首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
Fluorotelomer alcohols [FTOHs, F(CF2)nCH2CH2OH, n = 4, 6, and 8] are emerging environmental contaminants. Biotransformation of FTOHs by mixed bacterial cultures has been reported; however, little is known about the microorganisms responsible for the biotransformation. Here we reported biotransformation of FTOHs by two well‐studied Pseudomonas strains: Pseudomonas butanovora (butane oxidizer) and Pseudomonas oleovorans (octane oxidizer). Both strains could defluorinate 4:2, 6:2, and 8:2 FTOHs, with a higher degree of defluorination for 4:2 FTOH. According to the identified metabolites, P. oleovorans transformed FTOHs via two pathways I and II. The pathway I led to the production of x:2 ketone [dominant metabolite, F(CF2)xC(O)CH3; x = n ? 1, n = 6 or 8], x:2 sFTOH [F(CF2)xCH(OH)CH3], and perfluorinated carboxylic acids (PFCAs, perfluorohexanoic, or perfluorooctanoic acid). The pathway II resulted in the formation of x:3 polyfluorinated acid [F(CF2)xCH2CH2COOH] and relatively minor shorter‐chain PFCAs (perfluorobutyric or perfluorohexanoic acid). Conversely, P. butanovora transformed FTOHs by using the pathway I, leading to the production of x:2 ketone, x:2 sFTOH, and PFCAs. This is the first study to show that individual bacterium can bio‐transform FTOHs via different or preferred transformation pathways to remove multiple ? CF2? groups from FTOHs to form shorter‐chain PFCAs. Biotechnol. Bioeng. 2012; 109: 3041–3048. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
Diversity in Butane Monooxygenases among Butane-Grown Bacteria   总被引:10,自引:4,他引:6       下载免费PDF全文
Butane monooxygenases of butane-grown Pseudomonas butanovora, Mycobacterium vaccae JOB5, and an environmental isolate, CF8, were compared at the physiological level. The presence of butane monooxygenases in these bacteria was indicated by the following results. (i) O2 was required for butane degradation. (ii) 1-Butanol was produced during butane degradation. (iii) Acetylene inhibited both butane oxidation and 1-butanol production. The responses to the known monooxygenase inactivator, ethylene, and inhibitor, allyl thiourea (ATU), discriminated butane degradation among the three bacteria. Ethylene irreversibly inactivated butane oxidation by P. butanovora but not by M. vaccae or CF8. In contrast, butane oxidation by only CF8 was strongly inhibited by ATU. In all three strains of butane-grown bacteria, specific polypeptides were labeled in the presence of [14C]acetylene. The [14C]acetylene labeling patterns were different among the three bacteria. Exposure of lactate-grown CF8 and P. butanovora and glucose-grown M. vaccae to butane induced butane oxidation activity as well as the specific acetylene-binding polypeptides. Ammonia was oxidized by all three bacteria. P. butanovora oxidized ammonia to hydroxylamine, while CF8 and M. vaccae produced nitrite. All three bacteria oxidized ethylene to ethylene oxide. Methane oxidation was not detected by any of the bacteria. The results indicate the presence of three distinct butane monooxygenases in butane-grown P. butanovora, M. vaccae, and CF8.  相似文献   

