首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Abscisic acid (ABA), salicylic acid (SA), ethylene, and hydrogen peroxide (H2O2) may be involved in the regulation of plant responses to heat stress. The objective of this study was to determine whether these signaling molecules are involved in survival at high temperatures in creeping bentgrass (Agrostis stolonifera). We investigated the effects of treatment with ABA, SA, H2O2, and ACC (an ethylene precursor) on physiological damage occurring in creeping bentgrass during heat stress (35 °C for 1 month). We also compared the effects of chemical application and the induction of thermotolerance using moderate heat stress (30 °C for 24 h). All of the pre-treatments (heat or chemical) resulted in increased tolerance to prolonged heat stress (1 month) compared to control plants. All treated samples showed more green leaves, decreased membrane leakage and reduced oxidative damage compared to control plants. We then measured changes in the endogenous concentration of these chemical components during heat stress (35 °C) and during recovery after a stress treatment (cooling back to 20 °C). An oxidative burst was detected 5 min after the initiation of heat treatment, with the increase in H2O2 being detected primarily in the apoplast of the cells in both leaf and root tissues. Free SA was detected only an hour after the initiation of heat stress, and concentration remained low subsequently. Neither ABA nor ethylene concentrations rose during heat stress, but the concentration of both increased during subsequent cooling. These results suggest that the signaling components of interest are involved in thermotolerance in creeping bentgrass, but that the different chemicals are likely to be involved in separate signaling pathways. An oxidative burst and SA may be bona fide heat stress signals, but ABA and ethylene appear to be involved in signaling pathways in response to recovery from heat stress in this species.  相似文献   

2.
Greater crop losses can result from simultaneous exposure to a combination of drought, heat and salinity in the field. Salicylic acid (SA), a phenolic phytohormone, can affect a range of physiological and biochemical processes in plants and significantly impacts their resistance to these abiotic stresses. Despite numerous reports involving the positive effects of SA by applying each abiotic stress separately, the mechanism of SA‐mediated adaptation to combined stresses remains elusive. This study, via a time‐course analysis, investigated the role of SA on the roots of hulled and hulless (naked) barley (Hordeum vulgare L. ‘Tarm’ and ‘Özen’, respectively), which differed in salt tolerance, under the combined stress of drought, heat and salt. The combined stress caused marked reductions in root length and increases in proline content in both genotypes; however, Tarm exhibited better adaptation to the triple stress. Under the first 24 h of stress, superoxide dismutase (SOD; EC.1.15.1.1) and peroxidase (POX; EC.1.11.1.7) activity in the Tarm roots increased remarkably, while decreasing in the Özen roots. Furthermore, the Tarm roots showed higher catalase (CAT; EC 1.11.1.6), ascorbate peroxidase (APX; EC 1.11.1.11) and glutathione reductase (GR; EC 1.6.4.2) activity than the Özen during the combined stresses. The sensitivity of hulless barley roots may be related to decreasing SOD, POX, CAT and GR activity under stress. Over 72 h of stress, the SA pretreatment improved the APX and GR activity in Tarm and that of POX and CAT in Özen, demonstrating that exogenously applied SA regulates antioxidant defense enzymes in order to detoxify reactive oxygen species. The results of this study suggest that SA treatment may improve the triple‐stress combination tolerance in hulled and hulless barley cultivars by increasing the level of antioxidant enzyme activity and promoting the accumulation of proline. Thus, SA alleviated the damaging effects of the triple stress by improving the antioxidant system, although these effects differed depending on characteristic of the hull of the grain.  相似文献   

3.
An Arabidopsis β-glucosidase, AtBG1 is known to hydrolyze glucose-conjugated, biologically inactive abscisic acid (ABA) to produce active ABA, which increases the level of ABA in plants. Since an increase of ABA in plants confers tolerance against abiotic stress such as drought, we introduced the pCAMBIA3301 vector harboring the AtBG1 gene into creeping bentgrass through Agrobacterium-mediated transformation. After transformation, putative transgenic plants were selected using the BASTA resistance assay at a concentration of 0.8?%. Genomic integration of the AtBG1 gene was confirmed by genomic PCR and Southern blot analysis, and gene expression was validated by Northern blot and Western blot analyses. Interestingly, the transgenic bentgrass plants overexpressing AtBG1 had a dwarf phenotype with reduced growth rates when compared to wild-type creeping bentgrass. In addition, the transgenic plants accumulated higher ABA levels and displayed enhanced drought tolerance. These results suggest that the expression of AtBG1 in plants induces the accumulation of higher ABA levels, which results in the formation of dwarf creeping bentgrass and enhances the survival in water-limiting environments. Key message We used an Arabidopsis β-glucosidase AtBG1 to engineer a crop with elevated active ABA levels, and developed transgenic creeping bentgrass with enhanced drought tolerance and dwarf phenotype.  相似文献   

