首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
对安徽省天堂寨自然保护区独花兰野生种群的花果期节律和营养体状态研究表明,开花植株占观察样本的375%,个体是否开花与假鳞茎数目、地下茎总体积和叶面积呈极显著相关关系。绝大多数开花个体具有3个假鳞茎且其总体积通常达8cm3,叶面积达33 cm2。个体较大的植株开花持续期较长。花葶在花果期具有不同的生长时相:开花期中止生长,幼果期呈逻辑斯谛型生长。面对日益增长的人类采掘风险,独花兰开花与大型植株的关联可能是其生活史中影响种群生存的脆弱点之一。  相似文献   

2.
江苏省句容市宝华山是国家二级重点保护野生植物独花兰(Changnienia amoena S. S. Chien)的模式标本产地。为了阐明宝华山省级自然保护区独花兰种群数量、生境特征及其受威胁因子,2021年3月至10月,对该地野生独花兰种群进行了全面调查。结果发现,在宝华山自然保护区核心区内,在海拔160~200 m的山坡天然落叶阔叶林下,独花兰种群局限分布在一处东西长300 m,南北宽150 m的狭小区域中。独花兰种群共有218株个体,其中121株开花个体都生长在腐殖质丰富的土壤中。160株独花兰都生长在9棵建始槭(Acer henryi Pax)树干基部附近,占独花兰个体总数的73.4%;其中开花个体86株,占开花植株总数的71.1%。宝华山独花兰面临的受威胁因子主要为结实率很低、部分个体生长发育不良、以及假鳞茎被雨水冲出土壤表面。此外,对宝华山独花兰种群的就地保护工作提出了一些建议。  相似文献   

3.
神农架南坡独花兰分布的群落一般位于坡度 1 5~ 45°的阴坡 ,海拔范围为 1 30 0~ 1 70 0 m。土壤类型主要为山地黄棕壤 ,p H值 5 .0~ 5 .6。9月中下旬独花兰地下假鳞茎萌芽出土并开始展叶 ,1 1月中下旬抽生花葶 ,次年 3月下旬开花 ,4月下旬至 5月上旬叶片逐渐枯死 ,地下部假鳞茎开始发育 ,9月中下旬假鳞茎发育成熟 ,1 0月下旬至 1 1月上旬果实成熟。独花兰的结实率两年的调查结果差异较大 ,分别为 2 .3%、9.5 %。每株独花兰每年能长出 1~ 3个假鳞茎 ,抽生 1~ 3个叶片和花葶。神农架南坡独花兰主要分布在以化香 ( Platycarya strobilacea)、四照花 ( Dendrobenthamia japonica)、华千金榆 ( Carpinuscordata var.chinen-sis)等为主的落叶阔叶林下以及以箬竹 ( Indocalamustessellatus)灌丛下 ,群落物种组成中北温带成分占绝对优势。群落遭到不同程度的人为干扰 ,随着干扰强度的递增 ,独花兰在不同群落中的个体数量有递减的趋势 ,在郁闭的森林下个体数量最大而箬竹灌丛下最小。人为干扰、结实率低、种子萌发困难是导致独花兰濒危的主要原因 ;建立保护区 ,恢复独花兰分布区的森林植被是保护独花兰的有效途径。  相似文献   

4.
枝与叶片权衡关系的个体大小差异性,是物种形成不同冠层结构充分利用空间资源的一种策略,有利于植株通过构型调整自身的光合效率和增强竞争力。在祁连山北坡荒漠草地,根据体积将霸王(Zygophyllum xanthoxylum)分为3个大小等级(I级:(植株体积的立方根(d)≤60 cm)、II级(60 cmd≤120 cm)和III级(d120 cm)),采用标准化主轴估计方法,研究了不同大小等级霸王种群枝长度与叶面积、叶数量的生长关系。结果表明:随着植株大小等级增大,霸王的枝长度、叶面积、枝横截面积逐渐增大,叶数量呈逐渐减小趋势;霸王枝长度的增长速度大于或等于叶面积的增长速度,枝长度的增加速度大于叶数量的增加速度;随着个体大小等级的增加,霸王枝长度与叶面积的异速斜率、枝长度与叶数量回归方程的y轴截距均显著减小,即植株叶面积与枝长度比值、叶数量的投入均显著降低。为提高资源利用效率,霸王小个体植株倾向于短枝上着生大量的小叶,大个体植株趋向于长枝上着生少量的大叶,随植株大小等级增加,叶面积增加而叶数量降低,对小枝的资源配置具有一定的影响。  相似文献   

