首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thalattosuchia was a diverse clade of marine crocodylomorphs known from the Early Jurassic to the Early Cretaceous. Recent studies have hypothesized that their extinction was two-phased: (1) habitat loss near/at the Jurassic-Cretaceous boundary heavily reduced their morphofunctional diversity, particularly in Europe, while (2) climate change and a shift in marine fauna during the Early Cretaceous (either at the Valanginian-Hauterivian boundary or during the early Hauterivian) finished off the already stressed clade. Unfortunately, the Cretaceous fossil record of thalattosuchians is poor, with only one putative “teleosaurid” specimen and approximately ten metriorhynchid specimens. Here we re-describe the youngest known teleosaurid from the Cretaceous (Valanginian of south-eastern France). Originally considered to be a teleosaurid (possibly Steneosaurus), we demonstrate that it belongs to Metriorhynchidae, and a newly discovered subclade, Plesiosuchina. It differs from Plesiosuchus in the pattern of tooth enamel ornamentation and the variation in dentary alveoli size. Referring this specimen to Metriorhynchidae means there are no definitive Cretaceous teleosaurid specimens. Furthermore, it suggests that both durophagous and piscivorous teleosaurids became extinct at the end of the Jurassic. Interestingly, this is the fourth metriorhynchid lineage known to cross the Jurassic-Cretaceous boundary. As such, it would appear that the two thalattosuchian families responded very differently to the lowering sea levels at the end of the Jurassic: teleosaurids possibly became extinct, while metriorhynchids were seemingly unaffected.  相似文献   

2.
Extant and fossil crocodilians have long been divided into taxonomic and/or ecological groups based on broad patterns of skull shape, particularly the relative length and width of the snout. However, these patterns have not been quantitatively analyzed in detail, and their biomechanical and functional implications are similarly understudied. Here, we use geometric morphometrics and finite element analysis to explore the patterns of variation in crocodilian skull morphology and the functional implications of those patterns. Our results indicate that skull shape variation in extant crocodiles is much more complex than previously recognized. Differences in snout length and width are the main components of shape variation, but these differences are correlated with changes in other regions of the skull. Additionally, there is considerable disparity within general classes such as longirostrine and brevirostrine forms. For example, Gavialis and Tomistoma occupy different parts of morphospace implying a significant difference in skull shape, despite the fact that both are traditionally considered longirostrine. Skull length and width also strongly influence the mechanical performance of the skull; long and narrow morphotypes (e.g., Tomistoma) experience the highest amount of stress during biting, whereas short and broad morphotypes (e.g., Caiman latirostris) experience the least amount of stress. Biomechanical stress and the hydrodynamic properties of the skull show a strong relationship with the distribution of crocodilians in skull morphospace, whereas phylogeny and biogeography show weak or no correlation. Therefore, ecological specializations related to feeding and foraging likely have the greatest influence on crocodilian skull shape. J. Morphol., 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

3.
Theropod dinosaurs, an iconic clade of fossil species including Tyrannosaurus and Velociraptor, developed a great diversity of body size, skull form and feeding habits over their 160+ million year evolutionary history. Here, we utilize geometric morphometrics to study broad patterns in theropod skull shape variation and compare the distribution of taxa in cranial morphospace (form) to both phylogeny and quantitative metrics of biting behaviour (function). We find that theropod skulls primarily differ in relative anteroposterior length and snout depth and to a lesser extent in orbit size and depth of the cheek region, and oviraptorosaurs deviate most strongly from the "typical" and ancestral theropod morphologies. Noncarnivorous taxa generally fall out in distinct regions of morphospace and exhibit greater overall disparity than carnivorous taxa, whereas large-bodied carnivores independently converge on the same region of morphospace. The distribution of taxa in morphospace is strongly correlated with phylogeny but only weakly correlated with functional biting behaviour. These results imply that phylogeny, not biting function, was the major determinant of theropod skull shape.  相似文献   

