首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The effect of exogenous application of the cytokinin meta -topolin [mT; N6-( meta -hydroxybenzyl)adenine] on artificial senescence of detached wheat leaves ( Triticum aestivum L. cv. Hereward) was studied and compared in leaves senescing under continuous light (100 µmol photons m−2 s−1) and darkness. Senescence-induced deterioration in structure and function of the photosynthetic apparatus was characterized by reduction in chlorophyll content, maximal efficiency of photosystem (PS) II photochemistry ( F v/ F m) and the rate of CO2 assimilation, by increase in the excitation pressure on PSII (1 −  q P) and a level of lipid peroxidation and by modifications in chloroplast ultrastructure. While in darkened leaf segments mT effectively slowed senescence-induced changes in all measured parameters, in light-senescing segments the effect of mT changed into opposite a few days after detachment. We observed an overexcitation of photosynthetic apparatus, as indicated by pronounced increases in the excitation pressure on PSII and in a deepoxidation state of xanthophyll cycle pigments, marked starch grain accumulation in chloroplasts and stimulation of lipid peroxidation in light-senescing leaf segments in mT. Possible mechanisms of acceleration of senescence-accompanying decrease in photosynthetic function and increase in lipid peroxidation during mT influence are discussed. We propose that protective mT action in darkness becomes damaging during artificial senescence in continuous light due to overexcitation of photosynthetic apparatus resulting in oxidative damage.  相似文献   

2.
Changes in cell wall polysaccharides in oat (Avena sativa L.) leaf segments during senescence promoted by methyl jasmonate (JA-Me) were studied. During the incubation with water at 25 °C in the dark, the loss of chlorophyll of the segments excised from the primary leaves of 8-day-old green seedlings was found dramatically just after leaf excision, and leaf color completely turned to yellow after the 3- to 4-day incubation in the dark. Application of 10 µM JA-Me substantially promoted the loss of chlorophyll corresponding with the chloroplast degradation. Cell wall polysaccharides in oat leaf segments mainly consisted of hemicellulosic and cellulosic ones. During the process of leaf senescence, the amount of hemicellulosic I and II, and cellulosic polysaccharides decreased, but little in pectic polysaccharides. JA-Me significantly enhanced the decrease in cellulosic polysaccharides, but little in hemicellulosic ones. Arabinose, xylose and glucose were identified as main constituents of neutral sugars of hemicellulosic polysaccharides. The neutral sugar compositions of hemicellulosic polysaccharides changed little during leaf senescence both in the presence or absence of JA-Me. These facts suggest that JA-Me affects sugar metabolism relating to cellulosic polysaccharides during leaf senescence.  相似文献   

3.
Seedlings of Vigna catjang Endl. were subjected to water stress for 6, S and 10 days by withholding water to investigate the activities of some oxidative enzymes and the pattern of senescence in leaves of 17-day-old seedlings undergoing water stress. Increasing duration of stress produced a proportional increase in the activities of IAA-oxidase, AA-oxidase, peroxidase and glycolate oxidase but decreased catalase activity and the contents of both chlorophyll and protein, hastening senescence. Leaf water potential and relative water content were also lowered with incresing duration of stress. Permeability was increased in leaf tissue undergoing water stress for 8 days. Seed treatment with CaCl2 (10−2 and 10−14 M ) for 6 h improved the water status of leaves, decreased tissue permeability, activities of oxidative enzymes, decline of chlorophyll and protein contents and delayed senescence compared to untreated water stressed plants.  相似文献   

4.
Ribulose bisphosphate carboxylase-oxygenase, RuBP carboxylase (EC 4.1.1.39), was purified from non-hardened and hardened needles of Pinus sylvestris L. Needles were collected from pine seedlings cultivated in nutrient solution in a climate chamber from seedlings grown outdoors, and from a tree in a natural stand. The enzyme was isolated from crude extracts through quantitative precipitation in polyethylene glycol 4000 and MgCl2, followed by sucrose gradient centrifugation in a fixed angle rotor. The purified enzyme seemed homogeneous by the criterion of (sodium dodecylsulphate) polyacrylamide gel electrophoresis. Contamination by nucleic acids was negligible. The RuBP carboxylase protein content of the gradient fractions was estimated as A2801 cm× 0.61 mg ml−1. Carboxylase activities were determined in a radioactive assay at 25°C. The specific activity of RuBP carboxylase isolated from non-hardened needles was approximately 1 μmol CO2 (mg protein)−1 min−1. For enzyme isolated from hardened needles collected during winter the specific activity was somewhat lower due to loss of enzyme activity during the preparation. The described two-step procedure provides a means for quantitation of the RuBP carboxylase protein in pine needles during all seasons.  相似文献   