5.
植物枝叶性状的个体大小差异,是植物适应异质性环境所形成的冠层构建策略,对于理解枝叶构建机制及光合生理代谢具有重要意义。于2017年7月下旬,在金水湖湿地公园选择一块薰衣草样地,根据体积将薰衣草(Lavandula angustifolia)分为3个大小等级[I级:植株体积的立方根(d)≤60 cm、II级(60 cmd≤90 cm)和III级(d90 cm)],采用一元线性回归方法,研究了薰衣草种群枝叶性状的个体大小依赖。结果表明:随着薰衣草植株大小等级增大,薰衣草的叶面积、枝长度、枝数量和枝横截面积逐渐增大,而叶数量、叶厚度和分枝角度逐渐减小。薰衣草叶面积、枝长度和枝数量与个体大小呈极显著的正相关(P0.01),枝横截面积与个体大小呈显著的正相关(P0.05),叶数量和叶厚度与个体大小呈极显著的负相关(P0.01),分枝角度与个体大小呈显著的负相关(P0.01)。为提高资源利用效率,大个体薰衣草选择生长少量大而薄的叶片以及分配更多的生物量用于小枝的生长;而小个体薰衣草选择生长多数小而厚的叶片以及短而细的枝条,体现了不同大小等级薰衣草枝叶表型可塑性。  相似文献   

6.
不同生境下假臭草生长特征分析   总被引:2,自引:0,他引:2       下载免费PDF全文
通过测定庄稼地、弃耕地、桉树林、公路边4种生境下假臭草叶面积(LA)、比叶面积(SLA)、LDMC和株高等形态特征、植株各构件生物量及生物量分配比和假臭草种群盖度、密度等种群数量性状,研究不同生境类型下假臭草个体的形态特征、生物量及生物量分配和种群生长状况的差异。结果表明:光照和土壤养分对假臭草的形态特征、生物量及生物量分配和种群数量性状的影响显著;低光照、高土壤养分生境下假臭草的LA、SLA、株高较高,假臭草叶片的LDMC较小,植株的花序数较少,生物量主要向叶和茎器官进行分配,根和花果器官的生物量分配则受到限制;高光照、养分贫瘠生境下假臭草的LA、SLA、株高较低,假臭草叶片的LDMC较大,生物量主要向根和花果器官进行分配,种群的盖度、密度、生物量和高度等种群数量性状较低,种群生长状况较差;高光照、肥沃养分生境为假臭草的最适生境,假臭草构件的资源配置较为优化,株高、基径粗、冠宽和花序数等形态指标较大,种群盖度、密度、生物量等种群数量性状较大,种群生长较好。  相似文献   

7.
对海南岛尖峰岭林区海南重楼(Paris dunniana Lévl.)种群的生存状况进行了调查,并分析了其生存环境条件及种群结构特征与发展趋势.结果表明:在尖峰岭林区,只有35%的被调查沟谷生境存有海南重楼个体,大多数生境个体不足3株,平均种群密度仅为3.2 株*km-2,小群聚株间距大(3~30 m),种群联系程度低,呈孤立的分散状态.81%的调查个体株高低于100 cm,而低于80 cm的个体占75%以上; 87.5%的个体未开花; 平均根茎长10.5 cm, 变幅在 4~20 cm 之间. 植株小叶片数为 3~9, 只有 34.3% 的植株的小叶片数在 7 片或 7 片以上. 个体年龄 3~14 a,缺失3 a以下的幼年个体和10~11 a的个体,种群年龄结构呈缺失的不正常的"菱"型.综合分析表明,该种的生境退化严重,种群数量小,有性繁殖能力极弱,种群处于衰退状态,如不采取有效的保护措施将濒于灭绝.  相似文献   

