首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
1. Gross primary production (GPP) and ecosystem respiration (ER) were analysed for 18 months in two reaches of the River Thur, a prealpine river in Switzerland. The upper reach at 655 m above sea level (a.s.l.) is bedrock constrained, has a high slope (0.60%) and a catchment area of 126 km2. The lower reach at 370 m a.s.l. has a more extensive hyporheic zone, a lower slope (0.17%) and a catchment of 1696 km2.
2. In both reaches, temporal patterns of stream metabolism reflected the occurrence of bed-moving spates. Average reductions of GPP and ER by spates were 53 and 24% in the upper reach, and 37 and 14% in the lower reach, respectively. The greater resistance of ER than GPP in both reaches shifted the ecosystem metabolism towards heterotrophy (decrease of the ratio of GPP to ER (P/R)) following spates.
3. Recovery of GPP was significantly faster in the lower reach and exhibited distinct seasonal variation (positive correlation with incident light). The differences in stability (both resistance and resilience) between reaches reflected differences in geomorphic settings and disturbance regime.
4. Stepwise regression analysis was used to explore the potential influence of season, disturbance and prevailing environmental conditions on stream metabolism in each reach. Time since spate plus temperature explained 73 and 86% of variation in ER and GPP, respectively, in the upper reach and 55% of variation in ER in the lower reach. Season plus prevailing environmental conditions explained 67% of variation in GPP in the lower reach.
5. To test how the perception of stability may change with increasing scale of observation, the disturbance regimes of 12 sites were compared with the disturbance regime of the entire Thur catchment. The analysis suggests that stream metabolism at the catchment scale is far more resistant to high flow events than at the reach scale.  相似文献   

2.
1. When using benthic macroinvertebrate communities for bioassessment, temporal variation may influence judgement as to whether or not a site is degraded.
2. In a survey of sixteen reference and sixteen test sites in the upper Thames River catchment area (UTRCA) in south-western Ontario, Canada, consistent differences between summer and winter samples were found for taxon richness (increase; P = 0.06) and the Family Biotic Index (decrease; P = 0.11). A bioassessment based on these results would indicate better water quality in the same streams in winter relative to summer. No consistent pattern of seasonal difference was detected for Simpson's Diversity and Equitability, or percentage Dominant Taxon.
3. The Reference Condition Approach to bioassessment uses predictive modelling to explain variation in reference communities with the environmental conditions at these sites as predictors. The community at a test site is compared with that predicted by the model. Several predictive models were constructed using simple geographic and habitat characteristics (i.e. catchment area, distance to source, stream width, substrate and habitat diversity) as predictors. By including season of sampling in the models, we increased their predictive power and the ability of the bioassessment to detect degradation. The best results were achieved when separate predictive models were built for each sampling season.  相似文献   

3.
Multivariate predictive models are widely used tools for assessment of aquatic ecosystem health and models have been successfully developed for the prediction and assessment of aquatic macroinvertebrates, diatoms, local stream habitat features and fish. We evaluated the ability of a modelling method based on the River InVertebrate Prediction and Classification System (RIVPACS) to accurately predict freshwater fish assemblage composition and assess aquatic ecosystem health in rivers and streams of south-eastern Queensland, Australia. The predictive model was developed, validated and tested in a region of comparatively high environmental variability due to the unpredictable nature of rainfall and river discharge. The model was concluded to provide sufficiently accurate and precise predictions of species composition and was sensitive enough to distinguish test sites impacted by several common types of human disturbance (particularly impacts associated with catchment land use and associated local riparian, in-stream habitat and water quality degradation). The total number of fish species available for prediction was low in comparison to similar applications of multivariate predictive models based on other indicator groups, yet the accuracy and precision of our model was comparable to outcomes from such studies. In addition, our model developed for sites sampled on one occasion and in one season only (winter), was able to accurately predict fish assemblage composition at sites sampled during other seasons and years, provided that they were not subject to unusually extreme environmental conditions (e.g. extended periods of low flow that restricted fish movement or resulted in habitat desiccation and local fish extinctions).  相似文献   

