首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 616 毫秒
1.
Calcium (Ca) oxalate crystals occur in many plant species and in most organs and tissues. They generally form within cells although extracellular crystals have been reported. The crystal cells or idioblasts display ultrastructural modifications which are related to crystal precipitation. Crystal formation is usually associated with membranes, chambers, or inclusions found within the cell vacuole(s). Tubules, modified plastids and enlarged nuclei also have been reported in crystal idioblasts. The Ca oxalate crystals consist of either the monohydrate whewellite form, or the dihydrate weddellite form. A number of techniques exist for the identification of calcium oxalate. X-ray diffraction, Raman microprobe analysis and infrared spectroscopy are the most accurate. Many plant crystals assumed to be Ca oxalate have never been positively identified as such. In some instances, crystals have been classified as whewellite or weddellite solely on the basis of their shape. Certain evidence indicates that crystal shape may be independent of hydration form of Ca oxalate and that the vacuole crystal chamber membranes may act to mold crystal shape; however, the actual mechanism controlling shape is unknown. Oxalic acid is formed via several major pathways. In plants, glycolate can be converted to oxalic acid. The oxidation occurs in two steps with glyoxylic acid as an intermediate and glycolic acid oxidase as the enzyme. Glyoxylic acid may be derived from enzymatic cleavage of isocitric acid. Oxaloacetate also can be split to form oxalate and acetate. Another significant precursor of oxalate in plants is L-ascorbic acid. The intermediate steps in the conversion of L-ascorbic acid to oxalate are not well defined. Oxalic acid formation in animals occurs by similar pathways and Ca oxalate crystals may be produced under certain conditions. Various functions have been attributed to plant crystal idioblasts and crystals. There is evidence that oxalate synthesis is related to ionic balance. Plant crystals thus may be a manifestation of an effort to maintain an ionic equilibrium. In many plants oxalate is metabolized very slowly or not at all and is considered to be an end product of metabolism. Plant crystal idioblasts may function as a means of removing the oxalate which may otherwise accumulate in toxic quantities. Idioblast formation is dependent on the availability of both Ca and oxalate. Under Ca stress conditions, however, crystals may be reabsorbed indicating a storage function for the idioblasts for Ca. In addition, it has been suggested that the crystals serve purely as structural supports or as a protective device against foraging animals. The purpose of this review is to present an overview of plant crystal idioblasts and Ca oxalate crystals and to include the most recent literature.  相似文献   

2.
A. P. Kausch  H. T. Horner 《Planta》1985,164(1):35-43
Three peroxisomal enzymes, glycolate oxidase, urate oxidase and catalase were localized cytochemically in Psychotria punctata (Rubiaceae) leaves and Yucca torreyi (Agavaceae) seedling root tips, both of which contain developing and mature calcium-oxalate raphide crystal idioblasts. Glycolate-oxidase (EC 1.1.3.1) and catalase (EC 1.11.1.6) activities were present within leaftype peroxisomes in nonidioblastic mesophyll cells in Psychotria leaves, while urate-oxidase (EC 1.7.3.3) activity could not be conclusively demonstrated in these organelles. Unspecialized peroxisomes in cortical parenchyma of Yucca roots exhibited activities of all three enzymes. Reactionproduct deposits attributable to glycolate-oxidase activity were never observed in peroxisomes of any developing or mature crystal idioblasts of Psychotria or Yucca. Catalase localization indicates that idioblast microbodies are functional peroxisomes. The apparent absence of glycolate oxidase in crystal idioblasts of Psychotria and Yucca casts serious doubt that pathways involving this enzyme are operational in the synthesis of the oxalic acid precipitated as calcium-oxalate crystals in these cells.Abbreviations AMPD 2-amino-2-methyl-1,3-propandiol - CTEM conventional transmission electron microscopy - DAB 3,3-diaminobenzidine tetrahydrochloride - HVEM high-voltage electron microscopy  相似文献   