8.
作为高山生态系统中的奠基种(foundation species), 垫状植物自身种群的繁殖与扩张, 对高山生态系统功能稳定性起着关键作用。但是, 垫状植物如何在极端环境条件下实现资源的有效利用与分配, 达到繁殖最优化, 至今鲜为人知。该研究在滇西北白马雪山沿海拔梯度选择具有不同坡度及坡向的5个团状福禄草(Arenaria polytrichoides)种群, 调查、比较种群内、种群间以及具有不同性系统的植株个体之间的开花面积比、开花方位, 并分析不同生态因子对其开花特性的影响。结果表明: 随着海拔的升高, 团状福禄草个体变小, 其分配到开花的资源比例总体上随海拔上升呈现下降的趋势, 说明团状福禄草的繁殖分配受到由海拔所引起的生态因子的调控。但是, 部分低海拔种群内植物个体的繁殖分配显著低于部分高海拔种群, 说明海拔并非控制植物繁殖分配的唯一因素。此外, 植株开花总面积随植株个体增大而增加, 但开花面积比却随个体增大而变小, 说明植株分配到开花的资源增长速率可能低于植株个体的增长速率。在性别差异方面, 两性植株对开花的资源分配比例要显著高于雌性植株, 但是, 其差异程度受到海拔因素的影响。最后, 在同一种群内, 团状福禄草在冠层表面不同方位上的开花面积比存在显著差异性, 这种差异性在不同种群之间又具有不同的表现形式。  相似文献   

9.
以雌雄异株攀援草本植物葎草为材料,通过每10 d测量1次,连续6次,测定幼苗期葎草种群的密度和高度、个体构件性状和生物量分配等参数,分析种群自疏过程中种群密度与个体构件性状及生物量分配的关系,研究葎草种群的自疏规律。结果表明:幼苗期葎草种群存在显著的自疏现象,种群密度60 d内下降了71%;幼苗期葎草由直立生长向横向生长时,种群密度和株高显著降低;自疏过程中存留植株的茎性状有显著变化,变化大小为节间长主茎长茎直径,节间长增加,叶性状变化大小为叶面积叶柄长叶厚叶宽叶长总叶数保留叶片数,根性状变化大小为总根长根体积根数根长最大根长;自疏过程中存留植株的构件生物量、单株生物量显著增加,而单位面积累积生物量呈阶段性下降;留存植株的地上生物量分配比相对稳定(P0.05),根茎比和叶茎比有极显著变化(P0.01);叶、茎、叶柄生物量与根生物量和地上生物量之间均呈极显著的异速关系(P0.01),茎随地上生物量增长呈等速生长,而叶、叶柄和根随地上生物量增长呈异速生长,地上生物量与叶、茎、叶柄及根生物量极显著相关(P0.01);茎生物量与密度的异速关系遵循最终产量恒定法则,叶、叶柄和根生物量并不满足-3/2或-4/3或-1自疏法则;地上和单株总生物量与密度极显著相关(P0.01),存留单株的地上生物量和总生物量与密度的异速关系遵循最终产量恒定法则。  相似文献   

10.
以三种不同比例缓释固体肥与三种液体肥组合为苹果花卡特兰施肥,分析不同施肥处理对苹果花卡特兰生长与开花的影响,并对开花植株商品化性状进行评分,探讨营养配方对苹果花卡特兰商品化栽培的影响。结果表明,含N量较高的肥料有利于苹果花卡特兰叶片与假球茎生长,而P、K比例较高的肥料有利于假球茎发育和开花。苗期可使用含N量较高的肥料促进营养生长及抽生假球茎,成株期则施P、K比例较高的肥料促进假鳞茎成熟与花芽分化,使苹果花卡特兰多抽花枝多开花,增加观赏性状,提高苹果花卡特兰商品价值。  相似文献   