4.
Assessing the performance of volunteers in monitoring streams   总被引:8,自引:0,他引:8  
1. Citizens are concerned about the quality of water resources and many participate in monitoring activities, though doubts remain about the quality of the data volunteers collect. We trained volunteers to collect benthic macroinvertebrates using professional protocols. Of the seven stream sites sampled by volunteer crews, six sites were also sampled by professional crews.
2. In the laboratory, volunteers used morphological features to identify as many different taxa as possible within the major insect orders; their identification was approximately to family. Volunteers calculated five metrics: total taxon richness, richness of three key groups (Ephemeroptera, Plecoptera and Trichoptera), and percentage dominance of the three most abundant taxa. All metrics were strongly correlated with (a) the percentage of urbanized area in the catchment and (b) the metrics derived from a more complete taxonomic identification by a professional scientist. Taxon richness metrics declined with urban development, while percent dominance increased.
3. An overall summary multimetric index was used to compare the field and laboratory procedures of volunteers and professionals. Using an ANOVA model, we detected no significant difference between field samples collected by volunteers and professionals. The variance of index values associated with differences between crews was zero. The ability of the index to detect significant differences among sites (statistical power) improved by only 13% for assessments based on professional laboratory identification instead of volunteer laboratory identification.
4. Citizen volunteers, when properly trained, can collect reliable data and make stream assessments that are comparable to those made by professionals. Data collected by volunteers can supplement information used by government agencies to manage and protect rivers and streams.  相似文献   

5.
6.
1. The emergence time of Pteronarcys californica in streams in the Henry's Fork catchment, Idaho, U.S.A. was negatively correlated with mean April water temperature. Emergence was in mid- to late May at sites influenced by groundwater, where April water temperature averaged 7.9 °C. Adults emerged in mid-June in streams receiving run-off from snowmelt (mean April water temperature 5.4 °C). Intermediate emergence times were observed in a regulated section of river where water temperature was influenced, on one bank, by dam release (mean April water temperature 4.5 °C) and, on the other, by a spring-fed tributary stream (mean April water temperature 6.3 °C).
2. During each of the three study years, emergence was earlier on the bank of the regulated section that was warmer during April and May. The mean body length of P. californica exuviae, collected from the warm side of the river, averaged 1.2 mm longer than those collected from the cold side.
3. We tested the effect on emergence of altering springtime water temperature by translocating P. californica in cages from one location to another during April. Individuals moved to sites with higher April water temperature emerged earlier than individuals that remained at the site from which they were collected.  相似文献   

7.
South-east Queensland (Australia) streams were described by 21 local habitat variables that were chosen because of their potential association with fish distribution. An Assessment by a Nearest Neighbour Analysis (ANNA) model used large-scale variables that are robust to human influence to predict what the values of each of the 21 local habitat variables at each site would be without modification from human activity. The ANNA model used elevation, stream order, distance from source and longitude to predict the local habitat variables; other candidate predictor variables (mean rainfall, latitude and catchment area) were not found to be useful. The ANNA model was able to predict five of the 21 local habitat variables (average width, sand (%), cobble (%), rocks (%) and large woody debris) with an R 2 of at least 0.2. The observed values of these five local habitat variables were used to model the distributions of individual fish species. The species distribution models were developed using logistic regression based on a subset of the data (some of the data were withheld for model validation) and a forward stepwise model selection procedure. There was no difference in predictive performance of fish distribution models for model predictions based on observed values and model predictions based on ANNA predicted values of local habitat variables in the withheld data (p-value = 0.85). Therefore, it is possible to predict the suitability of sites as habitat for given fish species using estimated (estimates based on large-scale variables) natural values of local habitat variables.  相似文献   