5.
The long-term response of citrus rootstock seedlings to CO2 enrichment was examined in Carrizo estrange ( Poncirua trifoliata (L.) Raf. x Citrus sinensis (L.) Osbeck] and Swingle citrumelo ( P. trifoliate x C. parodist Macf.]. Plaotlets 14 weeks old were transferred to outdoor controlled-environment chambers and maintained for 5 months from Feb. 14 to July 21. During this period, new growth (cm) of citrange and citrumelo shoots at 660 μl1−1 was 94 and 69% greater, respectively, than at 330 μ1 1−1. Total dry weight of both rootstock shoots had increased by over 100%. Growth of few species is affected this markedly by elevated CO2 levels.
More carbon was partitioned to above-ground organs in CO2-enriched citrus seedlings. Stem dry matter per unit length was also 32 and 44% greater in citrange and citrumelo, respectively. Total leaf area was increased by 124% in citrange and 85% in citrumelo due to greater leaf number and size. Variations in overall relative growth rate appeared to be related to the rapid, sequential, flush-type growth in citrus, in which an entire shoot segment with its associated leaves remains an active sink until fully expanded. RuBP carboxylase (EC 4.1.1.39) activity in leaves of recently-expanded flushes was higher in citrumelo plants grown at 660 vs 330 μ1 1−1 CO2 and changed diurnally for citrange (but not citrumelo) leaves at both CO2 levels. The results are consistent with the hypothesis that positive long-term effects of CO2 enrichment may be greater in species or during growth periods where sink capacity for carbon utilization is high.  相似文献   

6.
The cytokinin-like activity of the growth regulating chemical EDU, N-[2-(2-oxo-1-imidazolidinyl)ethyl]-N'-phenylurea, was determined and compared with the actitivity of kinetin using the tobacco callus bioassay. EDU has a pronounced stimulatory effect on callus growth at concentrations of 5 × 10−4 and 1 × 10−3 M but was 5 000 times less potent than the synthetic cytokinin, kinetin. Senescence regulation and oxidant resistance induced by EDU and kinetin were also studied. EDU retarded the breakdown of chlorophyll, protein and RNA in 03-sensitive tobacco leaf discs during senescence. EDU was much more effective in arresting senescence and in protecting against 03 injury than kinetin. Results indicate the EDU-induced plant tolerance to 03 phytotoxicity may be indirect through enzyme induction regulation.  相似文献   

7.
Even in the presence of glucose the growth of Marchantia polymorpha L. (cell line HYH-2F) requires light, and growth is more sensitive to 10−6 M 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea than to 10−4 Antimycin A. The inability of the cells to grow in the dark is due to the low level of respiration. The respiration rate under light increased to four times the dark value. The values of the compensation ratio (the photosyntehtic rate/the respiration rate) for the oxygen exchange were below 1.0 daring the growth period, although oxygen evolution was found. At the early exponential phase, oxygen evolution was 0.373 μmol (mg cell dry weight)−1 h−1 [61.7 μmol (mg chlorophyll)−1 h−1]. M. polymorpha cells are unable to grow anaerobically in the light without a supply of carbon dioxide. When 1% carbon dioxide in nitrogen is supplied, photochemically produced oxygen and energy are sufficient for sustained growth although at significantly reduced yields in both cell dry weight and chlorophyll. Photosyntehtic CO2 assimilation rate was 0.13 μmol (mg cell dry weight)−1 h−1[11.3 μmol (mg chlorophyll)−1 h−1]. At least one-third of the carbon atoms in cellular constituents seem to be derived from atmospheric carbon dioxide, which indicates that M. polymorpha cells grow photomixotrophicaily.  相似文献   