11.
Pollination biology of the deceptive orchid Changnienia amoena   总被引:1,自引:0,他引:1  
The pollination biology of Changnienia amoena , an endangered terrestrial orchid, was investigated at two sites in the Shennongjia Mountains, Hubei, central China. The results show that the orchid is exclusively pollinated by bumblebees. In Longmenhe, Bombus ( Diversobombus ) trifasciatus is the primary effective pollinator, whereas B.  ( Tricornibombus ) imitator is the only pollinator in Guanmenshan. These two bumblebees can be treated as a functional group because they carry pollinaria on the same position on their bodies and have similar pollinating behaviours. The morphological traits of the flower adapt precisely to the pollinators. Visitation by bumblebees is mainly in the first half of the flowering period of C. amoena . Pollinarium removal and pollinia deposition take place when bumblebees withdraw from the flower. Crossing experiments show that C. amoena is a self-compatible and outcrossing species. Fruit set in this species is low and may result from limited pollinators because 87.5% of individuals set fruits under hand-pollination, but only 6–12% of individuals set fruits under natural conditions. These results imply that it is important to conserve the pollinator community together with the plants when conservation management for this endangered species is undertaken. Artificial pollination would also be a useful measure to facilitate restoration of the small populations.  © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society , 2006, 150 , 165–175.  相似文献   

12.
《植物生态学报》2017,41(7):716
Aims Diversity of climbing seed plants and their reproductive habits and characteristics are central for the understanding of community structure and dynamics of forests and hence are important for forest protection. However, little is known about the climbing seed plants in northern tropical karst seasonal rain forests. Here, using the data of the species diversity and reproductive habits of climbing seed plants in Nonggang, Guangxi, China, we aim to 1) explore the species diversity and distribution of climbing seed plants in northern tropical karst seasonal rain forests, 2) study the flowering and fruiting phenology and 3) the associations of reproductive characteristics to the environment. Methods Species composition, preferred habitat, flowering time, fruiting time and fruit types of climbing seed plants were surveyed. The seasonality of flowering and fruiting were analyzed by concentration ratio and circular distribution. Climbing seed plants were divided into three groups according to their growth forms and places in spatial forest structure: bush ropes, herbaceous vines and lianas. Monthly flowering ratios, fruiting ratios, fruit types and their ratios in different groups were determined. These relationships of flowering ratio, fruiting ratio, fruit type and its ratio to meteorological factors were investigated using Pearson correlation analysis. Important findings There were a total of 333 species of climbing seed plants in Nonggang karst seasonal rain forest, belonging to 145 genera and 56 families. Bush ropes, herbaceous vines and lianas contained 119, 88 and 126 species, respectively. At species level, herbaceous vines were more abundance in valleys, while bush ropes and lianas were more abundance on slopes. Flowering and fruiting of climbing seed plants occurred seasonally, with flowering peaking in April to September, while fruiting peaking in July to December. The seasonality of flowering and fruiting in bush ropes was weaker than in herbaceous vines and lianas. Flowering ratio was significantly positively correlated with rainfall and air temperature, which suggest that flowering peaks in monsoon season. Peak time for fruiting was about three months later than the peak time of flowering, around the end of monsoon season. The ratio of samara species to all fruiting species in lianas was significantly positively correlated with wind speed, but negatively correlated with rainfall and air temperature. It showed that samara in lianas tended to occur in dry season with high wind speed. In conclusion, species diversity and the seasonal features of reproduction of climbing seed plants in Nonggang karst seasonal rain forest were closely related to the spatial and temporal variations of habitat resources.  相似文献   