8.
1. Structure and dynamics of phytoplankton were studied at six sites in a reach of the Lower Paraná River floodplain, from the main course to a marginal shallow lake, connected through a stream. This system is defined as a water–water ecotone and thus, the aim of this work is to analyse the spatial changes of phytoplankton along the transitional system.
2. Temporal fluctuations in number of species and phytoplankton density were more pronounced in the river than in the shallow lake. Even though most species were ubiquitous, there was a clear segregation of the most abundant populations across the ecotone. Aulacoseira granulata var. granulata and other centric diatoms decreased towards the lentic system.
3. Transparency varied according to river discharge, being higher in the lake during high water phases, while the opposite behaviour was observed during dry periods. These fluctuations were related to precipitation and resuspension processes.
4. Nitrate concentration diminished towards the lake while soluble reactive phosphorus remained fairly homogeneous across the ecotone.  相似文献   

9.
1. The potential of picocyanobacteria as early indicators of changes in nutrient loading and trophic status was examined in an ultra-oligotrophic lake.
2. The study consisted of in situ, short-term, nutrient-addition bioassays and surveys of picocyanobacterial variables and other indices of trophic state at six sites selected to include a range of localized nutrient loadings to the lake from its catchment. The bioassays and surveys were conducted six times throughout 1 year.
3. Experimental additions of small amounts of ammonium-N and phosphate-P did not stimulate picocyanobacterial growth, and phosphate additions often reduced picocyanobacterial growth rates.
4. A correlation analysis using pooled data from all sites and sampling dates showed that the abundance of aggregated picocyanobacteria was strongly correlated with nutrient concentration and ratios. Other variables, including the concentration of single-cell picocyanobacteria, chlorophyll a and primary production, were poorly correlated with nutrients.
5. The results show that picocyanobacteria in oligotrophic lakes are sensitive to extremely small changes in nutrient availability and that they can respond in complex ways. The mechanisms by which they respond to such changes require further study before they can be used as bio-indicators of nutrient enrichment.  相似文献   

10.
We sampled macroinvertebrates at 75 locations in the Mondego river catchment, Central Portugal, and developed a predictive model for water quality assessment of this basin, based on the Reference Condition Approach. Sampling was done from June to September 2001. Fifty-five sites were identified as “Reference sites” and 20 sites were used as “Test sites” to test the model. At each site we also measured 40 habitat variables to characterize water physics and chemistry, habitat type, land use, stream hydrology and geographic location. Macroinvertebrates were generally identified to species or genus level; a total of 207 taxa were found. By Unweighted Pair Group Method with Arithmetic mean (UPGMA) clustering and analysis of species contribution to similarities percentage (SIMPER), two groups of reference sites were established. Using Discriminant Analysis (stepwise forward), four variables correctly predicted 78% of the reference sites to the appropriate group: stream order, pool quality, substrate quality and current velocity. Test sites’ environmental quality was established from their relative distance to reference sites, in MDS ordination space, using a series of bands (BEAST methodology). The model performed well at upstream sites, but at downstream sites it was compromised by the lack of reference sites. As with the English RIVPACS predictive model, the Mondego model should be continually improved with the addition of new reference sites. The adaptation of the Mondego model methodology to the Water Framework Directive is possible and would consist mainly of the integration of the WFD typology and increasing the number of ellipses that define quality bands. Handling editor: K. Martens  相似文献   

11.
1. We investigated the diversity and distribution of freshwater mussels at 40 sites in an agricultural catchment, the River Raisin in south‐eastern Michigan, to relate mussel assemblages and individual taxa to reach and catchment‐scale variables. Unionids were surveyed by timed searches in 100‐m reaches, and in‐stream and riparian habitat were quantified as well as flow, water chemistry and channel morphology. Land use/cover and surficial geology were determined for site subcatchments and riparian buffers. 2. Some 21 mussel species were found overall; richness ranged from 0 to 12 living species per site. From the upper to middle to lower catchment, the number of individuals, number of species, Shannon–Weaver diversity and relative abundance of intolerant unionids all declined significantly. 3. Four groupings based on overall mussel diversity and abundance were significantly related to reach‐scale habitat variables. The richest mussel assemblages were associated with sites with higher overall habitat quality, greater flow stability, less fine substratum, and lower specific conductance. 4. Stepwise multiple regressions revealed that the distribution and abundance of the total mussel assemblage, as well as the most common species, could be predicted from a combination of reach‐ and catchment‐scale variables (R2 = 0.63 for total mussels, R2 = 0.51–0.86 for individual species). 5. Flow stability, substratum composition and overall reach habitat quality were the most commonly identified reach‐scale variables, and measures of surficial geology were the most effective catchment‐scale variables. The spatial pattern of geology is likely to be responsible for the diversity gradient from the upper to the lower catchment. 6. Prior studies, attempting to explain mussel distributions from local habitat features alone, have found relatively weak relationships. By employing a combination of reach‐ and catchment‐scale habitat variables, this study was able to account for a substantial amount of the spatial variability in mussel distributions.  相似文献   