3.
乙醇酸氧化酶(Go)是植物光呼吸途径中的一种关键酶,可以催化乙醇酸生产乙醛酸。从新鲜菠菜叶中提取总RNA,利用RT-PCR技术获得编码GO基因的cDNA片断。通过基因重组将GO基因克隆到载体pA0815中,构建了胞内表达载体pA0815/GO,重组质粒经电转整合至甲醇营养酵母GS115染色体。在混合碳源为10g/L山梨醇和0.5g/L甲醇的培养条件下,细胞的GO酶活达到474IU/g(DCW)。利用该重组毕赤酵母作为催化剂生产乙醛酸,结果表明:在乙醇酸浓度为0.25mol/L,重组酵母湿菌体为10dL,黄素单核苷酸(FMN)浓度为0.01mmol/L,pH8.0,20℃,反应18h后乙醛酸的产率达到51.8%。  相似文献   

4.
L-Ascorbic acid (AsA) and its metabolic precursors give rise to oxalic acid (OxA) found in calcium oxalate crystals in specialized crystal idioblast cells in plants; however, it is not known if AsA and OxA are synthesized within the crystal idioblast cell or transported in from surrounding mesophyll cells. Isolated developing crystal idioblasts from Pistia stratiotes were used to study the pathway of OxA biosynthesis and to determine if idioblasts contain the entire path and are essentially independent in OxA synthesis. Idioblasts were supplied with various (14)C-labeled compounds and examined by micro-autoradiography for incorporation of (14)C into calcium oxalate crystals. [(14)C]OxA gave heavy labeling of crystals, indicating the isolated idioblasts are functional in crystal formation. Incubation with [1-(14)C]AsA also gave heavy labeling of crystals, whereas [6-(14)C]AsA gave no labeling. Labeled precursors of AsA (L-[1-(14)C]galactose; D-[1-(14)C]mannose) also resulted in crystal labeling, as did the ascorbic acid analog, D-[1-(14)C]erythorbic acid. Intensity of labeling of isolated idioblasts followed the pattern OxA > AsA (erythorbic acid) > L-galactose > D-mannose. Our results demonstrate that P. stratiotes crystal idioblasts synthesize the OxA used for crystal formation, the OxA is derived from the number 1 and 2 carbons of AsA, and the proposed pathway of ascorbic acid synthesis via D-mannose and L-galactose is operational in individual P. stratiotes crystal idioblasts. These results are discussed with respect to fine control of calcium oxalate precipitation and the concept of crystal idioblasts as independent physiological compartments.  相似文献   

5.
The metabolic pathway by which L-[14C1]phenylalanine, L-[14C1]tyrosine, L-[14C1]tryptophan, and L-[14C1]ascorbic acid are converted to [14C]oxalate have been investigated in the male rate. Only [14C]oxalate was detected in the urine of rats injected with L-[14C1]ascorbic acid, but [14C]-labeled oxalate, glycolate, glyoxylate, glycolaldehyde, glycine, and serine were recovered from the [14C1]-labeled aromatic amino acids. DL-Phenyllactate, an inhibitor of glycolic acid oxidase and glycolic acid dehydrogenase, reduced the amount of [14C]oxalate recovered in the urine of rats given the [14C1]-labeled aromatic amino acids, but increased the amount of [14C]glycolate formed from L-[14C1]-phenylalanine and L-[14C1]tyrosine and the amount of [14C]glycolate produced from [14C1]tryptophan. Based on the [14C]labeled intermediates identified and the relative distribution of the radioactivity, it is postulated that phenylalanine and tyrosine are converted to oxalate via glycolate which is oxidized directly to oxalate by glycolic acid dehydrogenase. Tryptophan is metabolized via glyxylate which is oxidized directly to oxalate by glycolic acid oxidase. Neither glycolate, glyoxylate, glycolic acid oxidase or glycolic acid dehydrogenase are involved in the formation of oxalate from ascorbic acid.  相似文献   

