首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Qin G  Gu H  Ma L  Peng Y  Deng XW  Chen Z  Qu LJ 《Cell research》2007,17(5):471-482
Carotenoids play an important role in many physiological processes in plants and the phytoene desaturase gene (PDS3) encodes one of the important enzymes in the carotenoid biosynthesis pathway. Here we report the identification and analysis of a T-DNA insertion mutant of PDS3 gene. Functional complementation confirmed that both the albino and dwarfphenotypes ofthepds3 mutant resulted from functional disruption of the PDS3 gene. Chloroplast development was arrested at the proplastid stage in thepds3 mutant. Further analysis showed that high level ofphytoene was accumulated in the pds3 mutant. Addition of exogenous GA3 could partially rescue the dwarf phenotype, suggesting that the dwarf phenotype ofthepds3 mutant might be due to GA deficiency. Microarray and RT-PCR analysis showed that disrupting PDS3 gene resulted in gene expression changes involved in at least 20 metabolic pathways, including the inhibition of many genes in carotenoid, chlorophyll, and GA biosynthesis pathways. Our data suggest that the accumulated phytoene in the pds3 mutant might play an important role in certain negative feedbacks to affect gene expression of diverse cellular pathways.  相似文献   

2.
In angiosperms,floral transition is a key developmental transition from the vegetative to reproductive growth,and requires precise regulation to maximize the reproductive success.A complex regulatory network governs this transition through integrating flowering pathways in response to multiple exogenous and endogenous cues.Phytohormones are essential for proper plant developmental regulation and have been extensively studied for their involvement in the floral transition.Among various phytohormones,gibberellin(GA)plays a major role in affecting flowering in the model plant Arabidopsis thaliana.The GA pathway interact with other flowering genetic pathways and phytohormone signaling pathways through either DELLA proteins or mediating GA homeostasis.In this review,we summarize the recent advances in understanding the mechanisms of DELLA-mediated GA pathway in flowering time control in Arabidopsis,and discuss its possible link with other phytohormone pathways during the floral transition.  相似文献   

3.
4.
5.
Plants have evolved complex signaling pathways to coordinate responses to developmental and environmental Information. The oxylipin pathway Is one pivotal lipid-based signaling network, composed of several competing branch pathways, that determines the plant's ability to adapt to various stimuli. Activation of the oxyllpln pathway Induces the de novo synthesis of biologically active metabolltes called "oxyllplns". The relative levels of these metabolltes are a distinct indicator of each plant species and determine the ability of plants to adapt to different stimuli. The two major branches of the oxyllpln pathway, allene oxide synthase (AOS) and hydroperoxlde lyase (HPL) are responsible for production of the signaling compounds, jasmonates and aldehydes respectively. Here, we compare and contrast the regulation of AOS and HPL branch pathways In rice and Arabidopsis as model monocotyledonous and dicotyledonous systems. These analyses provide new Insights Into the evolution of JAs and aldehydes signaling pathways, and the complex network of processes responsible for stress adaptations In monocots and dicots.  相似文献   

6.
7.
Jasmonates (JAs) are a class of plant hormones that play important roles in the regulation of plant development and plant defense. It has been shown that Arabidopsis plants produce much higher levels of anthocyanins when treated exogenously with methyl jasmonate (MeJA). However, a molecular link between the JA response and anthocyanin production has not been determined. The CORONATINE INSENTITIVE1 (COI1) gene is a key player in the regulation of many JA-related responses. In the present study, we demonstrate that the COI1 gene is also required for the JA-induced accumulation of anthocyanins in Arabidopsis. Furthermore, the MeJA-inducible expression of DIHYDROFLAVONOL REDUCTASE (DFR), an essential component in the anthocyanin biosynthesis pathway, was completely eliminated in the coil mutant. Jasmonateinduced anthocyanin accumulation was found to be independent of auxin signaling. The present results indicate that the expression of both COI1 and DFR genes is required for the regulation of JA-induced anthocyanin accumulation and that DFR may be a key downstream regulator for this process.  相似文献   

8.
9.
10.
11.
We report here on a comparative developmental profile of plant hormone cytokinins in relation to cell size, cell number and endoreduplicaUon in developing maize caryopsis of a cell wall invertase-deficient miniature1 (mn1) seed mutant and its wild type, Mn1, genotype. Both genotypes showed extremely high levels of total cytokinins during the very early stages of development, followed by a marked and genotype specific reduction. While the decrease of cytokinins in Mn1 was associated with their deactivation by 9-glucosylation, the absolute and the relative part of active cytokinin forms was higher in the mutant. During the exponential growth phase of endosperm between 6 d after pollination and 9 d after pollination, the mean cell doubling time, the absolute growth rate and the level of endoreduplication were similar in the two genotypes. However, the entire duration of growth was longer in Mnl compared with mnl, resulting in a significantly higher cell number in the Mnl endosperm. These data correlate with the previously reported peak levels of the Mn1-encoded cell wall invertase-2 (INCW2) at 12 d after pollination in the Mn1 endosperm. A model showing possible crosstalk among cytokinins, cell cycle and cell wall invertase as causal to increased cell number and sink strength of the Mn1 developing endosperm is discussed.  相似文献   