12.
1. We report patterns of temporal variation in the recruitment of roach ( Rutilus rutilus ). The data consist of the annual abundance of the first 2 year-classes, 0+ and 1+ fish, at four sites in the Rhône River (France) between 1987 and 1997. Over this 11-year period both 0+ and 1+ fish fluctuated strongly.
2. Cross-correlation indicated high spatial synchrony in 0+ dynamics, although correlations among sites in 1+ dynamics were weaker. No clear pattern was apparent in the relationship between the level of synchrony and distance between pairs of sites.
3. The spatial synchrony in 0+ fish could be attributable to large-scale variations in weather, influencing water temperature. Total body length of 0+ roach was correlated with water temperature (expressed in degree-days over 12 °C), and water temperature was the main factor explaining inter-annual variation in 0+ cohort size. Monthly variation in abiotic factors (measured by standard deviation in water temperature and discharge) did not influence 0+ fluctuations. Correlations with June water temperature suggest that year-class strength was mainly determined by abiotic factors during the first few months of life.
4. The absence of spatial synchrony in 1+ fluctuations suggests little correlation between survival and abiotic conditions during the first year of life, other factors influencing survival.
5. Survival in the first year was density-dependent. Intraspecific competition within the 0+ cohort could thus influence the fluctuations in recruitment to older age-classes.
6. The implications of age- or stage-dependent synchrony in temporal variation for species with complex life histories are discussed. Studying spatial synchrony for the different life history stages could enhance our understanding of the population dynamics of spatially structured species.  相似文献   

13.
三峡地区枣子坪旧石器遗址   总被引:5,自引:2,他引:3  
枣子坪旧石器遗址埋藏于三峡地区长江右岸的第Ⅱ级基座阶地内。2000和2002年经历了两次抢救性发掘,揭露面积1000m2,出土石制品101件。石制品类型包括石器、石核、石片、石锤和断块等。古人类选取河卵石为原料进行剥片和加工石器;石器以中型为主,毛坯多为完整石片,刮削器是石器的主要类型;石器加工较简单,多数单向加工,且以正向为主。石器工业具有中国南方旧石器时代主工业鲜明特点,同时蕴含了向长宽等比小型化发展的趋势。地貌和地层对比显示,该遗址可能与井水湾遗址同时,属旧石器时代中期。  相似文献   

14.
This study aimed to evaluate the applicability of the Australian River Assessment System (AUSRIVAS) bioassessment methodology to assess the biological health of streams in the upper-middle Brantas River catchment, East Java, Indonesia. A total of 84 `minimally disturbed' reference sites were selected and sampled for macroinvertebrates in riffle habitats. Sampling of macroinvertebrates and identification to family level was conducted by local biologists following intensive training, and under supervision. A quality control protocol was introduced to ensure the data were reliable and reproducible. A suite of `potential predictor' and `monitoring' environmental variables were also measured at each site. The macroinvertebrate data were used to develop a predictive AUSRIVAS model for the upper-middle Brantas river, and the model was then used to assess the `health' of 15 test sites in the catchment. Bioassessment outputs – Observed (O)/Expected (E) ratios – were found to be broadly related to measures of physical disturbance from land use and riparian degradation. Through the process of local reference site selection and sampling, model development, validation and subsequent use, the Australian AUSRIVAS rapid bioassessment method was assessed as being highly applicable to the upper-middle catchment sections of Indonesian river systems.  相似文献   