6.
Axenic Pistia stratiotes L. plants were pulse-chase labeled with [14C]oxalic acid, L[1-14C]ascorbic acid, L-6-14C]ascorbic acid, D-[1-14C]erythorbic acid, L-[1-14C]galactose, or [1-14C]glycolate. Specific radioactivities of L-ascorbic acid (AsA), free oxalic acid (OxA) and calcium oxalate (CaOx) in labeled plants were compared. Samples of leaf tissue were fixed for microautoradiography and examined by confocal microscopy. Results demonstrate a biosynthetic role for AsA as precursor of OxA and its crystalline deposition product, CaOx, in idioblast cells of P. stratiotes and support the recent discovery of Wheeler, Jones and Smirnoff (Wheeler, G.L., Jones M.A., & Smirnoff, N. (1998). The biosynthetic pathway of vitamin C in higher plants. Nature, 393, 365-369) that L-galactose is a key intermediate in the conversion of D-glucose to AsA in plants. D-[1-14C]erythorbic acid (a diastereomeric analog of AsA) is utilized also by P. stratiotes as a precursor of OxA and its calcium salt deposition product in idioblasts. Labeled OxA is rapidly incorporated into CaOx in idioblasts, but microautoradiography shows there is also significant incorporation of carbon from OxA into other components of growing cells, contrary to the dogma that OxA is a relatively stable end product of metabolism. Glycolate is a poor substrate for synthesis of OxA and CaOx formation, further establishing AsA as th immediate precursor in the synthesis of OxA used for calcium precipitation in crystal idioblasts.  相似文献   

7.
Expression of active spinach glycolate oxidase in Aspergillus nidulans   总被引:1,自引:0,他引:1  
The biocatalytic production of glyoxylic acid from glycolic acid requires two enzymes: glycolate oxidase, which catalyzes the oxidation of glycolic acid by oxygen to produce glyoxylic acid and hydrogen peroxide, and catalase, which decomposes the byproduct hydrogen peroxide. As an alternative to isolation from the leaf peroxisomes of spinach, glycolate oxidase has now been cloned and expressed in transformants of Aspergillus nidulans T580 at levels ranging from 1.7 to 36 IU/g dry wt. cells. The glycolate oxidase of transformant strain T17 comprises ca. 1.9% of total cell protein and is expressed at near 100% activity. (c) 1996 John Wiley & Sons, Inc.  相似文献   

8.
Summary Crystal idioblasts are cells which are specialized for accumulation of Ca2+ as a physiologically inactive, crystalline salt of oxalic acid. Using microautoradiographic, immunological, and ultrastructural techniques, the process of raphide crystal growth, and how crystal growth is coordinated with cell growth, was studied in idioblasts ofPistia stratiotes. Incorporation of45Ca2+ directly demonstrated that, relative to surrounding mesophyll cells, crystal idioblasts act as high-capacity Ca2+ sinks, accumulating large amounts of Ca2+ within the vacuole as crystals. The pattern of addition of Ca2+ during crystal growth indicates a highly regulated process with bidirectional crystal growth. In very young idioblasts,45Ca2+ is incorporated along the entire length of the needle-shaped raphide crystals, but as they mature incorporation only occurs at crystal tips in a bidirectional mode. At full maturity, the idioblast stops Ca2+ uptake, although the cells are still alive, demonstrating an ability to strictly regulate Ca transport processes at the plasma membrane. In situ hybridization for ribosomal RNA shows young idioblasts are extremely active cells, are more active than older idioblasts, and have higher general activity than surrounding mesophyll cells. Polarizing and scanning electron microscopy demonstrate that the crystal morphology changes as crystals develop and includes morphological polarity and an apparent nucleation point from which crystals grow bidirectionally. These results indicate a carefully regulated process of biomineralization in the vacuole. Finally, we show that the cytoskeleton is important in controlling the idioblast cell shape, but the regulation of crystal growth and morphology is under a different control mechanism.Abbreviation SEM scanning electron microscopy  相似文献   

9.
Kiwifruit plants (Actinidia deliciosa cv. Hayward) were grown in Hoagland nutrient solution with calcium nitrate, potassium nitrate, ammonium nitrate or ammonium chloride as the nitrogen source. Plants grown in the solution with nitrate nitrogen displayed a higher oxalate content, greater shoot length and leaf area, and higher content of ascorbic acid and NO3 ions in the leaves. Plants grown in the solution with ammonium nitrate, and particularly with ammonium chloride, showed low oxalate content, low content of ascorbic acid and NO3 , high content of Cl and Na+, low shoot length and leaf area. Oxalate formation appeared to be connected with the assimulation of nitrate, more precisely with nitrate reduction, while ammonium nitrogen assimilation did not induce the synthesis of oxalic acid.  相似文献   