4.
During the Mesozoic, Crocodylomorpha had a much higher taxonomic and morphological diversity than today. Members of one particularly successful clade, Thalattosuchia, are well‐known for being longirostrine: having long, slender snouts. It has generally been assumed that Thalattosuchia owed their success in part to the evolution of longirostry, leading to a feeding ecology similar to that of the living Indian gharial, Gavialis. Here, we compare form and function of the skulls of the thalattosuchian Pelagosaurus and Gavialis using digital reconstructions of the skull musculoskeletal anatomy and finite element models to show that they had different jaw muscle arrangements and biomechanical behaviour. Additionally, the relevance of feeding‐related mandibular traits linked to longirostry in the radiation of crocodylomorph clades was investigated by conducting an evolutionary rates analysis under the variable rates model. We find that, even though Pelagosaurus and Gavialis share similar patterns of stress distribution in their skulls, the former had lower mechanical resistance. This suggests that compared to Gavialis, Pelagosaurus was unable to process large, mechanically less tractable prey, instead operating as a specialized piscivore that fed on softer and smaller prey. Secondly, innovation of feeding strategies was achieved by rate acceleration of functional characters of the mandible, a key mechanism for the diversification of certain clades like thalattosuchians and eusuchians. Different rates of functional evolution suggest divergent diversification dynamics between teleosaurids and metriorhynchids in the Jurassic.  相似文献   

5.
Insights into morphological diversification can be obtained from the ways the species of a clade occupy morphospace. Projecting a phylogeny into morphospace provides estimates of evolutionary trajectories as lineages diversified information that can be used to infer the dynamics of evolutionary processes that produced patterns of morphospace occupation. We present here a large-scale investigation into evolution of morphological variation in the skull of caecilian amphibians, a major clade of vertebrates. Because caecilians are limbless, predominantly fossorial animals, diversification of their skull has occurred within a framework imposed by the functional demands of head-first burrowing. We examined cranial shape in 141 species, over half of known species, using X-ray computed tomography and geometric morphometrics. Mapping an existing phylogeny into the cranial morphospace to estimate the history of morphological change (phylomorphospace), we find a striking pattern: most species occupy distinct clusters in cranial morphospace that closely correspond to the main caecilian clades, and each cluster is separated by unoccupied morphospace. The empty spaces in shape space are unlikely to be caused entirely by extinction or incomplete sampling. The main caecilian clades have different amounts of morphological disparity, but neither clade age nor number of species account for this variation. Cranial shape variation is clearly linked to phyletic divergence, but there is also homoplasy, which is attributed to extrinsic factors associated with head-first digging: features of caecilian crania that have been previously argued to correlate with differential microhabitat use and burrowing ability, such as subterminal and terminal mouths, degree of temporal fenestration (stegokrotaphy/zygokrotaphy), and eyes covered by bone, have evolved and many combinations occur in modern species. We find evidence of morphological convergence in cranial shape, among species that have eyes covered by bone, resulting in a narrow bullet-shaped head. These results reveal a complex history, including early expansion of morphospace and both divergent and convergent evolution resulting in the diversity we observe today.  相似文献   

6.
We report the only definite specimen of the teleosaurid crocodylomorph genus Machimosaurus from the Kimmeridge Clay Formation of England. This specimen (an isolated tooth) is now the only evidence of Machimosaurus in the Kimmeridge Clay Formation because a large skull and mandible, previously considered to be of Machimosaurus mosae, was recently shown to pertain to a metriorhynchid crocodylomorph. The tooth described herein was originally figured in 1884 as a tooth crown from a metriorhynchid crocodylomorph. However, its conical shape, blunt apex and distinctive enamel ornamentation are characteristic of the teleosaurid genus Machimosaurus. That Machimosaurus, and teleosaurids in general, were so rare in the Kimmeridge Clay Formation suggests that these marine crocodylomorphs did not commonly use this seaway. Their rarity is in contrast to contemporaneous deposits from continental Europe where teleosaurid remains, including Machimosaurus, are far more common. These continental deposits were deposited in shallow-marine/brackish ecosystems, suggesting that teleosaurids were largely restricted to coastal marine environments.  相似文献   

7.
Abstract: Recent revision of the marine metriorhynchid crocodilians indicates that a partial skull previously assigned to the species Metriorhynchus superciliosus and newly discovered postcranial elements from the Kimmeridge Clay of Westbury, Wiltshire belong to a new species of metriorhynchid. This material is herein described and referred to a new species of the genus Dakosaurus, characterised by four apomorphies: the size and shape of the enlarged supratemporal fossae; relatively large teeth, and half the number in relatives; the robust and unornamented cranium; and the angle that the prefrontal makes with the long axis of the skull. In a new phylogenetic analysis, Dakosaurus carpenteri sp. nov. is the basal member of a clade containing also D. maximus and D. andiniensis: it is not so short‐snouted and its teeth are not so few and large as in the other two species, but the new form illustrates the ecological transition among metriorhynchids from a piscivorous diet to high‐order carnivory.  相似文献   