4.
The possible physiological mechanism of enhancement of cold tolerance by salicylic acid (SA) in banana seedlings (Musa acuminata cv. Williams 8188) was explored. Measurements of leakage electrolyte after 2 d of recovery at 30/22 ℃ (day/night) following 3 d of cold stress at 7 ℃ showed that pretreatment with hydroponic solution containing SA 0.3-0.9 mmol/L as foliar spray under normal growth conditions (30/22 ℃) could significantly enhance cold tolerance of banana plants. The highest enhancing effect of SA occurred at 0.5 mmol/L and it showed the lowest leakage rate of electrolyte or smaller leaf wilting area after 2 d of recovery at normal temperature from 3 d of 7 ℃ or 5 ℃ cold stress. Higher concentrations (≥2.5 mmol/L) of SA, however, caused more electrolyte leakage, indicating that they aggravated chilling damage. Enhanced cold tolerance by SA could be related to H2O2 metabolism. Compared with water-treated seedlings (control), SA 0.5 mmol/L treatment inhibited activities of catalase (CAT) and ascorbate peroxidase (APX), increased peroxidase (POX) activity, but did not affect the activity of superoxide dismutase (SOD) under normal growth conditions, and these changes might lead to an accumulation of H2O2, whereas SA pretreatment enhanced the activities of CAT and APX, and reduced the increase in productions of H2O2 and thiobarbituric acid-reaction substances (TBARS) during subsequent 7 ℃ cold stress and recovery periods. Exogenous H2O2 treatments (1.5-2.5 mmol/L) also increased cold tolerance of banana seedlings. Furthermore, pretreatment of banana seedlings with dimethylthiourea (a trap for H2O2) significantly inhibited cold tolerance induced by SA. These results suggested that endogenous H2O2 may be required for SA-enhanced cold tolerance. The significance of the interaction of SA, H2O2 and H2O2-metabolizing enzymes during cold stress has been discussed.  相似文献   

5.
It has been previously reported that either nitrogen (N) or cytokinin (CK) applications can alleviate heat stress injury on creeping bentgrass, with some studies reporting enhanced antioxidant metabolism being related to stress protection. The objective of this research was to investigate the simultaneous effects of CK and N on the antioxidant enzyme activity and isoforms of heat stressed creeping bentgrass. 'L-93' creeping bentgrass treated with three rates of CK (trans-zeatin riboside, tZR, 0, 10 and 100μM, designated by CK0, 10, and 100) and two nitrogen rates (2.5 and 7.5kgNha(-1) biweekly, low and high N) in a complete factorial arrangement was maintained in a 38/28°C (day/night) growth chamber for 28d and then harvested. Grass grown at high N (averaged across CK rates) had higher O(2)(-) production, H(2)O(2) concentration, and malondialdehyde content in roots. The activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and guaiacol peroxidase (POD) in roots were enhanced 19%, 22%, and 24%, respectively, by high N relative to low N. Twenty-eight days of heat stress resulted in either the development of new isoforms or enhanced isoform intensities of SOD, APX, and POD in roots compared to plant responses prior to heat stress. However, no apparent differences were observed across treatments. Both SOD and POD showed different isoform patterns between roots and shoots, suggesting the function of these isoforms could be tissue specific. Interestingly, no CK effects on these antioxidant parameters were found in this experiment. These results demonstrate the impacts of N on antioxidant metabolism of creeping bentgrass under heat stress with some differences between roots and shoots, but no simultaneous impacts of CK and N.  相似文献   