10.
Incorporation of strontium into plant calcium oxalate crystals   总被引:6,自引:0,他引:6  
Summary Lemna minor, which produces many calcium oxalate raphide crystals, was grown on media containing in addition to Ca, 200 M of one of the following divalent cations: Ba, Cd, Co, Mn or Sr. Energy dispersive X-ray analysis showed that only Sr was incorporated into the raphides at levels detectable by the analysis technique. Incorporation of Sr into other insoluble compounds, such as cell wall material, could not be detected. Plant species which form different crystal types in their leaves (Beta vulgaris, crystal sand;Arthrostema ciliatum, druse;Glycine canescens, prismatic) also incorporated Sr into their crystals when grown hydroponically on nutrient medium containing 200 M Sr.Axenic cultures ofL. minor were used to examine further the process of Sr incorporation into plant crystals. When grown on nutrient solution with 5 M Ca, increasing the Sr concentration resulted in increases of the amount of Sr incorporated into the raphide crystals. The ratio of Sr to Ca became greater as the Sr concentration was increased. This ratio change was due to both an increase in the amount of Sr incorporated and a decrease in the Ca incorporated. Analysis of the number of crystal idioblasts formed as a function of Sr concentration shows fewer idioblasts are produced as Sr became high. Competition with Ca and interference of Ca utilization by Sr is indicated.  相似文献   

11.
The metabolism of glycolate by Eurasian watermilfoil (Myriophyllum spicatum L.), a submersed angiosperm, was studied by feeding radioactive glycolate and glyoxylate and by analysis of glycolate and glycolic acid oxidase. Evidence for operation of the glycolate pathway is given. Glycolic acid oxidase occurs at levels comparable to amounts in species showing photorespiration. This species has a high affinity for CO2 and a possible mechanism for it is described.  相似文献   

12.
BACKGROUND AND AIMS: Pistia stratiotes produces large amounts of calcium (Ca) oxalate crystals in specialized cells called crystal idioblasts. The potential involvement of Ca(2+) channels in Ca oxalate crystal formation by crystal idioblasts was investigated. METHODS: Anatomical, ultrastructural and physiological analyses were used on plants, fresh or fixed tissues, or protoplasts. Ca(2+) uptake by protoplasts was measured with (45)Ca(2+), and the effect of Ca(2+) channel blockers studied in intact plants. Labelled Ca(2+) channel blockers and a channel protein antibody were used to determine if Ca(2+) channels were associated with crystal idioblasts. KEY RESULTS: (45)Ca(2+) uptake was more than two orders of magnitude greater for crystal idioblast protoplasts than mesophyll protoplasts, and idioblast number increased when medium Ca was increased. Plants grown on media containing 1-50 microM of the Ca(2+) channel blockers, isradipine, nifedipine or fluspirilene, showed almost complete inhibition of crystal formation. When fresh tissue sections were treated with the fluorescent dihydropyridine-type Ca(2+) channel blocker, DM-Bodipy-DHP, crystal idioblasts were intensely labelled compared with surrounding mesophyll, and the label appeared to be associated with the plasma membrane and the endoplasmic reticulum, which is shown to be abundant in idioblasts. An antibody to a mammalian Ca(2+) channel alpha1 subunit recognized a single band in a microsomal protein fraction but not soluble protein fraction on western blots, and it selectively and heavily labelled developing crystal idioblasts in tissue sections. CONCLUSIONS: The results demonstrate that Ca oxalate crystal idioblasts are enriched, relative to mesophyll cells, in dihydropyridine-type Ca(2+) channels and that the activity of these channels is important to transport and accumulation of Ca(2+) required for crystal formation.  相似文献   

13.
Abstract: Ca oxalate crystal formation was examined in Pistia stratiotes L. leaves during excess Ca and Ca-deficient conditions. Pistia produces druse crystal idioblasts in the adaxial mesophyll and raphide idioblasts in the abaxial aerenchyma. Raphide crystals were previously found to grow bidirectionally, and here we show that Ca is incorporated along the entire surfaces of developing druse crystals, which are coated with membrane-bound microprojections. Leaves formed on plants grown on 0 Ca medium have fewer and smaller druse crystals than leaves formed under 5 mM Ca ("control") conditions, while raphide crystal formation is completely inhibited. When plants were moved from 0 to 15 mM ("high") Ca, the size and number of crystals in new leaves returned to (druse) or exceeded (raphide) control levels. High Ca also induced formation of druse, but not raphide, crystals in differentiating chlorenchyma cells. When plants were transferred from 15 mM Ca to 0 Ca, young druse crystals were preferentially partially dissolved. Oxalate oxidase, an enzyme that degrades oxalate, increased during Ca deficiency and was localized to the crystal surfaces. The more dynamic nature of druse crystals is not due to hydration form as both crystal types are shown to be monohydrate. Part of the difference may be because raphide idioblasts have developmental constraints that interfere with a more flexible response to changing Ca. These studies demonstrate that excess Ca can be stored as Ca oxalate, the Ca can be remobilized under certain conditions, and different forms of Ca oxalate have different roles in bulk Ca regulation.  相似文献   

