was added and the cells were embedded in blocks of low-melting point agarose and lysed. After alkaline gel electrophoresis, photographs of the gels were taken and the relative lengths of the distributions of DNA fragments were measured with a scanner and computer. The lengths were correlated with survival of the cells exposed to H2O2 and with the importance of particular DNA repair enzymes. Alkaline gel electrophoresis appears to be a relatively simple method for analysing the level of H2O2-caused DNA damage and repair in E. coli.  相似文献   

9.
Oxidative stress has long been linked to cell death in many neurodegenerative conditions. Treatment with antioxidants is a promising approach for slowing disease progression. In this study, we used the neuroblastoma SH-SY5Y cells as an in vitro model to first assess the effect of polypeptide from Chlamys farreri (PCF), a natural marine antioxidant, on H2O2-induced neuronal cell death. Pre-treatment of SH-SY5Y cells with PCF inhibited H2O2-induced cell death in a concentration-dependent manner. In parallel, intracellular reactive oxygen species generation and lipid peroxidation were inhibited by PCF. Under severe H2O2 insult, PCF promoted endogenous antioxidant defense components including glutathione peroxidase, catalase, superoxide dismutase, and glutathione. PCF also protected DNA from oxidative damage and enhanced the removal of 8-oxo-7,8-dihydro-2'-deoxyguanosine from DNA. Further, we found that PCF potentially prevented H2O2–induced cell apoptosis. When investigated mitogen-activated protein kinase signaling pathway, we found that pre-treatment of cells with PCF significantly blocked H2O2–induced phosphorylation of c- Jun N-terminal kinase of the mitogen-activated protein kinase family. However, PCF had little inhibitory effect on the H2O2–induced activation of extracellular signal-regulated kinase. Taken together, these data demonstrate that PCF prevents oxidative stress-induced reactive oxygen species production and c- Jun N-terminal kinase activation and may be useful in the treatment of neurodegenerative diseases.  相似文献   

10.
11.
Abstract: The effects of solar ultraviolet radiation (UV) on carbon uptake, oxygen evolution and motility of marine phytoplankton were investigated in coastal waters at Kristineberg Marine Research Station on the west coast of Sweden (58° 30'N, 11° 30'E). The mean irradiances at noon above the water surface during the investigation period were: photosynthetic active radiation (PAR, 400–700 nm) 1670 μmol m−2 s−1; ultraviolet-A radiation (UV-A, 320–400 nm) 35.9 W m−2 and ultraviolet-B radiation (UV-B, 280–320 nm) 1.7 W m−2. UV-B radiation was much more attenuated with depth in the water column than were PAR and UV-A radiation. UV-B radiation could not be detected at depths greater than 100–150 cm. Inhibition of carbon uptake by UV-A and UV-B in natural phytoplankton populations was greatest at 50 cm depth and the effects of UV-B were greater than those of UV-A. At depths greater than 50 cm there was almost no effect of ultraviolet radiation on carbon uptake. PAR, UV-A and UV-B decreased oxygen evolution by the dinoflagellate Prorocentrum minimum . Inhibition of oxygen evolution was greater after 4 h than 2 h but it was not possible to distinguish the negative effects of the different light regimes. The motility of P. minimum was not affected by PAR, UV-A and UV-B. The importance of exposure of phytoplankton to different light regimes before being exposed to natural solar radiation is discussed.  相似文献   

12.
Detection of hydrogen peroxide produced by meat lactic starter cultures   总被引:1,自引:1,他引:0  
Twelve strains of meat lactic starter cultures (Pediococcus spp. and Lactobacillus plantarum) were found to produce hydrogen peroxide in vitro. The (cumulative) amounts of H2O2 produced were measured through the peroxidative action of catalase on H2O2 and oxidation of added formate to CO2 by the H2O2-catalase complex formed. There was a problem in building a calibration curve for converting values of formate oxidation into amounts of H2O2, either by adding H2O2 directly to the assay mixture or having it produced via a glucose-glucose oxidase system.  相似文献   

13.
Suspension-cultured rose ( Rosa damascena Mill. cv. Gloire de Guilan) cells irradiated with UV-C (254 nm. 558 J m−2) showed a transient production of H2O2 as measured by chemiluminescence of luminol in the presence of peroxidase (EC 1.1 1.1.7). The peak concentration of H2O2, which occurred at about 60–90 min after irradiation, was 8–9 μ M . The time course for the appearance of H2O2 matched that for UV–induced K+ efflux. Treatments that inhibited the UV-induced efflux of K+, including heat and overnight incubation with cycloheximide and diethylmaleate, also inhibited the appearance of H2O2. The converse was not always true, since catalase (EC 1.11.1.6. and salicylhydroxamic acid, which inhibited luminescence, did not stop K+ efflux. We conclude that H2O2 synthesis depends on K+ efflux. Because H2.O2 in the extracellular space is required for lignin synthesis in many plant tissues, we suggest that the UV–stimulated production of H2O2 is an integral part of a defensive lignin synthesis.  相似文献   