6.
高温胁迫及其信号转导   总被引:2,自引:0,他引:2  
王利军  黄卫东 《植物学报》2000,17(2):114-120
高温是影响当前农业生产重要的不利环境因素之一。本文综述了4种信号分子脱落酸(ABA),Ca2+,水杨酸(SA),茉莉酸(JA)对高温胁迫的响应以及它们的相互关系,高温胁迫能够诱导ABA,Ca2+,SA的含量升高,并且通过外施ABA,Ca2+,SA,JA都能提高植物的抗热性。作为胞内第二信使,外源Ca2+能够提高植物超氧化物歧化酶(SOD),过氧化氢酶(CAT)以及抗坏血酸氧化酶(APX)的活性,且能提高钙调蛋白水平。ABA诱导的抗热性受胞质游离的Ca2+介导。SA被认为是对胁迫反应所必需的信号分子,H2O2很可能是信号转导链的一部分。JA和ABA在生理功能上有很多相似之处,JA独自或通过提高ABA含量来起作用,JA和SA有不同的生理功能,也有相同的(不过它们的信号转导途径可能不同),最后,提出了今后高温胁迫信号转导研究的一些思路。  相似文献   

7.
高温胁迫及其信号转导   总被引:21,自引:1,他引:20  
高温是影响当前农业生产重要的不得环境因素之一。本文综述了4种信号分子脱落酸(ABA),Ca^2 ,水杨酸(SA),茉莉酸(JA)对高温胁迫的响应以及它们的相互关系,高温胁迫能够诱导ABA,Ca^2 ,SA的含量升高,并且通过外施ABA,Ca^2 ,SA,JA都能提高植物的抗热性。作为胞内第二信使,外源Ca^2 C能够提高植物超氧化物歧化mei(SOD),过氧化氢mei(CAT)以及抗杯血酸氧化mei(APX)的活性,且能  相似文献   

8.
Abscisic acid (ABA), salicylic acid (SA) and γ‐aminobutyric acid (GABA) are known to play roles in regulating plant stress responses. This study was conducted to determine metabolites and associated pathways regulated by ABA, SA and GABA that could contribute to drought tolerance in creeping bentgrass (Agrostis stolonifera). Plants were foliar sprayed with ABA (5 μM), GABA (0.5 mM) and SA (10 μM) or water (untreated control) prior to 25 days drought stress in controlled growth chambers. Application of ABA, GABA or SA had similar positive effects on alleviating drought damages, as manifested by the maintenance of lower electrolyte leakage and greater relative water content in leaves of treated plants relative to the untreated control. Metabolic profiling showed that ABA, GABA and SA induced differential metabolic changes under drought stress. ABA mainly promoted the accumulation of organic acids associated with tricarboxylic acid cycle (aconitic acid, succinic acid, lactic acid and malic acid). SA strongly stimulated the accumulation of amino acids (proline, serine, threonine and alanine) and carbohydrates (glucose, mannose, fructose and cellobiose). GABA enhanced the accumulation of amino acids (GABA, glycine, valine, proline, 5‐oxoproline, serine, threonine, aspartic acid and glutamic acid) and organic acids (malic acid, lactic acid, gluconic acid, malonic acid and ribonic acid). The enhanced drought tolerance could be mainly due to the enhanced respiration metabolism by ABA, amino acids and carbohydrates involved in osmotic adjustment (OA) and energy metabolism by SA, and amino acid metabolism related to OA and stress‐defense secondary metabolism by GABA.  相似文献   

9.
Our previous study suggests that salicylic acid mediates tolerance in barley plants to paraquat (Ananieva et al. 2002). To further define the role of SA in paraquat induced responses, we analysed the capacity of the antioxidative defence system by measuring the activities of several antioxidative enzymes: superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), glutathione reductase (GR, EC 1.6.4.2), dehydroascorbate reductase (DHAR, EC 1.8.5.1), catalase (CAT, EC 1.11.1.6), and guaiacol peroxidase (POX, EC 1.11.1.7). Twelve-day-old barley seedlings were supplied with 500 micromol/L SA or 10 micromol/L Pq via the transpiration stream and kept in the dark for 24 h. Then they were exposed to 100 micromol m(-2) s(-1) PAR and samples were taken 6 h after the light exposure. Treatment of seedlings with 10 micromol/L Pq reduced the activity of APX and GR, did not affect the activity of POX and DHAR but caused over a 40% increase in the activity of CAT. Pre-treatment with 500 micromol/L SA for 24 h in the dark before Pq application increased the activities of the studied enzymes in both the chloroplasts (SOD activity) and the other compartments of the cell (POX, CAT activity). The effect of SA pre-treatment was highly expressed on DHAR and POX activity. The data suggest that SA antagonizes Pq effects, via elicitation of an antioxidative response in barley plants.  相似文献   

