首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract. We conducted a study in the laurel forest of Tenerife (Canary Islands, Spain) to describe the characteristics of natural gaps and to assess the role of treefall gaps in forest dynamics. Very little is left of the natural laurel forest with i.a. Laurus azorica, Ilex canariensis and Prunus lusitanica. We looked for treefall gaps in 80 randomly located 2500 m2 plots. These plots represented ca. 1% of the remaining and protected laurel forest of Tenerife. We recorded the characteristics of the species causing the gaps, gap architecture and gap age in all observed gaps larger than 10 m2. We inventoried the regeneration in each gap and in a neighbouring control plot with the same topography. Large gaps (>75 m2) were not common in the laurel forest. The absence of large gaps could be due to the physiognomy of the vegetation, the mild weather or the rarity of disturbances. Instead of forming gaps, many trees decompose in place and branches from neighbouring trees and suckers from the decomposed trees occupy the free space. Also, the high rate of asexual regeneration could contribute to the fast closing of the gap. The number of gaps created by Prunus lusitanica was higher than expected (based on canopy composition) while Ilex canariensis and Laurus azorica created fewer gaps. In this evergreen forest, differences between gap and non-gap conditions are not as distinct as in other forest types. Only 0.4% of the canopy is in the gap phase (0.6% including gaps smaller than 10m2). No differences were found in patterns of regeneration between gap and non-gap phases in the forest. Gaps do not explain the persistence of pioneer species in the laurel forest.  相似文献   

2.
The laurel-forest of the Canary Islands is a montane cloud-forest. In order to gain some knowledge on the processes that maintain tree species diversity, we conducted an analysis of three different laurel-forest plots of the Anaga massif (Tenerife), varying in canopy composition but growing under similar environmental conditions. For each plot we recorded basal area of the canopy trees (h<1.30 m), the density of suckers and seedlings (h>1.30 m), as well as seed-bank composition. The plots have similar regeneration composition, which appears to be independent of differences in canopy composition. Laurus azorica is the most common seedling species, whereas Prunus lusitanica is the most abundant species among suckers and basal shoots. Neither Erica arborea nor Myrica faya, the two main canopy trees in one of the plots, were found in any of the stands as seedlings or suckers, despite their existence as viable seeds in the seed-bank. The regeneration composition and the canopy composition in one of the plots is remarkable different, revealing differents dynamics processes in the three plots. The results suggest the existence of three well-defined ecological groups: pioneer (regeneration primarily by seedlings), non-pioneer (regeneration by seedlings and suckers) and remnant species (regeneration primarily by suckers).These three groups and the effect of small scale disturbances (natural and human-induced), could help to understand the maintenance of tree species richness.  相似文献   

3.
In 1979 and 1991, trees over 2.0 m high were measured and mapped together with their crown projections to clarify stand dynamics and shifts in canopy dominants during this period, in a permanent plot of 0.525 ha in an old-growth, cool temperate mixed forest of Mt Moiwa, Central Hokkaido, northern Japan. During this period, an abundant recruitment of trees was observed after some canopy trees were felled by a typhoon in 1981 leaving gaps in the canopy. Vigorous recruitment was observed forTilia japonica, Acer mono andPrunus ssiori. These species had different regeneration sites in relation to canopy state. NeitherUlmus japonica norKalopanax pictus had any recruits during the 12 year period even in gaps. The equilibrium composition of tree species projected from transition probability analysis also implied the above shift of dominant species during the 12 year period in the plot and suggested that the present forest is not in an equilibrium state.  相似文献   

4.
Climate change is altering the conditions for tree recruitment, growth, and survival, and impacting forest community composition. Across southeast Alaska, USA, and British Columbia, Canada, Callitropsis nootkatensis (Alaska yellow‐cedar) is experiencing extensive climate change‐induced canopy mortality due to fine‐root death during soil freezing events following warmer winters and the loss of insulating snowpack. Here, we examine the effects of ongoing, climate‐driven canopy mortality on forest community composition and identify potential shifts in stand trajectories due to the loss of a single canopy species. We sampled canopy and regenerating forest communities across the extent of C. nootkatensis decline in southeast Alaska to quantify the effects of climate, community, and stand‐level drivers on C. nootkatensis canopy mortality and regeneration as well as postdecline regenerating community composition. Across the plot network, C. nootkatensis exhibited significantly higher mortality than co‐occurring conifers across all size classes and locations. Regenerating community composition was highly variable but closely related to the severity of C. nootkatensis mortality. Callitropsis nootkatensis canopy mortality was correlated with winter temperatures and precipitation as well as local soil drainage, with regenerating community composition and C. nootkatensis regeneration abundances best explained by available seed source. In areas of high C. nootkatensis mortality, C. nootkatensis regeneration was low and replaced by Tsuga. Our study suggests that climate‐induced forest mortality is driving alternate successional pathways in forests where C. nootkatensis was once a major component. These pathways are likely to lead to long‐term shifts in forest community composition and stand dynamics. Our analysis fills a critical knowledge gap on forest ecosystem response and rearrangement following the climate‐driven decline of a single species, providing new insight into stand dynamics in a changing climate. As tree species across the globe are increasingly stressed by climate change‐induced alteration of suitable habitat, identifying the autecological factors contributing to successful regeneration, or lack thereof, will provide key insight into forest resilience and persistence on the landscape.  相似文献   