3.
The initial reactions in the cometabolic oxidation of the gasoline oxygenate, methyl tert-butyl ether (MTBE), by Mycobacterium vaccae JOB5 have been characterized. Two products, tert-butyl formate (TBF) and tert-butyl alcohol (TBA), rapidly accumulated extracellularly when propane-grown cells were incubated with MTBE. Lower rates of TBF and TBA production from MTBE were also observed with cells grown on 1- or 2-propanol, while neither product was generated from MTBE by cells grown on casein-yeast extract-dextrose broth. Kinetic studies with propane-grown cells demonstrated that TBF is the dominant (≥80%) initial product of MTBE oxidation and that TBA accumulates from further biotic and abiotic hydrolysis of TBF. Our results suggest that the biotic hydrolysis of TBF is catalyzed by a heat-stable esterase with activity toward several other tert-butyl esters. Propane-grown cells also oxidized TBA, but no further oxidation products were detected. Like the oxidation of MTBE, TBA oxidation was fully inhibited by acetylene, an inactivator of short-chain alkane monooxygenase in M. vaccae JOB5. Oxidation of both MTBE and TBA was also inhibited by propane (Ki = 3.3 to 4.4 μM). Values for Ks of 1.36 and 1.18 mM and for Vmax of 24.4 and 10.4 nmol min−1 mg of protein−1 were derived for MTBE and TBA, respectively. We conclude that the initial steps in the pathway of MTBE oxidation by M. vaccae JOB5 involve two reactions catalyzed by the same monooxygenase (MTBE and TBA oxidation) that are temporally separated by an esterase-catalyzed hydrolysis of TBF to TBA. These results that suggest the initial reactions in MTBE oxidation by M. vaccae JOB5 are the same as those that we have previously characterized in gaseous alkane-utilizing fungi.  相似文献   

4.
The physiological consequences of trichloroethylene (TCE) transformation by three butane oxidizers were examined. Pseudomonas butanovora, Mycobacterium vaccae, and Nocardioides sp. CF8 utilize distinctly different butane monooxygenases (BMOs) to initiate degradation of the recalcitrant TCE molecule. Although the primary toxic event resulting from TCE cometabolism by these three strains was loss of BMO activity, species differences were observed. P. butanovora and Nocardioides sp. CF8 maintained only 4% residual BMO activity following exposure to 165 μM TCE for 90 min and 180 min, respectively. In contrast, M. vaccae maintained 34% residual activity even after exposure to 165 μM TCE for 300 min. Culture viability was reduced 83% in P. butanovora, but was unaffected in the other two species. Transformation of 530 nmol of TCE by P. butanovora (1.0 mg total protein) did not affect the viability of BMO-deficient P. butanovora cells, whereas transformation of 482 nmol of TCE by toluene-grown Burkholderia cepacia G4 caused 87% of BMO-deficient P. butanovora cells to lose viability. Together, these results contrast with those previously reported for other bacteria carrying out TCE cometabolism and demonstrate the range of cellular toxicities associated with TCE cometabolism.  相似文献   

5.
The compounds W(CO)5P(C6H4-4-CH2CH2(CF2)7CF3)3 (1) and W(CO)5P(CH2CH2(CF2)5CF3)3 (2) were synthesized in order to probe the electronic and physical effects of ligation by perfluorocarbon substituted tertiary phosphine ligands in a W(CO)5L complex. The π-accepting ability of the fluorous phosphines was found to rank with non-fluorous comparators as P(CH2CH2(CF2)5CF3)3 > P(C6H4-4-CH2CH2(CF2)7CF3)3 > PPh3 > P(p-tolyl)3 > P(n-octyl)3. The X-ray crystal structure of W(CO)5P(C6H4-4-CH2CH2(CF2)7CF3)3 shows strong intermolecular association of fluorous components but confirms that the para fluorocarbon subtituents have an insignificant effect on the tungsten coordination environment. Partition coefficients (toluene/perfluoromethylcyclohexane) were measured for compounds 1 and 2.  相似文献   

6.
《Process Biochemistry》2014,49(12):2101-2106
The poor solubility and dispersibility of fatty acids in aqueous reaction media may limit the catalytic activity of fatty acid transformation enzymes. Therefore, we studied a novel method to increase the catalytic activity of an esterase by introducing a presumed substrate-binding domain. The primary structure of an esterase from Pseudomonas fluorescens WI SIK (PFEI) is similar to that of an esterase in P. fluorescens DSM 50106 (PFEII) but not Bacillus subtilis DSM 402 (BS2). However, the reaction kinetics for the formation of octylacetate and a ricinoleic acid-derived ester (3) were more similar to the kinetics in BS2. For instance, the kcat value of PFEI with 3 was similar to that of BS2, which was approximately 12-fold lower than the kcat value of PFEII. Furthermore, fusion of PFEI to the N-terminal hydrophobic domain of PFEII led to a substantial increase (an approximate 6-fold increase in the kcat value) in its hydrolytic activity of 3. These results indicate that the N-terminal domain of PFEII, which is assumed to be involved in anchoring the enzyme in the membrane, interacts with fatty acid-like substrates, resulting in an improved enzymatic activity. Therefore, we conclude that the membrane-anchoring domains can be used to increase the catalytic activity of fatty acid transformation enzymes.  相似文献   