10.
The effect of abscisic acid (ABA) on the tolerance to oxidative stress in a freshwater green alga, Chlamydomonas reinhardtii, was investigated. Exogenously added ABA enhanced the growth of this alga, which was observed under continuous illumination but not in the dark. The cells treated with ABA for 24 h showed tolerance to oxidative stress caused by exposure to paraquat or hydrogen peroxide. In the ABA‐treated cells, the activities of two antioxidant enzymes, catalase (CAT) and ascorbate peroxidase (APX), were significantly higher than those in the untreated control. The result suggests that ABA plays a role in the enhancement of tolerance to oxidative stress by increasing the activity of antioxidant enzymes.  相似文献   

11.
Increasing evidence suggests that heat acclimation and exogenous salicylic acid (SA) and abscisic acid (ABA) may lead to the enhancement of thermotolerance in plants. In this study, the roles that free SA, conjugated SA, ABA, and phosphatidylinositol-4,5-bisphosphate (PIP(2))-specific phospholipase C (PLC) play in thermotolerance development induced by heat acclimation (38 degrees C) were investigated. To evaluate their potential functions, three inhibitors of synthesis or activity were infiltrated into pea leaves prior to heat acclimation treatment. The results showed that the burst of free SA in response to heat acclimation could be attributed to the conversion of SA 2-O-D-glucose, the main conjugated form of SA, to free SA. Inhibition of ABA biosynthesis also resulted in a defect in the free SA peak during heat acclimation. In acquired thermotolerance assessment, the greatest weakness of antioxidant enzyme activity and the most severe heat injury (malondialdehyde content and degree of wilting) were found in pea leaves pre-treated with neomycin, a well-known inhibitor of PIP(2)-PLC activity. PsPLC gene expression was activated by exogenous ABA, SA treatments, and heat acclimation after pre-treatments with a SA biosynthesis inhibitor. From these results, PIP(2)-PLC appears to play a key role in free SA- and ABA-associated reinforcement of thermotolerance resulting from heat acclimation.  相似文献   

12.
We investigated the interaction among abscisic acid (ABA), reactive oxygen species (ROS) and antioxidant defence system in the transduction of osmotic stress signalling using Arabidopsis thaliana WT (Columbia ecotype, WT) and an ABA-deficient mutant (aba2-1). For this, 50 μm ABA and osmotic stress, induced with 40% (w/v) polyethylene glycol (PEG8000; -0.7 MPa), were applied to WT and aba2-1 for 6, 12 or 24 h. Time course analysis was undertaken for determination of total/isoenzyme activity of the antioxidant enzymes, superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6), ascorbate peroxidase (APX; EC 1.11.1.11), NADPH oxidase (NOX; EC 1.6.3.1) activity; scavenging activity of the hydroxyl radical (OH˙), hydrogen peroxide (H(2) O(2) ); endogenous ABA and malondialdehyde (MDA). The highest H(2) O(2) and MDA content was found in PEG-treated groups of both genotypes, but with more in aba2-1. ABA treatment under stress reduced the accumulation of H(2) O(2) and MDA, while it promoted activity of SOD, CAT and APX. APX activity was higher than CAT activity in ABA-treated WT and aba2-1, indicating a protective role of APX rather than CAT during osmotic stress-induced oxidative damage. Treatment with ABA also significantly induced increased NOX activity. Oxidative damage was lower in ABA-treated seedlings of both genotypes, which was associated with greater activity of SOD (Mn-SOD1 and 2 and Fe-SOD isoenzymes), CAT and APX in these seedlings after 24 h of stress. These results suggest that osmotic stress effects were overcome by ABA treatment because of increased SOD, CAT, APX and NOX.  相似文献   

13.
Plants, in common with all organisms, have evolved mechanisms to cope with the problems caused by high temperatures. We examined specifically the involvement of calcium, abscisic acid (ABA), ethylene, and salicylic acid (SA) in the protection against heat-induced oxidative damage in Arabidopsis. Heat caused increased thiobarbituric acid reactive substance levels (an indicator of oxidative damage to membranes) and reduced survival. Both effects required light and were reduced in plants that had acquired thermotolerance through a mild heat pretreatment. Calcium channel blockers and calmodulin inhibitors increased these effects of heating and added calcium reversed them, implying that protection against heat-induced oxidative damage in Arabidopsis requires calcium and calmodulin. Similar to calcium, SA, 1-aminocyclopropane-1-carboxylic acid (a precursor to ethylene), and ABA added to plants protected them from heat-induced oxidative damage. In addition, the ethylene-insensitive mutant etr-1, the ABA-insensitive mutant abi-1, and a transgenic line expressing nahG (consequently inhibited in SA production) showed increased susceptibility to heat. These data suggest that protection against heat-induced oxidative damage in Arabidopsis also involves ethylene, ABA, and SA. Real time measurements of cytosolic calcium levels during heating in Arabidopsis detected no increases in response to heat per se, but showed transient elevations in response to recovery from heating. The magnitude of these calcium peaks was greater in thermotolerant plants, implying that these calcium signals might play a role in mediating the effects of acquired thermotolerance. Calcium channel blockers and calmodulin inhibitors added solely during the recovery phase suggest that this role for calcium is in protecting against oxidative damage specifically during/after recovery.  相似文献   