13.
Carbon exchange capacity of cucumber (Cucumis sativus L.) germinated and grown in controlled environment chambers at 1000 microliters per liter CO2 decreased from the vegetative growth stage to the fruiting stage, during which time capacity of plants grown at 350 microliters per liter increased. Carbon exchange rates (CERs) measured under growth conditions during the fruiting period were, in fact, lower in plants grown at 1000 microliters per liter CO2 than those grown at 350. Progressive decreases in CERs in 1000 microliters per liter plants were associated with decreasing stomatal conductances and activities of ribulose bisphosphate carboxylase and carbonic anhydrase. Leaf starch concentrations were higher in 1000 microliters per liter CO2 grown-plants than in 350 microliters per liter grown plants but calcium and nitrogen concentrations were lower, the greatest difference occurring at flowering. Sucrose synthase and sucrose-P-synthase activities were similar in 1000 microliters per liter compared to 350 microliters per liter plants during vegetative growth and flowering but higher in 350 microliters per liter plants at fruiting. The decreased carbon exchange rates observed in this cultivar at 1000 microliters per liter CO2 could explain the lack of any yield increase (MM Peet 1986 Plant Physiol 80: 59-62) when compared with plants grown at 350 microliters per liter.  相似文献   

14.
Seasonal changes in photosynthesis of apple trees (Malus domestica Borkh.) were monitored to examine the effect of source-sink interactions on photosynthesis and photorespiration. Elevated photosynthetic rates were observed during two periods of the growing season and correlated with the fruiting process. The first period of increased photosynthetic rates was during the bloom period, when spur leaves on flowering shoots exhibited up to 25% higher photosynthetic rates than vegetative spur leaves on a leaf area basis. CO2 assimilation rates were also higher in fruiting trees than nonfruiting trees during the period of rapid fruit growth from July to September. Photorespiration, dark respiration, leaf resistance, and transpiration exhibited no seasonal changes which correlated to the presence or absence of fruit. These data represent the first comprehensive examination of the effects of flowering/fruit formation on photosynthesis and photorespiration in perennial plants.  相似文献   

15.
几个气候区木本植物的开花结果物候   总被引:9,自引:0,他引:9       下载免费PDF全文
分析了我国海南和广东、秦岭、东北等不同森林气候区木本植物开花、结果物候以及果实和种子大小分布的规律。三个区系的开花、结果物候和种子、果实大小分布,都有类似的格局。但随着纬度的升高,一年中植物开花和结果的时间更加集中,海南和广东整年都有木本植物开花,秦岭有10个月左右,而东北仅有7个月。并且随着纬度升高,开花高峰的时间较迟,而结果高峰的时间较早。在海南和广东,热带区系成分和温带区系成分的木本植物,一年中开花和结果物候格局是很一致的。三个区系木本植物的果实和种子大小分布的格局也是很相似的,但海南和广东植物果实和种子大小范围较大,较多样,随着纬度升高,果实和种子大小范围变小,较单调。三个区系木本植物最小的果实的大小都差不多,为0.1cm,但最小的种子的大小却很不相同,随着纬度的升高而增大,开花和结果物候与月均气温及降水量的相关性因不同的区系而不同.鼎湖山常见木本植物果熟期和气候因子的相关性比结果期更显著。  相似文献   

16.
To clarify the adaptive value of variation in capitulum size and achene mass, plants of Centaurea eriophora were studied in a glasshouse and in a natural population. C. eriophora plants consist of a basal leaf rosette from which an erect stem grows, with lateral branches of various orders ending in capitula of different orders. Primary, secondary and tertiary capitula are comparable in size and they produce similar numbers of achenes, which are similar in weight (large achenes). These capitula are formed during April, May and early June, and constitute the normal or primary flowering. Following ripening of tertiary capitula, leaves senesce, but, later during June and the first half of July, a secondary flowering of a variable number of smaller capitula may occur if wet conditions persist for longer than usual. Plants that have almost senesced develop small lateral branches 1-2 cm long bearing a few small leaves and ending in a capitulum about half the diameter of capitula from the primary flowering period. The number of achenes produced in these capitula (small achenes) and their weight are 70 and 30% less, respectively, than those of capitula formed during primary flowering. These reductions appear to result from restricted availability of resources. Large and small achenes have similar dispersal characteristics and possess similar germination potential. However, large achenes produce seedlings that are capable of emerging from greater burial depths, providing the resulting plants with a potential advantage. The normal flowering period coincides with the optimum time of year for flowering and fruiting in the south of Spain, and only if rainfall lasts longer than usual does secondary flowering occur. Secondary flowering extends the normal flowering and fruiting periods, thereby providing a supplementary crop of smaller, yet viable, fruits. It can be considered to be an adaptive response to the unpredictable Mediterranean climate, optimizing the use of available resources.  相似文献   

