首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The endemic land snail species Mandarina hahajimana has undergone extensive habitat and morphological diversification within the Hahajima islands in the Bonin archipelago. This species has diversified into populations with ground, arboreal and semi-arboreal life histories. In addition, arboreal populations and semi-arboreal populations show diversification in preferences of species and positions of the tree on which they are found. Shell morphologies of M. hahajimana exhibit remarkable geographical variation, and they have a clear relationship with their life histories. The morphological variation of M. hahajimana results from adaptation to different lifestyles. The habitats of these populations influence the relationships with other species of Mandarina coexisting with M. hahajimana. This suggests that the morphological and ecological divergence within M. hahajimana has been induced by competitive interaction with other species of Mandarina. Character displacement may have played an important role in promoting adaptive radiation of Mandarina in the Bonin Islands.  相似文献   

2.
S. Chiba 《Population Ecology》2002,44(3):0179-0187
 Endemic land snails of the genus Mandarina of the oceanic Bonin Islands offer an example of habitat and character divergence among closely related species. The molecular phylogenies of Mandarina show that a divergence of arboreal, semiarboreal, and ground-dwelling species has occurred repeatedly in different times, areas, and lineages. Ecological diversification is suggested to be important for the coexistence of Mandarina species based on the facts that sympatric species are typically highly differentiated ecologically and morphologically, and that species occupying similar habitats do not coexist. The ecological diversification of Mandarina has occurred without much genetic divergence compared with that of its mainland relatives. This suggests that morphological and ecological diversifications are accelerated in depauperate environments where there are fewer competitors and predators. Although the details of the reproductive isolation mechanisms are not understood and further examination is needed, the rapid evolution of prezygotic isolation is the main cause of speciation in Mandarina. In particular, ecological diversification may be an effective barrier to gene exchange between two species. Because of incomplete postmating isolation and the lower genetic divergence among species of Mandarina, breakdowns of reproductive isolation have frequently occurred as a result of habitat change. It is important to estimate the effect of hybridization on species diversification in future studies. Received: February 7, 2002 / Accepted: October 22, 2002 Acknowledgments I express my sincere thanks to A. Davison, B.C. Clarke, A. Guiller, D. Thomaz, K. Tomiyama, I. Hayami, and K. Tanabe for helpful advice and assistance. This study was supported by grants from the Japan Society for the Promotion of Science and the Nippon Life Insurance Foundation.  相似文献   

3.
Origin and evolution of endemic plants of the Bonin (Ogasawara) Islands   总被引:1,自引:0,他引:1  
The Bonin Islands are typical oceanic islands, located at the western part of the North Pacific Ocean and approximately 1,000 km south of mainland Japan. This archipelago consists of about 20 small islands. Although floristic diversity is low due to the small area and limited environmental diversity, the Bonin Islands harbor unique endemic flora as in other well-known oceanic islands. This paper presents a brief summary of the results obtained from recent studies on the endemic flora of the Bonin Islands. The results are reviewed in relation to the four stages of the evolution of endemic flora in the oceanic islands; migration, establishment, enlargement and diversification. The ancestors of the flora originated mostly from tropical and subtropical Southeast Asia or mainland Japan by rare events of long distance dispersal. The proportion of bird-dispersed species is relatively high as for other oceanic islands. Genetic data sets obtained from allozyme variation in some endemic species suggest that migration occurred several million years ago and genetic diversity is correlated with current population size. At the time of establishment, self-compatible plants are expected to have an advantage. However, the percentage of dioecious plants is relatively high. This is partly due to evolutionary changes from hermaphroditic ancestors to dioecy which occurred in two genera in the Bonin Islands. In addition, there are some examples of evolutionary changes from herbaceous ancestors to woody endemics. Adaptive radiation is found in some genera, although the number of congeneric endemic species is less than five. Studies of allozyme variation inPittosporum, Symplocos andCrepidiastrum showed that genetic identity is generally very high between congeneric species in spite of their distinct morphologies. This result suggests that divergence of these species occurred rather recently and distinct morphological differences are based on a limited number of genetic changes.  相似文献   