5.
Taylor  Scott O.  Lorimer  Craig G. 《Plant Ecology》2003,167(1):71-88
Gap capture methods predict future forest canopy species composition from the tallest trees growing in canopy gaps rather than from random samples of shaded understory trees. We used gap capture methods and a simulation approach to forecast canopy composition in three old oak forests (Quercus spp.) on dry-mesic sites in southern Wisconsin, USA. In the simulation, a gap sapling is considered successful if it exceeds a threshold height of 13–17 m (height of maximum crown width of canopy trees) before its crown center can be overtopped by lateral crown growth of mature trees. The composition of both the tallest gap trees and simulated gap captures suggests that 68–90% of the next generation of canopy trees in the stands will consist of non-Quercus species, particularly Ulmus rubra, Carya ovata and Prunus serotina. Quercus species will probably remain as a lesser stand component, with Quercus alba and Quercus rubra predicted to comprise about 19% of successful gap trees across the three stands. Several methods of predicting future canopy composition gave similar results, probably because no gap opportunist species were present in these stands and there was an even distribution of species among height strata in gaps. Gap trees of competing species already average 11–13 m tall, and mean expected time for these trees to reach full canopy height is only 19 years. For these reasons, we suggest that dominance will shift from oaks to other species, even though late successional species (e.g., Acer and Tilia) are not presently common in the understories of these stands.  相似文献   

6.
Size and age structure, spatial analysis, and disturbance history were used to analyse the population structures and regeneration patterns of 8 conifer stands in the central western Cascade Range, Oregon, USA. Variation in forest structure reflected the effects of frequent (20–50 yr) low-intensity fires and treefalls, infrequent (100–200 yr) localised, intense fires, and extensive fires that resulted in stand replacement (every ca 400 yr?).The amount of canopy removed and the size of openings formed by fires and treefalls were important determinants of subsequent forest establishment. Single or several species stands of Pseudotsuga and/or Abies procera, or mixed species stands of Pseudotsuga, Abies procera, Tsuga heterophylla and Abies amabilis established in openings where intense fires had removed most of the canopy trees over several ha. Multi-tiered and multi-aged stands, often containing 400–500 yr-old Pseudotsuga and variously-sized more or less even-aged patches of younger shade tolerant Tsuga heterophylla and/or Abies amabilis, occurred where lower-intensity fires did not kill all overstorey trees or where treefalls occurred after the initial fire.Current regeneration processes are influenced by overstorey composition, the availability and size of canopy openings, and the availability of substrates suitable for regeneration. Tsuga heterophylla and Abies amabilis established under Pseudotsuga menziesii and Abies procera canopies and in small canopy openings (<400 m2) created by windfalls, but rarely under Tsuga. Down logs and stumps were favoured establishment sites for Tsuga.The disturbance regime of fires of low-to moderate-intensity, windfalls, and occasional fires that result in extensive stand replacement contrasts with the pattern of infrequent, catastrophic disturbances proposed for other areas of the Pacific Northwest. Although fires at stand establishment commonly determine much of the composition, structure, and subsequent stand development, canopy replacement by shade tolerant species occurs as the different life histories of the species are expressed in response to various disturbances differing in intensity and frequency. Such a non-equilibrium view of vegetation change is consistent with many other fire-dominated forests of the western United States.  相似文献   