8.
The Triassic–Jurassic extinction resulted in the near demise of the ammonoids. Based on a survey of ammonoid expansion rates, coiling geometry and whorl shape, we use the Raup accretionary growth model to outline a universal morphospace for planispiral shell geometry. We explore the occupation of that planispiral morphospace in terms of both breadth and density of occupation in addition to separately reviewing the occurrence of heteromorphs. Four intervals are recognized: pre‐extinction (Carnian to Rhaetian); aftermath (Hettangian); post‐extinction (Sinemurian to Aalenian) and recovery (Bajocian to Callovian). The pre‐extinction and recovery intervals show maximum disparity. The aftermath is marked by the disappearance of heteromorphs and a dramatic reduction in the range of planispiral morphologies to a core area of the morphospace. It is also characterized by an expansion into an evolute, slowly expanding part of the morphospace that was not occupied prior to the extinction and is soon abandoned during the post‐extinction interval. Aftermath and post‐extinction ammonoid data show a persistent negative correlation whereby rapid expansion rates are associated with narrow umbilical widths and often compressed whorls. The permanently occupied core area of planispiral morphospace represents generalist demersals whose shells were probably optimizing both hydrodynamic efficiency and shell stability. All other parts of the planispiral morphospace, and the pelagic modes of life the shells probably exploited, were gradually reoccupied during the post‐extinction interval. Planispiral adaptation was by diffusion away from the morphospace core rather than by radical jumps. Recovery of disparity was not achieved until some 30 Myr after the extinction event.  相似文献   

9.
Patterns of diversity among lizard skulls were studied from a morphological, phylogenetic, and functional perspective. A sample of 1,030 lizard skulls from 441 species in 17 families was used to create a lizard skull morphospace. This morphospace was combined with a phylogeny of lizard families to summarize general trends in the evolution of the lizard skull. A basal morphological split between the Iguania and Scleroglossa was observed. Iguanians are characterized by a short, high skull, with large areas of attachment for the external adductor musculature, relative to their sister group. The families of the Iguania appear to possess more intrafamilial morphological diversity than families of the Scleroglossa, but rarefaction of the data reveals this to be an artifact caused by the greater number of species represented in Iguanian families. Iguanian families also appear more dissimilar to one another than families of the Scleroglossa. Permutation tests indicate that this pattern is real and not due to the smaller number of families in the Iguanidae. Parallel and convergent evolution is observed among lizards with similar diets: ant and termite specialists, carnivores, and herbivores. However, these patterns are superimposed over the more general phylogenetic pattern of lizard skull diversity. This study has three central conclusions. Different clades of lizards show different patterns of disparity and divergence in patterns of morphospace occupation. Phylogeny imposes a primary signal upon which a secondary ecological signal is imprinted. Evolutionary patterns in skull metrics, taken with functional landmarks, allow testing of trends and the development of new hypotheses concerning both shape and biomechanics.  相似文献   

10.
Oviraptorosaurs are bird‐like theropod dinosaurs that thrived in the final pre‐extinction ecosystems during the latest Cretaceous, and the beaked, toothless skulls of derived species are regarded as some of the most peculiar among dinosaurs. Their aberrant morphologies are hypothesized to have been caused by rapid evolution triggered by an ecological/biological driver, but little is known about how their skull shapes and functional abilities diversified. Here, we use quantitative techniques to study oviraptorosaur skull form and mandibular function. We demonstrate that the snout is particularly variable, that mandibular form and upper/lower beak form are significantly correlated with phylogeny, and that there is a strong and significant correlation between mandibular function and mandible/lower beak shape, suggesting a form–function association. The form–function relationship and phylogenetic signals, along with a moderate allometric signal in lower beak form, indicate that similar mechanisms governed beak shape in oviraptorosaurs and extant birds. The two derived oviraptorosaur clades, oviraptorids and caenagnathids, are significantly separated in morphospace and functional space, indicating that they partitioned niches. Oviraptorids coexisting in the same ecosystem are also widely spread in morphological and functional space, suggesting that they finely partitioned feeding niches, whereas caenagnathids exhibit extreme disparity in beak size. The diversity of skull form and function was likely key to the diversification and evolutionary success of oviraptorosaurs in the latest Cretaceous.  相似文献   