4.
North American field crickets (genus Gryllus) exhibit a diversity of life cycles, habitat associations, and calling songs. However, patterns of evolution for these ecological and behavioral traits remain uncertain in the absence of a robust phylogenetic framework. Analyses of morphological variation have provided few clues about species relationships in the genus Gryllus. Here we use comparisons of mitochondrial DNA restriction site maps for 29 individuals representing 11 species (including potential outgroups) to examine relationships among eastern North American field crickets. Initially chosen as likely outgroup taxa, the two European species of Gryllus do not obviously fall outside of an exclusively North American clade and (based on amount of sequence divergence) appear to have diverged from North American lineages at about the same time that major North American lineages diverged from each other. The egg-overwintering crickets comprise a strongly supported monophyletic group, but relationships among these three closely related species cannot be resolved. The mtDNA data are consistent with a single origin of egg diapause and do not support a model of recent life cycle divergence and allochronic speciation for Gryllus pennsylvanicus and G. veletis. The two crickets are not sister species, despite remarkable similarity in morphology, habitat, and calling song. This conclusion is consistent with published data on allozyme variation in North American field crickets. The habitat associations of eastern North American field crickets have been labile, but calling songs sometimes have remained virtually unchanged across multiple speciation events.  相似文献   

5.
To investigate the genetic differentiation between the Bonin (Ogasawara) Islands' freshwater goby Rhinogobius sp. Bonin Island (BI) form (Ogasawara-yoshinobori) and the Japan–Ryukyu Archipelago relatives, the mitochondrial DNA (mtDNA) phylogeny of Japanese Rhinogobius species was inferred from partial nucleotide sequences of the mitochondrial NADH dehydrogenase 5 subunit (ND5) gene (945 bp). The resultant tree showed that the Bonin Islands group separated first from the other Japanese lineage, and a test calculation indicated the divergence date to be approximately 3 million years BP. Although it is necessary to use a more reliable estimate to confirm the divergence date, Rhinogobius sp. BI has retained its mtDNA lineage in the islands for millions of years.  相似文献   

6.
Three drainage systems in British Columbia, Canada, contain divergent parapatric lake-stream pairs of threespine sticklebacks (Gasterosteus aculeatus): Drizzle and Mayer Lakes on Graham Island, Queen Charlotte Islands, and Misty Lake on northeastern Vancouver Island. Ecological and morphological differences between members of all three lake-stream pairs are strikingly similar; lake fish are melanistic and slim bodied with smaller mouths and more gill rakers than the mottled-brown and robust-bodied stream sticklebacks. We estimated the level of genetic divergence between lake and stream fish in Misty Lake and tested hypotheses of single versus multiple origins of the pairs by assaying mitochondrial DNA (mtDNA) restriction site variation in samples from the three lake systems. MtDNA analysis revealed the existence of two highly divergent lineages differing by 2.7% in sequence. One lineage predominated in Misty stream fish (73%), whereas the other lineage predominated in Misty Lake samples (96%). Comparable forms (lake or stream) in the different lakes did not cluster together in terms of mtDNA nucleotide divergence, suggesting that the pairs have had independent origins. We concluded that: (1) divergent mtDNA lineages in North Pacific sticklebacks stem from historical isolation in the two major glacial refugia proposed for the North Pacific (Beringia and Cascadia); (2) the stream and lake pair in Misty Lake are distinct gene pools; (3) the divergence between parapatric lake and stream Gasterosteus represents parallel evolution having occurred at least twice in the North Pacific; and (4) different scales of evolutionary divergence exist in North Pacific Gasterosteus, that is, a relatively ancient divergence of mtDNA clades as well as recent (i.e., postglacial) divergence of ecotypes within major clades.  相似文献   

7.
The Bonin Islands are endowed with endemic species. However, these species are at risk of extinction because of the exuberance of invasive alien plants. Therefore, native plant species should be revegetated after eradicating alien plants. We investigated the genetic variation of Terminalia catappa populations in the Bonin Islands by using nuclear (n) microsatellites (simple sequence repeats [SSRs]) and chloroplast (cp) DNA. No significant differences were observed in the genetic diversity of nSSRs among 22 populations. However, recent bottlenecks were detected in three populations on the Chichijima Island group. nSSR variation and cpDNA haplotypes suggested the presence of two genetically distinct groups in the Mukojima and Chichijima Island groups and the Hahajima Island group. A similar genetic structure was observed in plants and animals in the Bonin Islands. Populations on the three islands, which were separated from other islands in each island group when the water depth was 50‐m lower than the present level, were dominated by unique nSSRs clusters, suggesting that historical changes in island connections during the Pleistocene era affected genetic substructuring. These results suggested that different factors contributed to the genetic structure of T. catappa on different geographic scales. At the whole‐island level, the genetic structure was determined by long‐distance seed dispersal by ocean currents. At the island‐group level, the genetic structure was determined by historical changes in island connections caused by changes in the sea level due to glacial–interglacial transition. These findings would help in establishing transplantation zone borders for revegetating T. catappa on the Bonin Islands.  相似文献   