7.
Abstract. Stand mapping and vertical and oblique tree crown projections were used to study gap characteristics and gap effects on the regeneration and stand development of Larix gmelini. The hypothesis is that waves of advance Larix regeneration are recruited into the canopy layer following the creation of canopy openings. In old-growth Larix forests of the northern Da Xingan Ling Mts., at 52 °N, obliquely projected gaps (OPG) begin at a distance of 60 - 80% of the canopy tree height from the southernmost stems bordering the gap and thus the OPGs may extend beyond the northern boundaries of the vertically projected gaps (VPG). Changes in the environment and resource availability in the OPG result in increased Larix sapling survival. Due to a greater incidence of light, 10 - 30 yr old OPG saplings were more abundant than saplings in either a near-oblique projected gap (NOPG) or in the shadow of obliquely projected crowns (SOPC). The survival of saplings more than 30-yr old was highest when they were found in the OPG of one canopy opening and the VPG of another. This means that, following recruitment into an OPG, saplings then require the space found in a VPG to permit growth into the canopy. Thus, various-sized gaps contribute to the survival of different aged saplings by increasing the complexity of stand structure. Although individuals may regenerate in an OPG, successful recruitment into the canopy requires the available growing space of a VPG. This research suggests that shade intolerant Larix gmelini can maintain its canopy dominance without fire via gap regeneration.  相似文献   

8.
Question: An ancient woodland site with a long history of coppicing and heavy grazing was protected from domesticated stock in 1955. Results of a vegetation-monitoring experiment were subsequently published in 1983. This study followed up the original research to investigate whether observed trends were as predicted. These included a shift in tree species composition in favour of shade-tolerant species, beech (Fagus sylvatica) and rowan (Sorbus aucuparia), at the expense of light-demanding birch (Betula spp.) and oak (Quercus petraea agg.), and progress towards a typical woodland ground flora. Location: Peak District National Park, United Kingdom. Methods: The mixed oak–birch woodland was re-surveyed in 2011. Two enclosures (1955 and 1980s) and an unenclosed control area were investigated. Overstorey structure and composition was assessed by measuring canopy openness and the girths of all trees and saplings. Herb layer species composition was also recorded in 28 vegetation plots. Results: We demonstrated a progressive decline in the number of mature oaks and birch in the old enclosure although they still regenerated successfully. Only a few individuals of beech and rowan appeared. Herb layer species composition differed between the subareas but since the 1980s, the temporal change in the old enclosure was negligible. The new enclosure followed a similar pattern in both canopy and herb layer as observed in the early years in the old enclosure. However, the control subarea had no regeneration of woody species and limited ground flora. Conclusions: After nearly 60 years, the replacement of light-demanding dominants by shade-tolerant trees was still limited, probably by low pH and stable light conditions. The findings are pertinent to the impacts of large herbivore grazing (domestic stock or wild) on woodland dynamics.  相似文献   

9.
Changes in the composition of a Fagus-Acer (Beech-Sugar maple) forest in southeastern Wisconsin over a 16-yr period from 1971 to 1987 are analyzed in relation to a severe glaze (ice) storm disturbance occurring within the census period. Landscape topography created ‘windward’ and ‘leeward’ forest aspects with respect to storm severity, which resulted in greater canopy opening on the windward aspect. In the tree stratum, most species remained stable in density and most of the common species increased in basal area into larger size classes. However, Fagus grandifolia, Ulmus rubra, and the small tree Ostrya virginiana suffered net losses that suggest synergistic effects between glaze storm disturbance and other factors upon tree mortality. In the sapling stratum, canopy opening strongly promoted release of shade-to levant Acer sac-charum. On the windward forest aspect, sapling densities of less shade-tolerant species also increased, in contrast to the absence of such increases on the leeward forest aspect. In the shrub (regeneration) stratum, species responses were heterogeneous. Regeneration of most species increased over the 16-yr period, and some less shade-tolerant species showed increased regeneration differentially on the windward forest aspect. Overall, disturbance appears to have accelerated forest succession toward increased dominance by A. saccharum and persistence of both Fagus and Tilia americana through their capacities for root sprouting. However, forest succession was retarded somewhat on the windward aspect through increased recruitment of less-shade tolerant species. These results parallel those of other studies of glaze storm disturbance, and they illustrate how spatially heterogeneous disturbance intensity may contribute to maintenance of forest diversity.  相似文献   