7.
Isolate RS1T isolated from used metalworking fluid was found to be a Gram-negative, motile, and non-spore forming rod. Based on phylogenetic analyses with 16S rRNA, isolate RS1T was placed into the mendocina sublineage of Pseudomonas. The major whole cell fatty acids were C18:1ω7c (32.6%), C16:0 (25.5%), and C15:0 ISO 2OH/C16:1ω7c (14.4%). The sequence similarities of isolate RS1T based on gyrB and rpoD genes were 98.9 and 98.0% with Pseudomonas pseudoalcaligenes, and 98.5 and 98.1% with Pseudomonas oleovorans, respectively. The ribotyping pattern showed a 0.60 similarity with P. oleovorans ATCC 8062T and 0.63 with P. pseudoalcaligenes ATCC17440T. The DNA G + C content of isolate RS1T was 62.2 mol.%. The DNA–DNA relatedness was 73.0% with P. oleovorans ATCC 8062T and 79.1% with P. pseudoalcaligenes ATCC 17440T. On the basis of morphological, biochemical, and molecular studies, isolate RS1T is considered to represent a new subspecies of P. oleovorans. Furthermore, based on the DNA–DNA relatedness (>70%), chemotaxonomic, and molecular profile, P. pseudoalcaligenes ATCC 17440T and P. oleovorans ATCC 8062T should be united under the same name; according to the rules of priority, P. oleovorans, the first described species, is the earlier synonym and P. pseudoalcaligenes is the later synonym. As a consequence, the division of the species P. oleovorans into two novel subspecies is proposed: P. oleovorans subsp. oleovorans subsp. nov. (type strain ATCC 8062T = DSM 1045T = NCIB 6576T), P. oleovorans subsp. lubricantis subsp. nov. (type strain RS1T = ATCC BAA-1494T = DSM 21016T).  相似文献   

8.
Fluorotelomer alcohols (FTOHs; CxF2x+1C2H4OH) are intermediates in the production of specialty surfactants and stain-repellent polymers. The magnitude and pathways of human exposure to FTOHs are not understood, but FTOHs are present in ambient air and house dust, and FTOH-derivatives are used in food-contact applications. Previously, electrophilic FTOH biotransformation products were detected in rat hepatocytes, and liver lesions were found in FTOH exposed rodents. To begin elucidating the mechanism(s) of action, freshly isolated rat hepatocytes were incubated with FTOHs, or FTOH biotransformation products, and toxicity was followed in the presence or absence of carbonyl scavengers and metabolic enzyme modulators. The LC50 depended on perfluorinated chain length, with the shortest (4:2 FTOH; x = 4) and longest (8:2 FTOH; x = 8) FTOHs tested being more toxic than the medium chain length FTOH (6:2 FTOH; x = 6); a structure-toxicity relationship that is consistent with that for 2-alkenals. For hepatocytes treated with 8:2 FTOH, cytotoxicity corresponded to depletion of glutathione (GSH), increased protein carbonylation, and lipid peroxidation. Aminobenzotriazole, a P450 inhibitor, diminished cytotoxicity for all FTOHs tested, and decreased protein carbonylation and lipid peroxidation for 8:2 FTOH, indicating that a biotransformation product was responsible for FTOH cytotoxicity. Preincubation of hepatocytes with hydralazine or aminoguanidine decreased the cytotoxicity of 8:2 FTOH, suggesting that reactive aldehyde intermediates contributed to the cytotoxicity. A GSH-reactive α/β-unsaturated acid metabolite was also more toxic than the corresponding FTOH, and may have contributed to the observed effects. Overall, these results suggested that FTOH toxicity was related to electrophilic aldehydes or acids through GSH depletion and protein carbonylation. Further research into the nature of protein modification is warranted for these current-use fluorochemicals.  相似文献   