8.
The processes of island colonization and speciation are investigated through mtDNA studies on Canary Island beetles. The genus Nesotes (Coleoptera: Tenebrionidae) is represented by 19 endemic species on the Canary Islands, the majority of which are single island endemics. Nesotes conformis is the most widespread, occurring on Gran Canaria, Tenerife, La Palma and El Hierro. Nesotes conformis forms a paraphyletic assemblage, with a split between Gran Canaria and the other three islands. Nesotes conformis of the western Canary Islands cluster with Nesotes altivagans and Nesotes elliptipennis from Tenerife. Fifty‐two individuals from this western islands species complex have been sequenced for 675 base pairs of the mtDNA cytochrome oxidase II gene, representing Tenerife, La Palma and El Hierro. A neighbour joining analysis of maximum likelihood distances resulted in three distinct mtDNA lineages for N. conformis, two of which also include mitotypes of N. altivagans and N. elliptipennis. Through application of parametric bootstrap tests, we are able to reject hypotheses of monophyly for both N. conformis and N. altivagans. Nesotes altivagans and N. elliptipennis are poorly separated morphologically and mtDNA sequence data adds support to this being one species with a highly variable morphology. We propose that N. altivagans/N. elliptipennis is recently derived from two ancestral mtDNA lineages within N. conformis from the Teno region of Tenerife. We further propose colonization of the younger islands of La Palma and El Hierro by N. conformis from a mitochondrial lineage within the Teno massif (colonization; diversification; mitochondrial DNA; Canary Islands; Coleoptera).  相似文献   

9.
Persea boninensis (Lauraceae) is an endemic tree species distributed throughout the Bonin Islands. It grows in a wide range of environments from dry to mesic forests, and has multiple flowering peaks that may correspond to different habitats on Chichijima Island of the Bonin Islands. We predicted that P. boninensis is differentiated into two groups with different habitats on these islands. We examined and compared the flowering phenology, morphology, and genetics of populations of species growing in dry and mesic forests. We also performed preliminary artificial crossing experiments. Based on our results, P. boninensis on the Chichijima Islands can be clearly divided into two genetic groups with different habitats and flowering times. Although the flowering time difference could act as an effective pre‐zygotic isolation mechanism between the two groups, there was still a 1‐month overlap in flowering time. Furthermore, our artificial crossing experiments between the two groups resulted in plants that set seeds. Therefore, there was no evidence of reproductive isolation after fertilization. Differences in flowering time as well as in growth habitat will have to occur to maintain genetic differentiation between the two groups of P. boninensis.  相似文献   

10.
The genusCrepidiastrum is distributed in East Asia and includes 7 species. In the Bonin Islands, three species ofCrepidiastrum occur, and all of them are endemic to the islands. For detecting the origin and speciation of these endemic species, electrophoretic studies have been done in three endemic species of the Bonin Islands as well as in the remaining four species ofCrepidiastrum, andYoungia denticulata which is considered to be closely related toCrepidiastrum. A total of 386 individuals were sampled from 14 populations. As a result, 17 loci of 10 enzyme systems were resolved and gene frequencies for each population were calculated. The genetic variability was low in island species, as reported in some oceanic island plants. Four groups were recognized in the dendrogram generated by the UPGMA method. The Bonin endemics were clustered together, suggesting a monophyletic origin.C. ameristophyllum andC. linguaefolium were found to be genetically very similar, and this may suggest recent and rapid speciation within the islands.  相似文献   