11.
Both extinct and extant crocodilians have repeatedly diversified in skull shape along a continuum, from narrow‐snouted to broad‐snouted phenotypes. These patterns occur with striking regularity, although it is currently unknown whether these trends also apply to microevolutionary divergence during population differentiation or the early stages of speciation. Assessing patterns of intraspecific variation within a single taxon can potentially provide insight into the processes of macroevolutionary differentiation. For example, high levels of intraspecific variation along a narrow‐broad axis would be consistent with the view that cranial shapes can show predictable patterns of differentiation on relatively short timescales, and potentially scale up to explain broader macroevolutionary patterns. In the present study, we use geometric morphometric methods to characterize intraspecific cranial shape variation among groups within a single, widely distributed clade, Caiman crocodilus. We show that C. crocodilus skulls vary along a narrow/broad‐snouted continuum, with different subspecies strongly clustered at distinct ends of the continuum. We quantitatively compare these microevolutionary trends with patterns of diversity at macroevolutionary scales (among all extant crocodilians). We find that morphological differences among the subspecies of C. crocodilus parallel the patterns of morphological differentiation across extant crocodilians, with the primary axes of morphological diversity being highly correlated across the two scales. We find intraspecific cranial shape variation within C. crocodilus to span variation characterized by more than half of living species. We show the main axis of intraspecific phenotypic variation to align with the principal direction of macroevolutionary diversification in crocodilian cranial shape, suggesting that mechanisms of microevolutionary divergence within species may also explain broader patterns of diversification at higher taxonomic levels.  相似文献   

12.
Captive broad snouted crocodylians are generally thought to have wider, shorter rostra than their wild counterparts. Interpreted to reflect morphological change in response to the conditions of captivity, this qualitative pattern could affect the utility of these animals in a variety of fields of research. However, due to relative ease of access and availability of life history data, captive animals are often utilized in actualistic research. Thus, this issue should be addressed in more detail. Here we explore snout shape variation between captive and wild members of Alligator mississippiensis using two‐dimensional (2D) morphometric techniques. Several landmark schemesare used to assess the utility of different aspects of morphology in distinguishing the groups. While statistical analyses consistently differentiated between the groups, the area of morphospace occupied by wild members of A. mississippiensis generally overlapped with the larger area encompassing the captive specimens. This indicates that the captive condition is not as uniform as previously thought and instead encompasses a large spectrum of morphologies, ranging from the stereotypical broad, shortened snouts to outlines that are indistinguishable from the wild morphotype. These results align well with the interpretation that this change reflects an extreme example of ecophenotypy, since ranched, farmed, or zoo organisms are held in an array of enclosures, ranging from indoor, climate controlled pens to outdoor, more natural areas. This variation in environments should be reflected in different reactions to the animals' surroundings, resulting in a broad spectrum of morphotypes. While wild specimens are still preferred, especially for fine scale analyses, these results indicate that not all captive members of A. mississippiensis exhibit the extreme morphological alterations often cited in the literature. Weighing the conditions in which the animals are held and exploring the possibility of morphological differences against the benefits of using captive specimens should be part of any actualistic study. J. Morphol. 277:866–878, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

13.
The existence of cryptic species in the midday jird (Meriones meridianus) has been suggested in literature, although based on little empirical data to support this hypothesis. In this study, a two‐dimensional landmark‐based geometric morphometric approach was used to investigate whether patterns in intraspecific variation in skull shape and size exist, using 110 skull specimens from more than 20 different localities along the distribution range of M. meridianus. This is the first study of morphological differences on such a big sample size and geographical range, and it tries to find whether skull shape variation in this species is best described as being clinal or rather reflecting cryptic diversity. The latter seems to be the case, as a dimorphic skull phenotype was found, reflecting a geographic disparity between the Middle East and the Far East specimens both in shape and in size. Distinct cranial differences were found in the overall cranial size and, also at the level of the inflation of the bulla, the elongation of the nasal, the length of the teeth row and the incisive foramen, as well as the distance in between the latter two. It thus seems that M. meridianus from Middle East is morphologically distinct from that of the Far East. Furthermore, our results also demonstrate that clinal variation could explain variation within Middle East populations, whereas a more heterogenous pattern is found for those of the Far East. The hypothesis that the observed phenotypic variation may reflect cryptic species is discussed, with the recommendation for a thorough taxonomical revision of the genus in the region.  相似文献   