14.
The Arabidopsis, abscisic acid responsive element-binding factor 3, ABF3 is known to play an important role in stress responses via regulating the expression of stress-responsive genes. In this study, we introduced pCAMBIA3301 vector harboring the ABF3 gene into creeping bentgrass (Agrostis stolonifera) through Agrobacterium-mediated transformation in order to develop a stress-tolerant variety of turfgrass. After transformation, putative transgenic plants were selected using the herbicide resistance assay. Genomic integration of the transgene was confirmed by genomic PCR and Southern blot analysis, and gene expression was validated by northern blot analysis. Under drought-stressed condition, the transgenic plants overexpressing ABF3 displayed significantly enhanced drought tolerance with higher water content and slower water loss rate than the control plants. Furthermore, the stomata of the ABF3 transgenic plants closed more than those of wild-type creeping bentgrass plants, under both non-stressed and ABA treatment conditions. In addition, the transgenic plants showed enhanced tolerance to heat stress. These results suggest that the overexpression of the ABF3 gene in creeping bentgrass might enhance survival in water-limiting and high temperature environments through increased stomatal closure and reduced water losses.  相似文献   

15.
氧化胁迫对水稻幼苗抗冷力的影响   总被引:17,自引:0,他引:17  
利用H2O2和甲基紫精(MV)对水稻幼苗作三种不同程度的氧化胁迫预处理。结果表明:轻度氧化胁迫预处理(10umol/LH2O2或10umol/LMV处理4h)提高了水稻幼苗的抗冷力,严重氧化胁迫预处理(10umol/LH2O2或10umol/LMV分别处理16h和40h)则削弱水稻幼苗的抗冷力。氧化胁迫预处理刺激了水稻幼苗叶片抗氧化酶(SOD,CAT,POX和APX)的活性。经冷胁迫后,不同预处理苗的叶片抗氧化酶活性、膜脂过氧化和膜结构的变化趋势不同:轻度氧化胁迫预处理使幼苗仍保持较高的抗氧化酶活性,减轻了由冷胁迫引起的膜脂过氧化和细胞膜的渗漏程度,而严重氧化胁迫预处理则相反。因此,水稻幼苗对氧化胁迫感知并作出反应的机制(氧化应激机制)在水稻幼苗对低温反应和适应过程中起着很重要的调节作用。  相似文献   

16.
Catharanthus roseus (L.) G. Don. plants were grown with NaCl and CaCl2 in order to study the effect of CaCl2 on NaCl-induced oxidative stress in terms of lipid peroxidation (TBARS content), H2O2 content, osmolyte concentration, proline (PRO)-metabolizing enzymes, antioxidant enzyme activities, and indole alkaloid accumulation. The plants were treated with solutions of 80 mM NaCl, 80 mM NaCl with 5 mM CaCl2 and 5 mM CaCl2 alone. Groundwater was used for irrigation of control plants. Plants were uprooted randomly on 90 days after sowing (DAS). NaCl-stressed plants showed increased TBARS, H2O2, glycine betaine (GB) and PRO contents, decreased proline oxidase (PROX) activity, and increased gamma-glutamyl kinase (gamma-GK) activity when compared to control. Addition of CaCl2 to NaCl-stressed plants lowered the PRO concentration by increasing the level of PROX and decreasing the gamma-GK activities. Calcium ions increased the GB contents. CaCl2 appears to confer greater osmoprotection by the additive role with NaCl in GB accumulation. The antioxidant enzymes superoxide dismutase (SOD), peroxidase (POX) and catalase (CAT) were increased under salinity and further enhanced due to CaCl2 treatment. The NaCl-with-CaCl2-treated C. roseus plants showed an increase in total indole alkaloid content in shoots and roots when compared to NaCl-treated and untreated plants.  相似文献   