8.
9.
Barley ( Hordeum vulgare L. cvs Clipper, Procter, Astrix) seedlings were transferred from daylight to darkness and changes in chlorophyll a , chlorophyll b , protochlorophyllide and chlorophyllide (μ leaf−1) in either the first or second leaf determined spectrophotometrically after separating the esterified from unesterified pigments by partitioning between ammoniacal acetone and light petroleum ether. Chlorophyll a and b as well as protochlorophyllide accumulated in the dark. The ratio of chlorophyll to protochlorophyllide formed in the absence of light was 18:1. 5-aminolevulinic acid (10 m M ) promoted the synthesis of chlorophyll a and b and protochlorophyllide. Pigment synthesis and response to 5-aminolevulinic acid addition was related to tissue age. Mature tissue in the apical third of the leaf accumulated most chlorophyll, but per μg chlorophyll present at the time of transfer to darkness, was less efficient than immature tissue towards the base of the leaf. Immature tissue was also most responsive to added 5-aminolevulinic acid. Chlorophyll synthesis in the dark was accompanied by chloroplast development. Chloroplasts in immature leaf tissue increased in size and extent of thylakoid development when transferred from daylight to darkness. The results indicate that chlorophyll synthesis and chloroplast membrane development in light-grown barley continue into the dark phase of the diurnal cycle. A light-independent protochlorophyllide reductase in light-grown barley seedlings is postulated.  相似文献   

10.
Carbon dioxide fixation in orchid aerial roots   总被引:1,自引:0,他引:1  
Acidity fluctuation, CO2 gas exchange, δ13C value, PEP carboxylase and RuBP carboxylase activities in aerial roots of selected thick-leaved orchid hybrids ( Arachnis and Aranthera ) were studied. Both aerial roots and leaves showed acidity fluctuation over a 24 h period. Dark acidification in aerial roots was enhanced at low temperature (15°C). Aerial roots had δ13C values close to those of leaves which have been previously demonstrated to possess crassulacean acid metabolism. Variation in δ13C values along the length of the roots was observed; the root tip having a less negative δ13C value (—13.34%‰) than the older portions of the roots (—14.55%‰). There was no net CO2 fixation by aerial root, although 1432CO2 fixation was observed in light and in darkness. The pattern of fluctuation in activities of PEP carboxylase and RuBP carboxylase in aerial roots was similar to that obtained for the leaves. In both aerial roots and leaves, PEP carboxylase activity was several times higher than that of RuBP carboxylase.  相似文献   

11.
The effect of SO2 on the extractable activity of ATP sulfurylase (EC 2.7.7.4.). adenosine 5'-phosphosulfate sulfotransferase, ribulosebisphosphate carboxylase, chlorophyll, protein, sulfate, and amino acids was examined in leaves of potted grafts of beech ( Fagus sylvatica L.) treated in outdoor fumigation chambers. Addition of 0.025 and 0.075 μl SO2 1−1 to unfiltered ambient air caused a decrease in the extractable activity of adenosine 5'-phosphosulfate sulfotransferase to about 20 to 30% of the controls. Neither the extractable activity of ATP sulfurylase and ribulosebisphosphate carboxylase nor the content in chlorophyll, total amino acids and protein were significantly affected by SO2, but there was an increase in the sulfate content. Leaves treated with 0.075 μl SO2 1−1 contained more alanine and cysteine and less serine than the controls. After transfer of the SO2-treated beech trees to control chambers there was an increase in adenosine 5'-phosphosulfate sulfotransferase activity, but no significant decrease in SO2−4-sulfur.  相似文献   

12.
Pea plants ( Pisum sativum L. ev. Greenfeast) were grown for 2 to 3 weeks in while (˜ 50 μmol photons m−2 s−1; 400–700 nm) or green (˜ 30 μmol photons m−2 s −1 400–700 nm) light (16 h day/8 h night), with or without far-red light. Supplementary far-red light decreased leaf area and increased internodal length in both white and green light, demonstrating that phytochrome influenced leaf size and plant growth. However, there was no effect of far-red light on chlorophyll a /chlorophyll b ratios, chlorophyll-protein composition, the stoichiometry of electron transport complexes or photosynthetic function of isolated thylakoids. These results suggest that phytochrome is ineffective in modulating the composition and function of thylakoids in pea plants grown at low irradiance. One possible explanation of the ineffectiveness of phytochrome on thylakoids is discussed in terms of the drastic attenuation of red relative to far-red light in green tissue.  相似文献   