14.
Seahorses and pipefishes are extremely fast suction feeders, and the fast strikes probably result in large and rapid pressure drops in the buccal cavity. These rapid drops in pressure imply heavy mechanical loading on the cranium; hence, the feeding apparatus is thought to experience high levels of stress. We used finite element analysis (FEA) to investigate where stress accumulates under strong suction pressure, and whether there is a difference in craniofacial stress distribution between long‐ and short‐snouted species. The expectation was that high stress levels would occur at the articulations and in the cartilaginous regions of the cranium, and that, given the same pressure, the skulls of long‐snouted species would exhibit lower stress levels than the skulls of short‐snouted species, as an evolutionary increase in snout length might have made these species structurally better adapted to deal with high suction pressures. The results partially support the first hypothesis: except for Dunckerocampus dactyliophorus, all models show peak stress concentrations at the articulations and cartilaginous regions. However, no simple relationship between snout length and the magnitudes of stress predicted by the FEA was found. In an attempt to explain this lack of a relationship, the methodology was evaluated by assessing the effect of hyoid position and model construction on the stress distribution. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 680–691.  相似文献   

15.
There are a number of studies relating to skull morphology differences within the carnivoran clades of both placentals and metatherians. It is difficult to compare these studies because of differences in taxonomic sampling, for example some include fossil taxa while others include non‐carnivoran placentals. As a consequence, we studied mandible morphology in a broad range of both extant and extinct carnivorous species, including Carnivora, Marsupialia and Sparassodonta to test for differences between these clades. We used geometric morphometrics and two disparity indexes, the variance and Procrustes distances mean. When including fossil species, we found no significant differences for both disparities in some analyses, except after the exclusion of the sabretooth morphotype. This can be explained by the extreme morphology of this morphotype, which increases the variance and reduces the disparity effect of the other species in the analyses. Using Procrustes distances, we found significant differences in disparity distances between Carnivora and Metatheria for most of the analyses. We also found significant differences using the variance index in some analyses. The mandibular disparity in Carnivora is greater than in carnivorous metatherian mammals for most of the cases and this can be related with differences in evolutionary history and constraints of both groups. The pattern found in the mandible is similar to that found in the face of the skull but was not observed in the braincase, due to differences in skull function and mandible function.  相似文献   

16.
Characterizing patterns of observed current variation, and testing hypotheses concerning the potential drivers of this variation, is fundamental to understanding how morphology evolves. Phylogenetic history, size and ecology are all central components driving the evolution of morphological variation, but only recently have methods become available to tease these aspects apart for particular body structures. Extant monitor lizards (Varanus) have radiated into an incredible range of habitats and display the largest body size range of any terrestrial vertebrate genus. Although their body morphology remains remarkably conservative, they have obvious head shape variation. We use two‐dimensional geometric morphometric techniques to characterize the patterns of dorsal head shape variation in 36 species (375 specimens) of varanid, and test how this variation relates to size, phylogenetic history and ecology as represented by habitat. Interspecific head shape disparity is strongly allometric. Once size effects are removed, principal component analysis shows that most shape variation relates to changes in the snout and head width. Size‐corrected head shape variation has strong phylogenetic signal at a broad level, but habitat use is predictive of shape disparity within phylogenetic lineages. Size often explains shape disparity among organisms; however, the ability to separate size and shape variation using geometric morphometrics has enabled the identification of phylogenetic history and habitat as additional key factors contributing to the evolution of head shape disparity among varanid lizards.  相似文献   