10.
Stands of Subtropical Montane Cloud Forest were studied in areas under different land use regimes near Los Toldos (NW Argentina). Circular plots were used to calculate density and basal area of trees with dbh > 10 cm; and density of trees with dbh < 10 cm. The stands were classified and grouped as a function of basal area. Five structures were recognized, with different proportions of Juglans australis, Podocarpus parlatorei and shade-tolerant species like Blepharocalyx salicifolius, Allophylus edulis and Myrcianthes sp. Less disturbed area stands had a higher basal area and greater dbh for all species, and shade-tolerant species in the canopy. In the most disturbed area, all canopy species were shade intolerant and regeneration was dominated by shade-tolerant species. The differences in composition, basal area, stem diameter class distribution and regeneration indicate that the structure types corresponded to different stages of the successional process, and the regeneration of the most disturbed areas suggest a tendency towards the composition of mature forest.  相似文献   

11.
To examine the effects of thinning intensity on wind vulnerability and regeneration in a coastal pine (Pinus thunbergii) forest, thinning with intensities of 20%, 30% and 50% was conducted in December 1997; there was an unthinned treatment as the control (total 8 stands). We re-measured the permanent sites to assess the regeneration characteristics 11 years after thinning. In the 50% thinned stand, seedlings aged from 2 to 10 years exhibited the highest pine seedling density and growth. The age composition ranged from 1–3 years with densities of 9.9 and 5.1 seedlings m−2 in 30% and 20% thinned stands; only 1-year-old seedlings with a density of 6.1 seedlings m−2 in the unthinned stand. Similar trends were found for the regeneration of broadleaved species such as Robinia pseudoacacia and Prunus serrulata. We speculate that the canopy openness and moss coverage contributed to the regeneration success in the 50% thinned stand, while the higher litter depth and lack of soil moisture induced the regeneration failure in the unthinned stand. The stands thinned at 20% or 30% were less favourable for pine regeneration than the stands thinned at 50%. Therefore, thinning with less than 30% canopy openness (20% and 30% thinned stands) should be avoided, and thinning at higher than 30% canopy openness (50% thinned stand, approximately 1500 stems ha−1 at ages 40–50 years) is suggested for increasing regeneration in the coastal pine forest. The implications of thinning-based silviculture in the coastal pine forest management are also discussed. The ongoing development of the broadleaved seedlings calls for further observations.  相似文献   

12.
Denslow JS  Uowolo AL  Hughes RF 《Oecologia》2006,148(1):118-128
While invasive species may be visible indicators of plant community degradation, they may not constitute the only, or even the primary, limitation to stand regeneration. We used seed-augmentation and grass-removal experiments under different canopy conditions to assess the relative importance of dispersal limitation, resource availability, and competition on seedling establishment in the understory shrubs Sophora chrysophilla, Dodonea viscosa, and Pipturus albidus in a montane mesic forest in Hawaii. The study location was an Acacia koa-Metrosideros polymorpha forest at 1000–1500 m elevation on the leeward side of Hawaii Island; it is a closed-canopy forest historically subject to logging and grazing by cattle and sheep and currently dominated by the exotic grass, Ehrharta stipoides, in the herb layer. Seedling establishment after 1 and 2 years was strongly dispersal limited in Sophora and Dodonea, but not in Acacia, a non-augmented species in which abundant seedlings established, nor in Pipterus, in which only one seedling established in 2 years. Grass cover reduced seedling establishment in Acacia, Sophora, and Dodonea and, for the latter two species, seedling establishment was substantially greater in the warmer, more moist forest at the lowest elevation. Light, moisture, and resin-captured N and P were more strongly affected by elevation and canopy composition than by grass cover, but in most cases seedling establishment was not positively correlated with resource availability. Limitations to the establishment of woody seedlings in this forest-grassland mixture vary among species; however, both dispersal limitation and competition from a shade-tolerant grass are important deterrents to regeneration in these forests.  相似文献   

13.
Abstract. Population structures were used to infer regeneration patterns of the conifers Podocarpus nubigena and Saxegothaea conspicua and associated angiosperm tree species in six stands in the temperate rainforests of the coastal ranges of southern Chile. On poorly-drained, nutrient-poor and high altitude sites, where most of the associated species were fairly shade-intolerant and light-crowned, dense all-aged populations and the presence of numerous saplings beneath the canopy suggested continuous regeneration of both P. nubigena and S. conspicua. On more favourable sites, where several of the associated angiosperms were highly shade-tolerant and densecrowned, both conifers, particularly P. nubigena, were less abundant, and their regeneration from seed appeared to be sporadic. S. conspicua's great longevity (≥ 750 yr) and frequent vegetative reproduction are probably crucial to its persistence in competition with shade-tolerant broadleaved species in undisturbed stands on favourable sites. Results of this study, and a review of related literature on southern temperate forests are not consistent with the hypothesis that heavily-shaded, infrequently-disturbed habitats are an evolutionary refuge for conifers. Sites likely to have high leaf area indices and infrequent disturbance are better exploited by shade-tolerant angiosperms.  相似文献   