11.
The pattern of morphological and mtDNA cytochrome b diversity of three calanoid copepod species belonging to the diaptomid genus Hemidiaptomus has been investigated with the aim of checking the reliability of the morphological characters currently used for species identification, and the possible presence of cryptic taxa. A sharply different molecular structuring has been observed in the studied species: while Hemidiaptomus amblyodon exhibits a remarkable constancy throughout the European range of its distribution area (maximum inter-populations cytochrome b divergence of 3%), observed distances between presumed conspecific lineages of Hemidiaptomus gurneyi (maximum divergence of 21.5%) and Hemidiaptomus ingens (maximum 19.1%) suggest that under these binomens are in fact included complexes of cryptic, or currently just unrecognized, independent evolutionary lineages. The application of the “4x rule” shows that the two lineages singled out within H. ingens are in fact independent evolutionary units, while the complex molecular structure observed in H. gurneyi s.l. could not be resolved based on the currently available data. Applying standard crustacean mtDNA evolutionary rates to the observed divergence values, the separation of the main lineages within both H. ingens and H. gurneyi might dates back to the Miocene; however, it has also to be considered that the rate of mtDNA evolution might be accelerated in copepods, as already observed in other arthropod taxa. Present results gives further evidences of the high potential for copepod speciation with no or little morphological changes, and stress the need of a revision of the most controversial Palaearctic diaptomid genera.  相似文献   

12.
At least four species of New Zealand snipes (Coenocorypha) became extinct following the introduction of predatory mammals, and another two species suffered massive range reductions. To investigate species limits and population differentiation in six of the seven remaining offshore populations, we assayed variation in nine microsatellite loci and 1,980 base pairs of four mitochondrial DNA (mtDNA) genes. Genetic diversity in all populations except the largest one on Adams Island in the Auckland Islands was very low in both genomes. Alleles were fixed at many microsatellite loci and for single mtDNA haplotypes, particularly in the populations in the Chathams, Snares, Antipodes and Campbell Islands. Strong population structure has developed, and Chathams and Snares Islands populations are effectively genetically isolated from one another and from the more southern island populations. Based on reciprocal monophyly of lineages and their morphological distinctiveness we recommend that three phylogenetic species should be recognized, C. pusilla in the Chatham Islands, C. huegeli in the Snares Islands and C. aucklandica in the southern islands. The populations of C. aucklandica in the Auckland Islands, Antipodes Island and Campbell Island may warrant recognition as subspecies, and all should be managed as separate conservation units.  相似文献   

13.
Aim Phylogenetic studies concerning island biogeography have been concentrated in a fraction of the numerous hot‐spot archipelagos contained within the Pacific Ocean. In this study we investigate relationships among island populations of the thomisid spider Misumenops rapaensis Berland, 1934 across the Austral Islands, a remote and rarely examined southern Pacific hot‐spot archipelago. We also assess the phylogenetic position of M. rapaensis in relation to thomisids distributed across multiple Polynesian archipelagos in order to evaluate the proposed hypothesis that thomisid spiders colonized Polynesia from multiple and opposing directions. The data allow an examination of genetic divergence and species accumulation in closely related lineages distributed across four Polynesian archipelagos. Location The study focused on four Polynesian hot‐spot archipelagos: the Austral, Hawaiian, Marquesan and Society islands. Methods Mitochondrial DNA sequences comprising c. 1400 bp (portions of cytochrome oxidase subunit I, ribosomal 16S and NADH dehydrogenase subunit I) were obtained from thomisid spiders (64 specimens, representing 33 species) collected in the Australs, the Hawaiian Islands, the Society Islands, the Marquesas, Tonga, Fiji, New Zealand, New Caledonia and North and South America. Phylogenetic analyses using parsimony, maximum‐likelihood and Bayesian approaches were employed to resolve relationships of M. rapaensis to other Polynesian Misumenops and across the Austral Islands. Results Rather than grouping with other Misumenops spp. from the archipelagos of the Society Islands, Marquesas and Hawaiian Islands, M. rapaensis appears more closely related to Diaea spp. from Tonga, Fiji, New Zealand and New Caledonia. Phylogenetic analyses strongly support M. rapaensis as monophyletic across the Austral Islands. Misumenops rapaensis sampled from the two older islands (Rurutu and Tubuai) form reciprocally monophyletic groups, while individuals from the younger islands (Raivavae and Rapa) are paraphyletic. Across the Austral Islands, M. rapaensis exhibits a surprising level of genetic divergence (maximally 11.3%), an amount nearly equivalent to that found across the 16 examined Hawaiian species (14.0%). Main conclusions Although described as a single morphologically recognized species, our results suggest that M. rapaensis comprises multiple genetically distinct lineages restricted to different Austral Islands. Phylogenetic relationships among the island populations are consistent with sequential colonization of this lineage down the Austral archipelago toward younger islands. Analyses support the hypothesis that thomisid spiders colonized the central Pacific multiple times and suggest that M. rapaensis arrived in the Austral Islands from a westward direction, while Misumenops found in neighbouring archipelagos appear to be more closely related to New World congeners to the east. Finally, our data detect asymmetrical rates of morphological evolution and species diversification following colonization of four different Polynesian archipelagos.  相似文献   