9.
The taxonomic position of a Gram-stain-negative, rod-shaped bacterial strain, designated PI11T, isolated from the rhizospheric sediment of Phragmites karka was characterized using a polyphasic approach. Strain PI11T could grow optimally at 1.0% NaCl concentration with pH 7.0 at 30°C and was positive for oxidase and catalase but negative for hydrolysis of starch, casein, and esculin ferric citrate. Phylogenetic analysis of 16S rRNA gene sequences indicated that the strain PI11T belonged to the genus Pseudomonas sharing the highest sequence similarities with Pseudomonas indoloxydans JCM 14246T (99.72%), followed by, Pseudomonas oleovorans subsp. oleovorans DSM 1045T (99.29%), Pseudomonas toyotomiensis JCM 15604T (99.15%), Pseudomonas chengduensis DSM 26382T (99.08%), Pseudomonas oleovorans subsp. lubricantis DSM 21016T (99.08%), and Pseudomonas alcaliphila JCM 10630T (99.01%). Experimental DNA-DNA relatedness between strain PI11T and P. indoloxydans JCM 14246T was 49.4%. The draft genome of strain PI11T consisted of 4,884,839 bp. Average nucleotide identity between the genome of strain PI11T and other closely related type strains ranged between 77.25–90.74%. The polar lipid pattern comprised of phosphatidylglycerol, diphosphatidylglycerol, and phosphatidylcholine. The major (> 10%) cellular fatty acids were C18:1ω6c/ω7c, C16:1ω6c/ω7c, and C16:0. The DNA G + C content of strain PI11T was 62.4 mol%. Based on the results of polyphasic analysis, strain PI11T was delineated from other closely related type strains. It is proposed that strain PI11T represents represents a novel species of the genus Pseudomonas, for which the name Pseudomonas sediminis sp. nov. is proposed. The type strain is PI11T (= KCTC 42576T = DSMZ 100245T).  相似文献   

10.
《Journal of Asia》2006,9(1):31-36
Phospholipase A2 (PLA2) catalyzes phospholipids at sn-2 position to release arachidonic acid (20:4n-6). The arachidonic acid is further oxidized to form different eicosanoids, which play biological mediators to express cellular or humoral immune reactions in response to pathogen infection. Xeno-rahbdus and Photorhabdus, the symbiotic bacteria of entomopathogenic nematodes, have been known to inhibit PLA2 to express their pathogenicity. This research aimed to test a hypothesis that other entomopathogenic bacteria also inhibit PLA2 to express their pathogenicity in Spodopera exigua. Two bacterial species of Enterococcus faecalis and Pseudomonas fluorescens presumably different in ento-mopathogenicity were analyzed in their PLA2 inhibitory activities. A pathogenic E. faecalis induced significantly immunodepression of S. exigua by inhibiting PLA2 activity because the bacteria-infected S. exigua recovered immune reactions after the addition of arachidonic acid. However, the nonpathogenic P. fluorescens did not induce immunodepression because the addition of arachidonic acid to P. fluorescens-infected S. exigua did not further increase immune capacities while dexamethasone, a PLA2 inhibitor, could decrease the immune activities. Injection of E. faecalis along with 10 μg of dexamethasone significantly increased pathogenicity in comparison with the bacteria alone. Moreover, the addition of dexamethasone transformed nonpathogenic P. fluorescens into pathogenic bacterium. This study suggests an evidence that PLA2 is an inhibitory target even for entomopathogenic bacteria not related with entomopathogenic nematodes, and that the inhibition of PLA2 determines the bacterial virulence in S. exigua.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号