17.
Nitric oxide (NO), a small diffusible, ubiquitous bioactive molecule, acts as prooxidant as well as antioxidant, and also regulates remarkable spectrum of plant cellular mechanisms. The present work was undertaken to investigate the role of nitric oxide donor sodium nitroprusside (SNP) and/or calcium chloride (CaCl(2)) in the tolerance of excised mustard leaves to salt stress. After 24h, salt stressed leaves treated with SNP and/or CaCl(2), showed an improvement in the activities of carbonic anhydrase (CA) and nitrate reductase (NR), and leaf chlorophyll (Chl) content, leaf relative water content (LRWC) and leaf ion concentration as compared with the leaves treated with NaCl only. Salinity stress caused a significant increase in H(2)O(2) content and membrane damage which is witnessed by enhanced levels of thiobarbituric acid reactive substances (TBARS) and electrolyte leakage. By contrast, such increases were blocked by the application of 0.2mM SNP and 10mM CaCl(2) to salt stressed leaves. Application of SNP and/or CaCl(2) alleviated NaCl stress by enhancing the activities of antioxidative enzymes viz. superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX) and glutathione reductase (GR) and by enhancing proline (Pro) and glycinebetaine (GB) accumulation with a concomitant decrease in H(2)O(2) content, TBARS and electrolyte leakage, which is manifested in the tolerance of plants to salinity stress. Moreover, application of SNP with CaCl(2) was more effective to reduce the detrimental effects of NaCl stress on excised mustard leaves. In addition to this, ameliorating effect of SNP was not effective in presence of NO scavenger cPTIO [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide]. To put all these in a nut shell, the results advocate that SNP in association with CaCl(2) plays a role in enhancing the tolerance of plants to salt stress by improving antioxidative defence system, osmolyte accumulation and ionic homeostasis.  相似文献   

18.
19.
The present study investigated the possible mediatory role of salicylic acid (SA) in protecting photosynthesis from cadmium (Cd) toxicity. Seeds of maize (Zea mays L., hybrid Norma) were sterilized and divided into two groups. Half of the seeds were presoaked in 500muM SA solution for only 6h, after which both groups were allowed to germinate for 3d and were then grown for 14d in Hoagland solution at 22/18 degrees C in a 16/8-h light/dark period and 120mumolm(-2)s(-1) PAR. All seedlings (without H(2)O and SA controls) were transferred to Cd-containing solutions (10, 15, and 25muM) and grown for 14d. The rate of CO(2) fixation and the activity of ribulose 1,5-bisphosphate carboxylase (RuBPC, EC 4.1.1.39) and phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) were measured. Changes in the levels of several important parameters associated with oxidative stress, namely H(2)O(2) and proline production, lipid peroxidation, electrolyte leakage, and the activities of antioxidative enzymes (superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), catalase (CAT, EC 1.11.1.6), and guaiacol peroxidase (POD, EC 1.11.1.7)) were measured. Exposure of the plants to Cd caused a gradual decrease in the shoot and root dry weight accumulation, with the effect being most pronounced at 25muM Cd. Seed pretreatment with SA alleviated the negative effect of Cd on plant growth parameters. The same tendency was observed for the chlorophyll level. The rate of CO(2) fixation was lower in Cd-treated plants, and the inhibition was partially overcome in SA-pretreated plants. A drop in the activities of RuBPC and PEPC was observed for Cd-treated plants. Pretreatment with SA alleviated the inhibitory effect of Cd on enzyme activity. Proline production and the rates of lipid peroxidation and electrolyte leakage increased in Cd-treated plants, whereas the values of these parameters were much lower in SA-pretreated plants. Treatment of plants with Cd decreased APX activity, but more than doubled SOD activity. Pretreatment with SA caused an increase in both APX and SOD activity, but caused a strong reduction in CAT activity. The data suggest that SA may protect cells against oxidative damage and photosynthesis against Cd toxicity.  相似文献   

20.
In nature, plants are subject to changes of tempera-ture. Thus, like other organisms, plants have evolved strategies for preventing damage caused by rapid changes in temperature and for repairing what damage is unavoidable. Heat stress responses have been well documented in a wide range of organisms. In all spe-cies studied, the heat shock (HS) response is charac-terized by a rapid production and a transient accumu-lation of specific families of proteins known as heat shock proteins (Hsps) th…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号