14.
Relationships between canopy cover and tree regeneration were determined for various species in cove forests of the Great Smoky Mountains. Old-growth stands were sampled with six plots covering a total area of 4.8 ha. Each plot was subdivided into contiguous 10×10 m quadrats. Canopy cover overlying each of the 480 quadrats was characterized with three different indices based on visual estimates of cover. Influences of: (1) overlying cover, (2) proximate openings, and (3) total area of proximate openings on quadrat regeneration densities were determined. Most species reproducing by seed and some species reproducing by vegetative means had higher densities in quadrats with openings, but only the intolerants were highly dependent on gaps. Tsuga canadensis, a very shade-tolerant species, was one of the few species with abundant regeneration beneath dense canopy cover. In general, understory areas near gaps had somewhat higher regeneration densities than other areas with overlying cover. Several shade-tolerant species showed a positive regeneration density response to canopy openings and an ability to regenerate in gaps 0.01–0.03 ha in area. These openings were too small for intolerant species. Many species exhibited a positive response to total size of the proximate opening(s). A sharp increase in regeneration density with area of the opening(s) was evident at approximately 0.04 ha for the shade-intolerant species.  相似文献   

15.
16.

We investigated stand dynamics of an abandoned evergreen coppice (c.a. 100 years old) over the course of 21 years in south Kyushu, Japan. The study stand showed a change in species composition from being dominated by Castanopsis cuspidata to Distylium racemosum, that is, from a typical coppice species to a typical climax species of the region. However, the relative dominance of Castanopsis spp. appeared to remain very high in the study stand compared to that in the Aya Research Site, a typical old-growth forest in the region, due to abundant C. cuspidata canopy trees of coppice origin. This suggests that the species composition of the study stand remained distinct from that of climax forests in the region. On the other hand, D. racemosum did not show a significant change in diameter at breast height (DBH) class frequency distribution from 1996 to 2017, probably due to the slow growth of this species. However, generalized linear models (GLMs) were used to identify the factors affecting better DBH growth of this species in the gap, indicating the potential for further development of the population structure when small trees are released from suppression of canopy trees. This suggests, inversely, that the development of the D. racemosum population was heavily suppressed by abundant C. cuspidata canopy trees of coppice origin that survived to the age of nearly 100 years. Further, large typhoons are suggested to cause severe canopy disturbances that remove canopy trees of C. cuspidata, which might be important for promoting further forest succession, even for a nearly 100-year-old evergreen old coppice.

  相似文献   

17.
Abstract. This study deals with stand dynamics over a 6‐yr period in a conifer/broad‐leaved mixed forest in Hokkaido, northern Japan. The annual rates of gap formation and recovery were 81.3 m2/ha and 66.7 m2/ha, respectively and turnover time of the canopy was 125 yr. The recruitment processes of the component species in this cool‐temperate forest were governed by different canopy types: gap, canopy edge and closed canopy. Magnolia obovata regenerated in canopy edges, and Acer mono and Prunus ssiori regenerated in canopy edges and gaps. The results suggested that the mosaic structure made up of closed canopy, canopy edge and gap was related to various regeneration niches. Abies sachalinensis had high mortality rates, initiating gap expansion. The transition probabilities from closed canopy or canopy edge to gap for deciduous broad‐leaved trees were lower than for A. sachalinensis, which implies that the difference in degeneration patterns of conifer and broad‐leaved canopies contributes to the heterogeneity of spatial structure in the mixed forests. Spatial dynamics were determined by a combination of gap expansion by A. sachalinensis (neighbour‐dependent disturbance) and gap formation by deciduous broad‐leaved trees (random disturbance).  相似文献   