14.
To study the origin and speciation of plants in oceanic islands, electrophoretic analyses have been done on three endemic species ofSymplocos in the Bonin Islands as well as on three other species;S. kuroki, S. nakaharae andS. tanakae which are considered to be closely related to the Bonin endemics. There occur three species:S. kawakamii, S. pergracilis andS. boninensis in Bonin. The genusSymplocos is one which is considered to be diversified in the Bonin Islands. Seven enzyme systems presumed to be encoded by 18 loci were examined. The genetic diversity was low in the island species, as reported in some oceanic island plants of Hawaii and the Bonin Islands. The three endemics share high genetic identities and they clustered together in the tree drawn by the UPGMA method, suggesting that they are a monophyletic group, that is, they result from a single introduction.  相似文献   

15.
The Collared Kingfisher species complex is the most widespread of the ‘great speciator’ lineages of the Indo‐Pacific. They have shown a remarkable ability to spread and diversify. As a result of this rapid diversification, Todiramphus species are often found in secondary sympatry. In Southeast Sulawesi, Indonesia, two Todiramphus species are present, the breeding resident Collared Kingfisher Todiramphus chloris and the overwintering migratory Sacred Kingfisher Todiramphus sanctus. We investigated the effect of isolation on these closely related species by comparing their populations on mainland Sulawesi and its larger continental islands, with populations on the small, oceanic Wakatobi Islands. Within our wider analysis we provide further support for the distinctiveness of the Sulawesi Collared Kingfisher population, perhaps isolated by the deep water barrier of Wallace's line. Within Sulawesi we found that populations of Collared Kingfisher on the Wakatobi Islands had diverged from those on mainland Sulawesi, differing both in morphology and in mitochondrial DNA. In contrast, there was no divergence between Sacred Kingfisher populations in either morphology or mitochondrial DNA. We propose that a difference in habitat occupied by Collared Kingfisher populations between the mainland and continental islands vs. oceanic islands has caused this divergence. Mainland Collared Kingfishers are predominately found inland, whereas Wakatobi Collared Kingfishers are also found in coastal habitats. The larger body size of Wakatobi Collared Kingfisher populations may be a result of increased competition with predominantly coastal Sacred Kingfisher populations. The uniform nature of Sacred Kingfisher populations in this region probably reflects their consistent habitat choice (coastal mangrove) and their migratory nature. The demands of their breeding range are likely to have an even stronger selective influence than their Sulawesi wintering range, limiting their scope for divergence. These results provide insight into the adaptability of the widespread Todiramphus lineage and are evidence of the need for further taxonomic revision of Collared Kingfisher populations.  相似文献   

16.
Conservation of endemic species on oceanic islands is an essential issue for biodiversity conservation. Metrosideros boninensis (Myrtaceae) is an endangered tree species endemic to the Bonin Islands of the western North Pacific Ocean. This species is considered to be extremely rare with less than 400 adult individuals, a number that has fluctuated between the 1880s and 1980s through human influence. We analyzed the genetic diversity and genetic structure of this species using amplified fragment length polymorphism markers and microsatellite markers. Genetic diversity of M. boninensis was extremely low compared to related taxa and similar endemic species from small islands. This low genetic diversity might be attributed to a stepwise colonization process with repeated founder bottlenecks in the dispersal pathway to the Bonin Islands. Populations of M. boninensis showed significant genetic differentiation and isolation by distance over a small geographical scale, despite the fact that this species should have extensive gene dispersal ability. This genetic differentiation might be caused by limited gene flow via pollen and seed among populations and genetic drift amid a small number of remnant individuals. Taken together, these findings suggest that the genetic diversity and connectivity of tree populations on islands are more vulnerable to habitat fragmentation than previously thought. We offer some recommendations for management to ameliorate habitat fragmentation and biological invasion.  相似文献   