14.
Reactive oxygen species (ROS) have traditionally been viewed as a toxic group of molecules; however, recent publications have shown that these molecules, including H2O2, can also strongly promote cell survival. Even though the retina has a large capacity to produce ROS, little is known about its non-mitochondrial sources of these molecules, in particular the expression and function of NADPH oxidase (Nox) proteins which are involved in the direct generation of superoxide and indirectly H2O2. This study demonstrated that 661W cells, a retina-derived cell line, and mouse retinal explants express Nox2, Nox4 and certain of their well-established regulators. The roles of Nox2 and Nox4 in producing pro-survival H2O2 were determined using 661W cells and some of the controlling factors were identified. To ascertain if this phenomenon could have physiological relevance, the novel technique of time-lapse imaging of dichlorofluorescein fluorescence (generated upon H2O2 production) in retinal explants was established and it showed that explants also produce a burst of H2O2. The increase in H2O2 production was partly blocked by an inhibitor of Nox proteins. Overall, this study demonstrates a pro-survival role of Nox2 and Nox4 in retina-derived cells, elucidates some of the regulatory mechanisms and reveals that a similar phenomenon exists in retinal tissue as a whole.  相似文献   

15.
Roles of H2O2 in the infection process of Magnaporthe oryzae on rice were investigated. In a leaf sheath assay for up to 48 h post-inoculation, the absence or presence of catalase in the conidia suspension was correlated with the level of accumulated H2O2 in infected leaf cells, as observed by staining with 3',3-diaminobenzidine tetrahydrochloride. In the incompatible interaction, the appearance of autofluorescence or frequency of cell death characterized by granulation (symptoms characteristic of hypersensitive responses) was not significantly affected by the presence of catalase in the conidia suspension. In the leaf blade assay, inoculation of compatible conidia in the presence of catalase produced more severe symptoms than that of conidia in the absence of catalase at 6 days post-inoculation. These results suggest that, in this host–parasite interaction, the primary role of host-produced H2O2 is in limiting hyphal growth after penetration through toxic action. Furthermore, in incompatible interactions, H2O2 is implied not to be a major mediator of hypersensitive cell death.  相似文献   

16.
The release of free H2O2 from spores of Clostridium perfringens and Bacillus megaterium during germination has been demonstrated using the scopoletin fluorescence assay. Scopoletin oxidation was markedly inhibited when exogenous catalase was added, and was also influenced by the concentration of spores. H2O2 release into the germination medium was observed to parallel the O2 consumption during germination, suggesting that the H2O2 may arise from certain O2-dependent metabolism associated with initiation of spore germination.  相似文献   

17.
Active oxygen species (AOS) are believed to have important roles in plants in general and in plant—pathogen interactions in particular. They are believed to be involved in signal transduction, cell wall reinforcement, hypersensitive response (HR) and phytoalexin production, and to have direct antimicrobial effects. Since current methods are inadequate for localizing AOS in intact plant tissue, most studies have been conducted using cell suspension culture/elicitors systems. 3,3-diaminobenzidine (DAB) polymerizes instantly and locally as soon as it comes into contact with H2O2 in the presence of peroxidase, and it was found that, by allowing the leaf to take up this substrate, in-vivo and in-situ detection of H2O2 can be made at subcellular levels. This method was successfully used to detect H2O2 in developing papillae and surrounding haloes (cell wall appositions) and whole cells of barley leaves interacting with the powdery mildew fungus. Thus, H2O2 can be detected in the epidermal cell wall subjacent to the primary germ tube from 6 h after inoculation, and subjacent to the appressorium from 15 h. The earliest time point for observation of H2O2 in relation to epidermal cells undergoing HR is 15 h after inoculation, first appearing in the zones of attachment to the mesophyll cells underneath, and eventually in the entire epidermal cell. Furthermore, it was observed that proteins in papillae and HR cells are cross-linked, a process believed to be fuelled by H2O2. This cross-linking reinforces the apposition, presumably assisting the arrest of the pathogen.  相似文献   

18.
The hydrogen peroxide (H2O2) stress response in Enterococcus faecalis ATCC19433 was investigated. A 2·4 mmol l−1 H2O2 pretreatment conferred protection against a lethal concentration (45 mmol l−1) of this agent. The relatively high concentrations of H2O2 used for adaptation and challenge treatments in Ent. faecalis emphasised the strong resistance towards oxidative stress in this species. Various stresses (NaCl, heat, ethanol, acidity and alkalinity) induced weak or strong H2O2 cross-protection. This paper describes the involvement of protein synthesis in the active response to lethal dose of H2O2, in addition to the impressive enhancement of synthesis of five H2O2 stress proteins. Combined results suggest that these proteins might play an important role in the H2O2 tolerance response.  相似文献   

19.
The effects of physical and chemical factors on the production of H2O2 from Escherichia coli cells were studied. When 20 mmol 1-1 Tris-HCl buffer was used for this purpose the electron transport system (ETS) showed the highest activity at pH 7.6-8.2. KCN promoted the production of H2O2 from E. coli cells, and the optimum concentration was changed in different reaction times and pH values. Glucose, 5 mg ml-1, increased the ETS activity about twofold. The other substrates and surfactants did not increase the chemiluminescence intensity. NaNO2 and Na2SO4 in inorganic salts significantly reduced the ETS activity above 70%. In addition, the optimum temperature for the production of H2O2 was 30°C in this study. When glucose (5 mg ml-1) and KCN (0.2 mmol 1-1) were added to the reaction buffer containing 0.5 mmol 1-1 menadione, the detectable minimum cell densities (averages of triplicate assay) of E. coli, Enterobacter cloacae and Serratia marcescens were 5 times 103 cells ml-1, 104 cells ml-1 and 104 cells ml-1 respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号