18.
The role of exotic tree plantations for biodiversity conservation is contested. Such plantations nevertheless offer various ecosystem service benefits, which include carbon storage and facilitation of indigenous tree species regeneration. To assess forest restoration potential in tropical exotic tree plantations, we assessed native cloud forest tree regeneration in 166 plots in ca. 50‐year‐old plantations of five timber species that are widely used in tropical plantations (Pinus patula, Eucalyptus saligna, Cupressus lusitanica, Grevillea robusta and Acacia mearnsii). Differences in species abundance, diversity and composition were compared among plantations, and between plantations and disturbed and undisturbed indigenous Afromontane cloud forest (southeast Kenya) relicts after controlling for environmental variation between plots (i.e. altitude, distance to indigenous forest, soil depth, slope, aspect) and for environmental and stand structural variation (i.e. dominant tree height and basal area). Regenerating trees were mostly early‐successional species. Indigenous tree species regeneration was significantly higher in Grevillea plantations, where the seedling community also included late‐successional tree species. Regeneration under Eucalyptus was particularly poor. Acacia had a strong invasive nature, reducing its potential role and usefulness in indigenous forest restoration. Our study underlined that exotic tree plantations have differential effects on native tree species regeneration, with high potential for Grevillea plantations and low potential for invasive exotic species.  相似文献   

19.
The bamboo Chusquea quila (Poaceae:Bambuseae) is the most abundant understory species ofNothofagus-dominated forests at low elevations inthe Chilean Lake District. Species of this genus strongly inhibit theestablishment and growth of tree species, especially those of the genusNothofagus. At intervals of many years, this bambooflowerssynchronously and dies, creating large-scale disturbances. The mainobjective of this study was to determine the influence of bamboo dieback ontreeregeneration, especially of shade-intolerant species. The forest studiedis a remnant stand of old-growth forest dominated by emergent individualsof N. obliqua and Eucryphiacordifoliawhich project about 10 m above a main canopy formed byAextoxicon punctatum, Laureliaphilippiana, and Podocarpus saligna. Treeseedlings that established prior to bamboo dieback were recorded in six gapsdensely covered by bamboo. After the dieback event in the early 1990's,recruitment, height growth and survivorship were monitored in four gaps duringtwo growing seasons. After the synchronous mass flowering and death ofChusqueaquila, both reorganization of advance regeneration and new seedlingrecruitment were observed in gaps. The advance regeneration consisted mainly ofthe shade-tolerant species A. punctatum,L. philippiana, and Amomyrtus luma.These species together with E. cordifolia accounted forover 90% of the total individuals in gaps. During the following twoseasons, c. 40% of the advance regeneration either died or was damaged.Root suckers of E. cordifolia and L.philippiana were taller and grew faster than the seedlings of otherspecies. Nothofagus obliqua was unable to establishadvanceregeneration in gaps formerly dominated by bamboo. New recruitment resulted inthe synchronized establishment of treeseedlings, especially less shade-tolerant species such as N.obliqua, Aristotelia chilensis,Rhaphithamnus spinosus, and E.cordifolia. These species recruited into the gaps almost entirelyduring the first season right after the bamboo dieback. However, by the end ofthe second season, these species had a lower density due to a combination oflower recruitment rate, shortened recruitment period, and greater mortalityratecompared to the shade-tolerant species. New bamboo seedlings grew fasterand were more abundant than tree seedlings, except for root suckers (bothnew establishment and advance regeneration) of E.cordifolia which is more likely to successfully recruit into thecanopy. Seedlings of N. obliqua compete poorly with bambooseedlings; its successful recruitment may require bamboo flowering coincidentwith a mast seed year for the tree species.  相似文献   

20.
The size of treefall gaps is an important determinant of regeneration composition in tropical and temperate forests. Preliminary studies in the laurel forest of Tenerife have shown that small gaps (<100 m2) were the most numerous. However, due to this small size, no significant differences were found between regeneration in gaps and regeneration below the canopy. Because infrequent large gaps (>100 m2) are present in the laurel forest, we analyzed the regeneration in these large uncommon gaps, considering their potentially important role in the dynamics of the system. Our main hypothesis is that large gaps are important disturbance to ensure the regeneration and stablishment of shade intolerant species. Only five gaps larger than 100 m2 (ranging from 125–268 m2) were found in the study area. Data from a further 20 small gaps (<100 m2), analysed in a previous study, was also included. Control plots were examined close to the gaps in order to determine regeneration below the closed canopy. We did not find a significant difference between regeneration density in the gaps (<100 m2) and regeneration below the canopy in the control plots. Contrary to our expectations, regeneration was lower in the large gaps than under the canopy. The open canopy in the large gaps increases light intensity, and has a negative effect on the germination and growth of shade-tolerant tree species like Viburnum tinus (although non-statistically significant); however, the increase in light intensity is not sufficient to stimulate the germination of shade-intolerant tree species. The effects of treefall gaps in the dynamics of the laurel forest of Anaga should be not considered as significant in comparison to other factors such as human disturbances or infrequent disturbances (land slides or hurricanes).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号