17.
Endemic land snails of the genus Mandarina of the oceanic Bonin Islands offer an exceptional example of habitat and character divergence among closely related species. In this study, microhabitat differences between sympatric ground-dwelling species were studied by distinguishing habitats on the basis of vegetation and types of litter. In all sites where two ground species coexisted, segregation occurred with each species showing preference for the microhabitat in which they were found. When they were in sympatry, one species was predominant in relatively wet and sheltered sites and the other in relatively dry and exposed sites. Although most species can live in both types of habitat, occupation by one species is inhibited by occupation by another. This suggests that competitive interaction between sympatric species caused segregation. Except for populations that have undergone interspecific hybridization, no examples were found of sympatric populations of two ground species sharing a similar shell colour. Species that were predominant in relatively wet and sheltered sites possessed shells with dark coloration and their colour patterns were mostly of one type. Species that were predominant in relatively dry and exposed sites possessed shells with bright coloration and their color patterns were polymorphic. Most populations from areas in which single species were distributed had shells with medium coloration. Microhabitat differentiation between sympatric species possibly caused diversification of shell colour, because bright shells are advantageous in sites where snails are largely exposed, and dark shells are advantageous in sites in where they are mostly sheltered from sunlight. In addition, frequency-dependent selection by predators hunting by sight may have operated to maintain colour polymorphism in the populations which are restricted to exposed habitats by competition with other sympatric species. This reveals the importance of interaction among closely related species as a cause of diversification in ecological and morphological traits.  相似文献   

18.
The phylogenetic relationships of seven goose species and two of the subspecies representing the genus Anser were studied by approximately 1180 bp of mitochondrial DNA tRNAglu, control region and tRNAphe sequences. Despite obvious morphological and behavioural affinities among the species, their evolutionary relationships have not been studied previously. The small amount of genetic differentiation observed in the mitochondrial DNA indicates an extremely close evolutionary relationship between the Anser species. The sequence divergences between the species (0.9–5.5%) are among the lowest reported for avian species with speciation events of Anser geese dating to late Pliocene and Pleistocene. The species grouped into four mtDNA lineages: (1) snow and Ross’ goose, (2) greylag goose, (3) white‐fronted goose, and (4) bean, pink‐footed and lesser white‐fronted goose. The phylogenetic relationships of the most closely related species, bean, pink‐footed and lesser white‐fronted goose, indicate a period of rapid cladogenesis. The poor agreement between morphological relationships and the phylogenetic relationships indicated by mtDNA sequences implies that either ancestral polymorphism and lineage sorting, hybridization and introgression or convergent evolution has been involved.  相似文献   

19.
The endemic land snail genus Mandarina of the oceanic Bonin Islands shows exceptionally diverse morphological and ecological traits. Previous studies have already provided evidence that speciation on different islands of the three main archipelagos was such that similar ecotypes evolved independently in different lineages and islands. Here we present data to show that the same species can have different ecotypes. As most of the characters involved are inherited, then variation between ecotypes must represent genetic differences between populations. We then show that the radiation on the Bonin Islands is derived from a single colonization event, and use a mitochondrial phylogeny to provide evidence for a burst of cladogenesis soon after colonization. As divergent selection has previously been implicated in causing differences between Mandarina species, and theory predicts that most of the speciation should have taken place early in their history, then the study adds to the evidence for an adaptive radiation by ecological speciation in Mandarina . However, while the diversity of ecotypes present at each site is dependent on the regime of natural selection and competition, geography still must have an important role.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 269–282.  相似文献   

20.
Pollinators play an important role in the reproduction of zoophilous plants. A shift in pollinators has often been observed for oceanic island plants, probably because of the differences in fauna. In this study, we obtained data on pollinator shifts from insects to birds in Orobanche boninsimae (Orobanchaceae), a holoparasitic plant species endemic to the Bonin (Ogasawara) Islands, oceanic islands in the Pacific. We observed pollination and measured seed viability in O. boninsimae and its continental sister species O. coerulescens. We found that two passerine birds, the Japanese white-eye (Zosterops japonicus) and bulbul (Hypsipetes amaurotis squameiceps), visited the flowers and sucked the nectar of O. boninsimae, while only insects visited those of O. coerulescens. Viable seeds were produced under pollinator-excluded treatments in the two Orobanche species, indicating that the seeds were produced by automatic self-pollination and/or apomixis. These results suggest that O. boninsimae may be pollinated by birds and can produce seeds by automatic self-pollination/apomixis. This is the first record of visitation of the genus Orobanche by birds. Studies of pollination systems in native plants on the Bonin Islands are few compared to those on other oceanic islands, and O. boninsimae may provide a valuable example of pollinator shifts in the Bonin Islands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号