15.
Sample Variability Influences on the Precision of Predictive Bioassessment   总被引:1,自引:0,他引:1  
The rapid bioassessment technique we investigate (AUSRIVAS) requires a nationally standardized sampling protocol that uses a single collection of macroinvertebrates (without replication) taken from 10 m of specific habitats (e.g. stream edge and/or riffle) and sub-samples of 200 animals. The macroinvertebrate data are run through predictive models that provide an assessment of biological condition based on a comparison of the animals found in the collection (the observed) and those expected to be there given the site-specific characteristics of the stream (the O/E taxa score). The important questions are related to the conclusions regarding river condition that can be drawn from the biological assessment. Rapid bioassessment studies are generally of two types: those for assessment of individual sites and those where many sites are selected to collectively assess the potential impacts of some human activity such as forestry or agriculture. We wanted to identify the effects of sample variability on the outputs of this predictive bioassessment technique. We found that a single collection of benthic macroinvertebrates was sufficient for bioassessment when taken from a site that had a large area of nearly uniform substrate and was in good condition. Also, collections taken from a larger and smaller area of substrate (1.75, 3.5 or 7 m2) gave the same bioassessment. In other sites, not in such good condition, the variability in bioassessment from different collections could result in different interpretations of biological condition. For all sites, regardless of condition, much of the variation in bioassessment was derived from sub-sampling the macroinvertebrates. We develop a statistical sub-sampling and solver algorithm that provides a measure of variability and a statistically valid probability of impairment for a single site, without the need to actually collect the hundreds of replicated collections needed for this study. We found that assessment at impaired sites, where only 1 collection and 1 sub-sample are taken (a common situation in rapid assessment), the 95% confidence level for O/E taxa scores is estimated to be as much as ±0.22. At sites in reference condition, the 95% confidence interval may be much narrower (~±0.1 O/E units). Therefore, assessments of sites at, or near, reference condition will be more precise than for impaired sites. Power analysis revealed that where single sites are being assessed we recommend a sample collected from 3.5 m2 of habitat, but replicate collections should be taken at a site (rather than one only) and we recommend replicate sub-samples of each collection (total of six sub-samples from a site). However, this would remove a ‘rapid’ component of the bioassessment. We recommend the addition of sub-sampling and solver algorithms to the predictive models such as AUSRIVAS to provide a statistical measure of probability of impairment. An adaptive sub-sampling regime could then be used to optimize sampling effort. For example, a single sub-sample may be sufficient for screening or the agency could use the sub-sample and solver algorithms to sub-sample the parent sample for a more precise estimate of the biological condition. Replication should be maximized at the spatial scale required for reporting: site, or regional. But as a general rule, catchment or land-use scale studies should maximize replicate sites, and site-scale assessments should maximize replication within sites.  相似文献   

16.
Aquatic ecoregions, based on regional landscape features, have been proposed as a model for aquatic resource management. The model assumes the existence of a typical biota associated with a given ecoregion and serves as the basis for biological assessment, reference site designation, and determination of stream potential, based on this biotic assemblage. Contrasting models for predicting stream ecosystem structure focus on the importance of local site conditions, including the regular and predictable changes that occur as a function of area draining to a site. In this study, a classification of 429 stream sites over an area of approximately 20000km2 in the St. Croix River basin delineated three major species groups: redhorse/spotfin shiner; brook charr/sculpin; and mixed species. Numerical analyses revealed no relationship between the species communities and ecoregions. In contrast, there was a strong association between the species communities and the area draining to the site. Our study highlights the importance of accommodating the inherent structure associated with site drainage area when imposing a regionally-based ecological classification upon stream ecosystems. This structure is expressed in the systematic changes to the physical habitat that occur with increasing drainage area and are reflected by the species community at the site. Management models that currently incorporate ecoregions in the classification or prediction of stream ecosystem structure would benefit from the inclusion of specific components that incorporate drainage area measurements.now at Environment Protection Authority  相似文献   