14.
Calcium oxalate formation in Lemna minor L. occurs in structurally specialized cells called crystal idioblasts. Cytochemical and immunocytochemical protocols were employed to study the distribution of peroxisomes and the enzymes glycolate oxidase, glycine decarboxylase and ribulose 1,5-bisphosphate carboxylase-oxygenase (RuBisCO) in relation to synthesis of oxalate used for Ca oxalate formation. These enzymes are necessary for photorespiratory glycolate synthesis and metabolism. Using catalase cytochemistry, microbodies were found to exist in crystal idioblasts but were smaller and fewer than those found in mesophyll cells. Glycolate oxidase, which can oxidize glycolate to oxalate via glyoxylate, could not be found in microbodies of crystal idioblasts at any stage of development. This enzyme increased in amount in microbodies of mesophyll cells as they matured and could even be found in dense amorphous inclusions of mature cell peroxisomes. Glycine decarboxylase and RuBisCO could also be detected in increasing amount in mesophyll cells as they matured but could not be detected in idioblasts or were just detectable. Thus, Lemna idioblasts lack the machinery for synthesis of oxalate from glycolate. Based on these results and other available information, two general models for the generation and accumulation of oxalate used for Ca oxalate formation in crystal idioblasts are proposed. The biochemical specialization of crystal idioblasts indicated by this study is also discussed with respect to differentiation of cellular structure and function.  相似文献   

15.
Degradation of 1,4-Dioxane and Cyclic Ethers by an Isolated Fungus   总被引:2,自引:1,他引:1  
By using 1,4-dioxane as the sole source of carbon, a 1,4-dioxane-degrading microorganism was isolated from soil. The fungus, termed strain A, was able to utilize 1,4-dioxane and many kinds of cyclic ethers as the sole source of carbon and was identified as Cordyceps sinensis from its 18S rRNA gene sequence. Ethylene glycol was identified as a degradation product of 1,4-dioxane by the use of deuterated 1,4-dioxane-d8 and gas chromatography-mass spectrometry analysis. A degradation pathway involving ethylene glycol, glycolic acid, and oxalic acid was proposed, followed by incorporation of the glycolic acid and/or oxalic acid via glyoxylic acid into the tricarboxylic acid cycle.  相似文献   

16.
Operation of the glycolate pathway in isolated bundle sheath (BS) strands of two C4 species was demonstrated from 14C incorporation into two intermediates, glycine and serine, under conditions favourable for photorespiratory activity. Isolated BS strands fixing 14CO2 under light at physiological rates incorporate respectively 3% (Zea mays L., cv. INRA 258) and 7% (Panicum maximum Jacq.) of total 14C fixed into glycine + serine, at low bicarbonate levels (less than the Km for CO2 fixation, 0.8 mM). Higher bicarbonate concentrations depressed the percentage of incorporation into the two amino acids. No labelling was observed in the absence of added glutamate. Oxygen was required for glycine + serine labelling, since 14C incorporation into glycine was largely depressed by argon flushing, and labelling of the two amino acids was nearly suppressed by the addition of the strong reductant, dithionite, especially in maize. Two inhibitors of the glycolate pathway were tested. With α-hydroxypyridine-methanesulfonic acid, an inhibitor of glycolate oxidase, labelling of glycine and serine remained minimal whereas glycolate was accumulated. Isoniazid, an inhibitor of the transformation of glycine to serine induced a 50% increased labelling of glycine in maize BS, and a large decrease in serine labelling. In Panicum, the increase in [14C]-glycine was 90%. These results suggest that the pathway glycolate → glycine → serine operates in these plants. However, leakage of metabolites occurs in BS cells, especially in maize and a large part of newly formed glycolate, glycine and serine is exported out of the cells. Operation of ribulose-1,5-bisphosphate oxygenase activity in competition with ribulose-1,5-bisphosphate carboxylase is demonstrated by the lowering of total 14CO2 fixation when O2 is increased at low bicarbonate concentration. An interesting feature observed in maize BS, at low bicarbonate concentration, was an increase in ribulose-1,5-bisphosphate labelling when the O2 level was decreased. This was accompanied by an increase in CO2 fixation. This could indicate an increased rate in synthesis of ribulose-1,5-bisphosphate (which accumulated) due to a stimulation of ATP synthesis by cyclic photophosphorylation under anaerobic conditions.  相似文献   