13.
Seedlings of two tree species from the Atlantic lowlands of Costa Rica, Ochroma la-gopus Swartz, a fast-growing pioneer species, and Pentaclethra macroloba (Willd.) Kuntze, a slower-growing climax species, were grown under enriched atmospheric CO2 in controlled environment chambers. Carbon dioxide concentrations were maintained at 350 and 675 μl 1−1 under photosynthetic photon flux densities of 500 μol m−2 s−1 and temperatures of 26°C day and 20°C night. Total biomass of both species increased significantly in the elevated CO2 treatment; the increase in biomass was greatest for the pioneer species, O. lagopus . Both species had greater leaf areas and specific leaf weights with increased atmospheric CO2. However, the ratio of non-pho-tosynthetic tissue to leaf area also increased in both species leading to decreased leaf area ratios. Plants of both species grown at 675 μl 1−1 CO2 had lower chlorophyll contents and photosynthesis on a leaf area basis than those grown at 350 μl 1−1. Reductions in net photosynthesis occurred despite increased internal CO2 concentrations in the CO2-enriched treatment. Stomatal conductances of both species decreased with CO2-enrichment resulting in significant increases in water use efficiency.  相似文献   

14.
Development and acclimation of energy transduction were studied in seedlings of Chenopodium rubrum L. ecotype selection 184 (50° 10' N; 105° 35' W) in response to photomorphogenic and photoperiodic treatments. Dark respiration and photosynthetic capacity [nmol O2 (pair of cotyledons)−1 h−1] were measured with an oxygen electrode. Changes in chloroplast ultrastructure were analyzed concomitantly. After germination, seedlings were grown at constant temperature either in darkness or in continuous light (white, red, far-red and blue) or were subjected to diurnal cycles of light/dark or changes in light quality. Dark respiration was low in far-red light treated seedlings. In red light treated seedlings dark respiration was high and the mean value did not depend on fluence rate or photoperiod. Blue light stimulated transitorily and modulated dark respiration in photoperiodic cycles. Photosynthetic capacity was reduced by far-red light and increased by red light. In response to blue light photosynthetic capacity increased, with indications of a requirement for continuous energy input. Phytochrome and a separate blue light receptor seemed to be involved. In continuous red light a clear cut circadian rhythm of dark respiration was observed. Blue light had a specific effect on chloroplast structure.  相似文献   

15.
Mechanical perturbation by rubbing of the first internode of 11–12 day old plants of Phaseolus vulgaris L. cv. Cherokee wax induces the rapid deposition of callose in the cells of phloem and other tissues. Callose deposition begins immediately after mechanical perturbation, and shows a minor transient peak 1.5 h, and a major peak 6 h later. The callose gradually disappears and is gone after 3 days. If the stems are perturbed every day, the amount of callose decreases by day 2 but then gradually increases again through day 12. Both the top and bottom of the internode produce callose in response to mechanical perturbation. The evolution of ethylene in response to mechanical perturbation begins after 1 h, peaks at 2–3 h and is gone by 5–6 h. A spray of 10−2 M 2-deoxy-D-glucose (DDG) completely blocks stem thickening, callose deposition and ethylene evolution due to mechanical perturbation. DDG at 10−5 to 10−4 M blocks callose production in mechanically perturbed stem segments and increases ethylene evolution from unperturbed stem segments to greater levels than those obtained by mechanically perturbed segments. It is concluded that mechanical perturbation of bean stems tissue induces deposition of callose more rapidly than it induces evolution of ethylene and that DDG can block both processes.  相似文献   

16.
The effects of a synthetic growth promoter, 4-ethoxy-l-( p -tolyl)-S-triazine-2,6 (1H, 3H)-dione [TA], on growth and gravireaction of Zea mays L. (cv. LG 11) roots were investigated. In horizontal, intact roots, pretreatment with TA at 4 × 10−4 M inhibited the gravireaction. If the pretreated roots were rinsed with a buffer solution before incubation, the TA effect was reduced, indicating that a continuous presence of TA was necessary for its maximal activity. On the other hand, the TA pretreatment (1×10−5, 1×10−4 and 4 × 10−4 M ) promoted the elongation of these roots. The TA effect was stronger for illuminated roots than for those kept in darkness. TA also decreased the lateral curvature of half-decapitated roots maintained vertically in light. This indicates that the action of TA could be associated with some growth inhibiting substances produced or released in cap cells.  相似文献   