17.
18.
Morphological disparity has increasingly been used as an alternative measure of biological diversity based on the shape features of organisms. In this study, we investigated the species diversity and morphological disparity of benthic Desmidiales in Central European peatland pools. The shape features of cells were determined using the 3-D elliptical Fourier analysis of their frontal and lateral views. The resulting morphospace was used to calculate the contributions of localities and species to the morphological variation. In addition, the disparity of samples and their average cell complexity (indicating intricacy of cell shapes) was evaluated. These data were related to species diversity data and to the abiotic factors. Species diversity was positively correlated with pH and conductivity. The low-pH localities generally supported a more variable species composition than did slightly acidic to neutral localities. Conversely, the total nitrogen concentrations of these areas negatively correlated with species diversity. Interestingly, partial morphological disparity (measuring the contribution of a sample to the overall morphological variation) did not correlate with species diversity. On the contrary, several mountain peat bog localities had high disparity values, irrespective of their rather low species diversity. In addition, several samples from minerotrophic fens with high diversity had average or low values of partial morphological disparity. These results indicate the relative importance of mountain peat bogs for the total morphological diversity of Desmidiales within the region that could not be ascertained solely from species diversity data. The inner morphological disparity of samples was highly correlated with their species diversity. Species of the genus Micrasterias, Hyalotheca dissiliens and Desmidium species had the highest partial morphological disparity, thus indicating their marginal position within the morphospace. Micrasterias and Euastrum species had the highest complexity values. The average cell complexity of individual samples did not correlate with their diversity or disparity; however, it was positively correlated with the levels of total nitrogen and phosphorus, and illustrates a pattern different from that arrived at by species diversity data. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Handling editor: J. Padisak  相似文献   

19.
The skulls of 33 extant cat species were characterized through three‐dimensional geometric morphometrics using 20 landmarks. A principal component analysis (PCA) was performed with Procrustes fitted coordinates, and the PC‐scores were phylogenetically corrected by independent contrasts method. Three PCs allowed for the definition of five cat skull patterns. PC1: ‘snouted/massive‐headed cats’ (genus Panthera) opposing the ‘round‐headed small cats’ (genus Oncifelis, Prionailurus rubiginosus, Prionailurus bengalensis, among other small cats); PC2: ‘tapering‐headed cats’ (Neofelis nebulosa, Herpailurus yagouaroundi, Prionailurus planiceps) opposing the ‘stout‐headed cats’ (Acinonyx jubatus, Uncia uncia, Otocolobus manul, Felis margarita, and Felis nigripes); and PC3: ‘low profiled‐headed cats’ (mostly, Pr. planiceps). A sixth pattern, the ‘generalized skull’, observed in the Caracal lineage, genus Lynx, Leopardus pardalis, and Catopuma temminckii, indicates a morphological convergence among midsized‐cats. The morphological trends ‘snouted/massive’ and ‘round’ clearly denote a co‐evolution between size and shape. The other skull patterns evolved unrelatedly to the size (i.e. their allometric variations are not a size function). Nevertheless, each species comprises an amalgam of these patterns, so the influence of the size permeates, in some extent, the skull morphology along all cat lineages. The felid ecomorphological fit to hypercarnivory is obvious; however, different skull shapes in same‐sized species with similar habits, indicate that the variation in the skull morphology may result from phenotypic fluctuations, whose adaptive value (if indeed there is any) is still obscure. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 176–190.  相似文献   

20.
Several studies investigating macroevolutionary skull shape variation in fossil reptiles were published recently, often using skull reconstructions taken from the scientific literature. However, this approach could be potentially problematic, because skull reconstructions might differ notably due to incompleteness and/or deformation of the material. Furthermore, the influence of intraspecific variation has usually not been explored in these studies. Both points could influence the results of morphometric analyses by affecting the relative position of species to each other within the morphospace. The aim of the current study is to investigate the variation in morphometric data between skull reconstructions based on the same specimen, and to compare the results to shape variation occurring in skull reconstructions based on different specimens of the same species (intraspecific variation) and skulls of closely related species (intraspecific variation). Based on the current results, shape variation of different skull reconstructions based on the same specimen seems to have generally little influence on the results of a geometric morphometric analysis, although it cannot be excluded that some erroneous reconstructions of poorly preserved specimens might cause problems occasionally. In contrast, for different specimens of the same species the variation is generally higher than between different reconstructions based on the same specimen. For closely related species, at least with similar ecological preferences in respect to the dietary spectrum, the degree of interspecific variation can overlap with that of intraspecific variation, most probably due to similar biomechanical constraints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号