17.
濒危植物独花兰的传粉生物学初步观察   总被引:9,自引:0,他引:9  
独花兰(Changnienia amoena Chien)为我国特有的单种属植物,近年因生境破碎化和过度采挖,其野生资源日渐减少。迄今对独花兰极为有限的研究表明,其结实率很低或根本不结实,其传粉媒介也一直未被发现。2002年3~4月,我们对神农架2个移植居群和5个天然居群进行了传粉生物学的定点观察,发现雌性三条熊蜂(Bombus (Diversobombus)trifasciatus Smith)、仿熊蜂(Bombus (Tricornibombus) imitator Pittion)和蜜蜂均访问独花兰,但只有二条熊蜂身体粘有花粉块,是独花兰的有效传粉者。三条熊蜂的访问频率很低,在113h的观察中只有9次访问,但在一个天然居群(population 3)中曾观察到一天4次的最高访问频率;访问主要在12:00~15:00出现,但在花上停留时间很短,不超过10s。在末被授粉的情况下,独花兰花朵大约3周后自然枯萎,但受粉后3、4d内即出现~系列形态和颜色的变化,包括花梗逐渐伸长,子房在花梗逐渐停止伸长后开始膨大等,表明花梗伸长可作为结实(授粉成功)的指标。人工授粉实验表明,自花、异花受粉后花梗均伸长,而套袋隔离花的则花梗不伸长,说明独花兰是自交亲和的异交种,需要昆虫传粉。根据传粉者的访问频率、居群中果实的分布,尤其是花距内无花蜜等特征,我们认为独花兰是一种欺骗性传粉的兰花。相对于其他欺骗性传粉的兰花,独花兰的自然结实率并不很低(26.98%),这与居群规模小会提高欺骗性传粉兰花结实率这一观点吻合。花粉块的输出数远高于结实数,这说明独花兰存在一定的花粉浪费。  相似文献   

18.
The root, vegetative shoot and fruit growth of November and January sown glasshouse tomato plants grown in flowing water culture was followed over 6–7 months. The relationship between vegetative and reproductive growth was examined after two-thirds of the flowers were removed from half the experimental plants. This resulted in larger plants which had fewer, larger fruits and eventually a fruit yield almost as large as the controls. In the control plants, fruit growth increased steadily until it reached 90% of the total incremental fresh weight of the plant 50–60 days after first anthesis. Leaf growth was markedly depressed at this stage and root growth ceased 4 wk after anthesis. Some root death was observed from anthesis onwards. When fruit growth subsequently diminished, vegetative growth recovered but to a lower rate than before fruiting commenced. Following partial flower removal, only 64% or less of the total increment of fresh weight went into the fruit. Although vegetative growth at this stage was thus greater than in the control plants, both shoot and root growth followed the same qualitative pattern with time. The ratio of vegetative shoot to root fresh weight remained essentially constant throughout the fruiting phase in plants of both sowings whether flowers were removed or not. This suggests that the fruit grew in competition with the vegetative organs as a whole, although, for a short period at early fruiting, root growth was more seriously affected. The pattern and amount of fruiting in this indeterminate plant was influenced by the size of the vegetative organs at fruiting, and by the effect of the existing developing fruit on further vegetative and reproductive growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号