17.
Changes in the activity and amount of ribulose 1,5-bisphosphate(RuBP)carboxylase (E.C. 4.1.1.39 [EC] ) were studied in well-watered plantsof Salix ‘aquatica gigantea’ and in similar plantsduring three different water stress treatments and after rewatering.The chloroplast ultrastructure of these plants was examinedby electron microscopy. The amounts of crystallized proteinin the chloroplast stroma were assessed according to the areaof crystal structure seen in the thin sections. RuBP carboxylase activity decreased with decreasing leaf waterpotentials but recovered upon rewatering, except when leaveshad been exposed to severe water stress. The percentage of totalchloroplast area made up of crystal inclusions decreased withdecreasing leaf water potentials. After rewatering, the crystalseither disappeared or the amount decreased markedly. Both RuBPcarboxylase activity and the area of crystal inclusions increasedinitially with increased extractable RuBP carboxylase proteinbut decreased with further increases above 6700–7000 µgRuBP carboxylase protein mg–1 chlorophyll. In well-wateredand water-stressed plants the activity of RuBP carboxylase,based on amount of chlorophyll, increased with an increasingamount of crystal inclusions in the chloroplast stroma. In rewateredplants no such correlation was observed, and the low percentageof crystal inclusions in the chloroplast area was independentof RuBP carboxylase activity. Key words: Chloroplast stroma crystals, ribulose 1,5-bisphosphate carboxylase, Salix, water stress  相似文献   

18.
The effect of 253.7 nm ultraviolet radiation on elongation growth, medium acidification and changes in electric potential difference between vacuole and external medium in cells of maize ( Zea mays L.) coleoptile segments was investigated. It was found that irradiation with 390, 1170, 3900 and 5 850 J m−2 UV-C (ultraviolet radiation 253.7 nm) inhibited elongation growth, whereas at 195 J m−2 stimulation of growth was observed. The administration of IAA (10−5 M ) to the incubation medium of coleoptile segments partially abolished the inhibitory effect of UV-C. The pH of the incubation medium, measured simultaneously with growth, showed that the exposure of the segments to UV-C caused inhibition of H+-extrusion (or stimulation of H+ uptake). The presence of IAA (10−5 M ) in the incubation medium promoted (except after 5850 J m−2 irradiation) H+-extrusion to a level comparable with that produced by IAA in non-irradiated segments. In UV-C irradiated segments the potential difference underwent significant alterations. Irradiation of coleoptile segments with 390 J m−2 caused a transient depolarization, which was fully reversible within 30 min, while at higher doses depolarization was irreversible. The hyperpolarization of the membrane potential (MP) in cells of maize coleoptile induced by IAA was completely nullified by subsequent irradiation with UV-C. It is suggested that UV-C inhibited IAA-induced growth by a mechanism independent of cell wall acidification.  相似文献   

19.
Given the influence of photoperiod on reproductive development and whole-plant senescence in monocarpic plants, one would suspect that leaf senescence in these plants might be under photoperiodic control. In Arabidopsis thaliana , which is monocarpic and also a nonobligate long-day (LD) plant, LDs (16 h, 300 μmol m−2 s−1) caused leaves to die earlier than did short days (SDs, 10 h). Since leaf longevity was not paralleled by the reproductive development in the present study, the reproductive structures did not seem to be the primary controls of leaf senescence. The LD effect appeared to depend on the amount of light rather than on day length, for leaves given LDs at reduced light intensity (180 μmol m−2 s−1) lived longer than those in LDs with full light. In addition, the higher light intensity promoted chlorophyll loss and anthocyanin accumulation in LDs. Thus, senescence of these leaves seems to be governed by light dosage rather than photoperiod. Light may play a natural role in promoting the senescence of A. thaliana leaves.  相似文献   

20.
Rapidly dividing photoautotrophic cell suspensions from Chenopodium rubrum L. assimilated about 85 μmol CO2 (mg chlorophyll)−1 h−1. During the late stationary phase of culture growth, CO2 fixation rate was reduced to about 60 μmol CO2 (mg chlorophyll)−1 h−1. Actively dividing cells characteristically incorporated a smaller proportion of 14C into starch than cells from non-dividing stationary phases. In rapidly dividing cells, [14C]-turnover from free sugars, sugar-phosphates, organic and amino acids was substantially higher compared to non-dividing cells from stationary growth phase. Higher proportions of photosynthetically fixed carbon were channelled into proteins, lipids and structural components in actively dividing cells than in non-dividing cells. In the latter. 14C was preferentially channeled into starch, and a striking increase in starch accumulation was observed. The transfer of non-dividing, stationary growth-phase cells into fresh culture medium resulted in an increase in the maximum extractable activities of some enzymes involved in the glycolytic and dark respiratory pathways and in the citric acid cycle. In contrast, the maximum extractable activities of the chloroplastic enzymes, ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.38) and NADP+-glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13) were highest after the cells had reached the stationary growth phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号