17.
五种C4荒漠植物光合器官中含晶细胞的比较分析   总被引:1,自引:0,他引:1       下载免费PDF全文
 为了探讨荒漠植物适应干旱环境的机理, 选择光合器官发生很大变化的5种C4荒漠植物进行了解剖结构的对比研究。结果表明, 这5种 植物中含晶细胞的数量、大小、形态和分布位置等存在差异。白梭梭(Haloxylon persicum)和梭梭(H. ammodendron)的同化枝普遍具有含晶细 胞; 沙拐枣(Calligonum mongolicum)的含晶细胞很少, 一般只分布在贮水组织或靠近栅栏组织处; 木本猪毛菜(Salsola arbuscula)的含晶细 胞也不多, 主要分布在栅栏组织和表皮细胞之间; 猪毛菜(S. collina)的含晶细胞更少, 仅在贮水组织中偶尔可见晶簇。比较梭梭、白梭梭和 沙拐枣同化枝不同部位的解剖结构发现, 梭梭同化枝基部含晶细胞最多, 中部次之, 顶部最少; 白梭梭同化枝顶部的含晶细胞数量较多, 中部 及基部较少; 沙拐枣同化枝顶部与基部的粘液细胞较多, 中部较少, 基部几乎没有栅栏组织, 而其维管组织较为发达。综合晶体的酸碱溶解性 及硝酸银组化分析结果, 并参照能谱仪的分析结果得知, 梭梭、白梭梭、沙拐枣和木本猪毛菜的叶片或同化枝中所含晶体的主要成分为草酸钙 。通过比较解剖结构发现, 梭梭和白梭梭的同化枝中含晶细胞最多, 其它3种植物的同化器官中含晶细胞较少, 而沙拐枣同化枝中有粘液细胞存 在。  相似文献   

18.
乙醇酸(Glycolate)是一种在工业上有多种用途的重要化合物。本研究首先在大肠杆菌MG1655(DE3)中敲除了ldh A(乳酸脱氢酶),获得菌株Mgly1,作为出发菌株。然后通过调节乙醇酸合成途径的关键酶——异柠檬酸裂解酶(ace A)、乙醛酸还原酶(ycd W)、异柠檬酸脱氢酶激酶/磷酸化酶(ace K)的表达水平,得到乙醇酸产率为0.24 g/g葡萄糖(占理论产率的28.2%)。过量表达柠檬酸合成酶(glt A),乙醇酸产率提高到0.326 g/g葡萄糖(占理论产率的38.3%)。然后在Mgly1中敲除了glc B和ace B(苹果酸合成酶),减少了乙醇酸合成的前体乙醛酸的消耗。最终获得的工程菌株Mgly335乙醇酸产率达到0.522 g/g葡萄糖(占理论产率的61.4%)。  相似文献   

19.
Experiments in which [1-14C]glycolate uptake is carried out in conjunction with measurements of stromal pH indicate that only glycolic acid and not the glycolate anion is crossing the pea (Pisum sativum var. Progress No. 9, Agway) chloroplast envelope. This mechanism of glycolate transport appears to be too slow to account for observed photorespiratory carbon fluxes in C3 plants.  相似文献   

20.
Determination of glycolic acid by stable isotope dilution was applied to the measurement of the glycolic acid pool size in tomato and maize leaves during photorespiration. Detached leaves were maintained in the presence of 18O2; [13C]glycolate was added to the foliar extract as an internal standard and the mixture of biological glycolate and [13C]glycolate was analyzed by combined gas chromatography-mass spectrometry. The level of foliar glycolate pool was measured via the 13C label, and 18O incorporation was determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号