17.
1. Lough Neagh is a large eutrophic lake with a high dissolved silica (SiO2) concentration arising from the basaltic rock in parts of the catchment and the normal winter maximum concentration is over 8 mg L−1. Based on frequent observations between 1974 and 1997, the annual cycles of SiO2 input, uptake and release are explored.
2. Large spring blooms of the planktonic diatoms Aulacoseira subarctica Haworth and Stephanodiscus astraea occur every year and are terminated by SiO2 depletion. Although there are periods when one diatom species has dominated the other, over the period as a whole, the two diatoms appear to be in a stable coexistence.
3. A model of the effect of river inputs on lake concentration shows that without SiO2 release from the sediment, the maximum spring dissolved SiO2 concentration (and hence diatom crop) would be only about one-third of that actually observed.
4. It is concluded that within-lake processes play a large role and are potentially more variable than catchment processes in determining the available SiO2 in Lough Neagh.
5. The role of benthic animals, especially Chironomus anthracinus, in the sediment SiO2 release process is discussed. Field data suggest the SiO2 release rate is highly sensitive to temperature, but this could be partly caused by an interaction between temperature and animal activity.  相似文献   

18.
19.
We compared the stream habitat characteristics and macroinvertebrate assemblages of boreal headwater streams in both the Finnish and the Russian parts of a single river basin, the Koitajoki River. Over the last 50 years, the Finnish side of the catchment has been managed using modern forestry techniques, whereas Russian side has remained nearly unexploited and is near to its natural state. Differences in silvicultural activities were observed to contribute to differences in habitat structure. The channel habitats were in fairly natural state in the Russian reference streams, whereas the impacted Finnish sites were cleared and straightened. In comparison with the impacted channels, the abundance of coarse woody debris (CWD) was 10–100-fold higher in the reference streams. Implications on the forestry-induced deterioration of water quality were also observed. On the contrary, only small differences in macroinvertebrate assemblages were detected. Despite the lower amount of retentive structures (CWD), significantly higher relative abundance of shredders was observed in the forestry-impacted streams. Otherwise the zoobenthic communities were quite similar in the two subcatchments. We suggest that several mechanisms may explain this similarity: (1) community structure is controlled by naturally acidic conditions, (2) the adverse impacts of forestry on habitat structure and water quality of streams may be compensated by increased input of deciduous litter and organic compounds from drained, structurally young riparian forests and (3) macroinvertebrate species have flexible feeding habits and may thus readily adapt to changing conditions.  相似文献   

20.
SUMMARY 1. We examined the relationship between catchment land cover, sediment regime and fish assemblage structure in four small streams in the upper Little Tennessee River basin of North Carolina. Study streams drained similar sized catchments (17–31 km2) with different fractions of non-forested land cover. Non-forested land cover was <3% in two 'reference' streams, whereas it was 13 and 22% in two 'disturbed' streams. Land cover data were compared with sediment transport data (suspended and bedload), benthic habitat data (embeddedness, substratum composition and coverage of fines) and fishes collected in autumn 1997.
2. Suspended sediment concentration was significantly higher in disturbed streams during both baseflow and stormflow. During baseflow disturbed streams nearly always exceeded 10 nephelometric turbidity units (NTU), whereas reference streams never exceeded this threshold. The difference in suspended sediment concentration between reference and disturbed streams was more consistent at baseflow than at stormflow. Therefore, baseflow turbidity may be a useful indicator of potential stream degradation.
3. Disturbed sites had five- to nine-fold more bedload transport than reference sites. Both embeddedness and streambed instability increased with increasing non-forested land cover.
4. Relative abundance of fishes requiring clean cobble/gravel substratum for spawning was lower in disturbed streams, whereas relative abundance of mound-building cyprinids, their nest associates and fishes that excavate nests in soft sediments (centrarchids) was higher. Relative abundance of fishes spawning in benthic crevices and gravel (BC + G) declined as the proportion of non-forested land cover increased. This study supports growing evidence that human-induced sedimentation alters stream fish assemblages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号