12.
13.
14.
As part of continuing studies of the identification of gene organization and cloning of novel α-conotoxins, the first α4/4-conotoxin identified in a vermivorous Conus species, designated Qcl.2, was originally obtained by cDNA and genomic DNA cloning from Conus quercinus collected in the South China Sea. The predicted mature toxin of Qc1.2 contains 14 amino acid residues with two disulfide bonds (Ⅰ-Ⅲ, Ⅱ-Ⅳ connectivity) in a native globular configuration. The mature peptide of Qcl.2 is supposed to contain an N-terminal post-translationally processed pyroglutamate residue and a free carboxyl C-terminus. This peptide was chemically synthesized and refolded for further characterization of its functional properties. The synthetic Qcl.2 has two interconvertible conformations in aqueous solution, which may be due to the cis-trans isomerization of the two successive Pro residues in its first Cys loop. Using the Xenopus oocyte heterologous expression system, Qcl.2 was shown to selectively inhibit both rat neuronal α3β2 and α3β4 subtypes of nicotinic acetylcholine receptors with low potency. A block of -63% and 37% of the ACh-evoked currents was observed, respectively, and the toxin dissociated rapidly from the receptors. Compared with other characterized α-conotoxin members, the unusual structural features in Qcl.2 that confer to its receptor recognition profile are addressed.  相似文献   

15.
16.
The green tea constituent, (-)-epigallocatechin-3- gallate (EGCG), has chemopreventive and anticancer effects. This is partially because of the selective ability of EGCG to induce apoptosis and death in cancer cells without affecting normal cells. In the present study, the activity of EGCG against the myeloma cell line, KM3, was examined. Our results demonstrated, for the first time, that the treatment of the KM3 cell line with EGCG inhibits cell proliferation and induces apoptosis, and there is a synergistic effect when EGCG and borte- zomib are combined. Further experiments showed that this effect involves the NF-KB pathway. EGCG inhibits the expression of the P65 mRNA and P65/pP65 protein, meanwhile it downregulates pIKBα expression and upregulates IKBα expression. EGCG also activates caspase-3, -8, cleaved caspase-9, and poly-ADP-ribose polymerase (PARP) and subsequent apoptosis. These findings provided experimental evidence for efficacy of EGCG alone or in combination with bortezomib in multiple myeloma therapy.  相似文献   

17.
目的:进一步探讨蝎毒耐热蛋白(SVHRP)改善MPTP(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,MPTP)小鼠伴有空间学习记忆障碍的机制。方法:给予C57BL/6小鼠颈部皮下注射MPTP(20mg/kg),连续8d,同时设立SVHRP治疗纽,观察小胶质细胞免疫反应活性的改变。结果:与盐水对照组相比,MPTP小鼠脑区OX-42免疫反应阳性小胶质细胞免疫反应活性明显增强。模型给药组与模型组相比OX-42免疫反应阳性小胶质细胞免疫反应活性明显降低。结论:SVHRP可以抑制MPTP诱发的小鼠脑内小胶质细胞的激活以减轻脑内神经炎症。  相似文献   

18.
A set of trisomics of Chinese cabbage was used for determining the n-I-1 gamete transmission rate and locating the gene controlling 2n gamete formation on the corresponding chromosome. The results showed that the transmission rates of extra chromosomes in different trisomics varied from 0% to 15.38% by male gametes and from 0% to 17.39% by female gametes. Of the nine F2 populations derived from the hybridizations between each trisomic and Bp058 (2n gamete material), only Tri- 4xBp058 showed that the segregation ratio of plants without 2n gamete formation to plants with 2n gamete formation was 10.38:1, which fitted the expected segregation ratio of the trisomics (AAa) based on the 7.37% of n+l gamete transmission through female and 5.88% through male. In other populations the segregation ratios varied from 2.48:1 to 3.72:1, which fitted the expected 3:1 segregation ratio of the bisomics (Aa). These results suggested that the gene controlling 2n gamete formation in Chinese cabbage Bp058 was located on chromosome 4. Further trisomic analysis based on the chromosome segregation and the incomplete stochastic chromatid segregation indicated that the gene locus was tightly linked to the centromere.  相似文献   

19.
20.
The high molecular weight glutenin subunits (HMW-GSs) are a major class of common wheat storage proteins. The breadmaking quality of common wheat flour is influenced by the composition of HMW-GSs. In the present study, two unexpressed 1 By genes from Triticum aesitvum L.ssp.yunnanese AS332 and T. aesitvum ssp.tibetanurn AS908 were respectively cloned and characterized. The results indicated that both of the silenced 1By genes in AS332 and AS908 were 1Byg. In contrast to previously reported mechanisms for silenced genes lAx and lay, which was due to the insertion of transposon elements or the presence of premature stop codon via base substitution of C→T transition in trinucleotides CAA or CAG, the silence of 1By9 genes was caused by premature stop codons via the deletion of base A in trinucleotide CA.A, which lead to frameshift mutation and indirectly produced several premature stop codons (TAG) downstream of the coding sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号