首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2‐DE reference maps for Deinococcus geothermalis cytosolic and cell envelope proteomes were constructed. In total, 403 spots were identified as 299 different proteins. Unique in the proteomes were four subunits of V‐type ATPase and Deinococcus specific proteins constituting one‐fourth of cell envelope proteome. The cytoplasmic proteome included enzymes of the central carbon metabolism, chaperones, enzymes of protein and DNA repair, and oxidative stress. A total of 34 abundant proteins with unknown function may relate to the extreme stress tolerance of D. geothermalis.  相似文献   

2.
Dental caries affects people of all ages and is a worldwide health concern. Streptococcus mutans is a major cariogenic bacterium because of its ability to form biofilm and induce an acidic environment. In this study, the antibacterial activities of magnolol and honokiol, the main constituents of the bark of magnolia plants, toward planktonic cell and biofilm of S. mutans were examined and compared with those of chlorhexidine. The minimal inhibitory concentrations of magnolol, honokiol and chlorhexidine for S. mutans were 10, 10 and 0.25 µg/mL, respectively. In addition, each agent showed bactericidal activity against S. mutans planktonic cells and inhibited biofilm formation in a dose‐ and time‐dependent manner. Magnolol (50 µg/mL) had greater bactericidal activity against S. mutans biofilm than honokiol (50 µg/mL) and chlorhexidine (500 µg/mL) at 5 min after exposure, while all showed scant activity against biofilm at 30 s. Furthermore; chlorhexidine (0.5–500 µg/mL) exhibited high cellular toxicity for the gingival epithelial cell line Ca9‐22 at 1 hr, whereas magnolol (50 µg/mL) and honokiol (50 µg/mL) did not. Thus; it was found that magnolol has antimicrobial activities against planktonic and biofilm cells of S. mutans. Magnolol may be a candidate for prevention and management of dental caries.  相似文献   

3.
The filamentous fungus Aspergillus fumigatus has become the most important airborne fungal pathogen causing life‐threatening infections in immunosuppressed patients. We established a 2‐D reference map for A. fumigatus. Using MALDI‐TOF‐MS/MS, we identified 381 spots representing 334 proteins. Proteins involved in cellular metabolism, protein synthesis, transport processes and cell cycle were most abundant. Furthermore, we established a protocol for the isolation of mitochondria of A. fumigatus and developed a mitochondrial proteome reference map. 147 proteins represented by 234 spots were identified.  相似文献   

4.
The Nicotiana tabacum Bright‐Yellow‐2 (BY2) cell line is one of most commonly used plant suspension cell lines and offers interesting properties, such as fast growth, amenability to genetic transformation, and synchronization of cell division. To build a proteome reference map of BY2 cell proteins, we isolated the soluble proteins from N. tabacum BY2 cells at the end of the exponential growth phase and analyzed them by 2‐DE and MALDI TOF‐TOF. Of the 1422 spots isolated, 795 were identified with a significant score, corresponding to 532 distinct proteins.  相似文献   

5.
6.
Carolacton, a secondary metabolite isolated from the myxobacterium Sorangium cellulosum, disturbs Streptococcus mutans biofilm viability at nanomolar concentrations. Here we show that carolacton causes leakage of cytoplasmic content (DNA and proteins) in growing cells at low pH and provide quantitative data on the membrane damage. Furthermore, we demonstrate that the biofilm-specific activity of carolacton is due to the strong acidification occurring during biofilm growth. The chemical conversion of the ketocarbonic function of the molecule to a carolacton methylester did not impact its activity, indicating that carolacton is not functionally activated at low pH by a change of its net charge. A comparative time series microarray analysis identified the VicKRX and ComDE two-component signal transduction systems and genes involved in cell wall metabolism as playing essential roles in the response to carolacton treatment. A sensitivity testing of mutants with deletions of all 13 viable histidine kinases and the serine/threonine protein kinase PknB of S. mutans identified only the ΔpknB deletion mutant as being insensitive to carolacton treatment. A strong overlap between the regulon of PknB in S. mutans and the genes affected by carolacton treatment was found. The data suggest that carolacton acts by interfering with PknB-mediated signaling in growing cells. The resulting altered cell wall morphology causes membrane damage and cell death at low pH.  相似文献   

7.
A proteome reference map containing 326 2‐D gel spots representing 275 different proteins was constructed for the plant growth‐promoting bacterium Pseudomonas putida UW4. Protein identifications were obtained using Q‐TOF MS/MS spectra matching to homologous proteins from other Pseudomonas strains and confirmed by PMF analysis. This data set is accessible at http://world‐2dpage.expasy.org/repository/ and will aid in further characterization of Pseudomonas strains and interactions of plant growth‐promoting bacterium with the plant rhizosphere environment.  相似文献   

8.
9.
Yi Wang  Sui M. Lee 《Biofouling》2013,29(3):307-318
Tea can inhibit the attachment of Streptococcus mutans to surfaces and subsequent biofilm formation. Five commercial tea extracts were screened for their ability to inhibit attachment and biofilm formation by two strains of S. mutans on glass and hydroxyapatite surfaces. The mechanisms of these effects were investigated using scanning electron microscopy (SEM) and phytochemical screening. The results indicated that extracts of oolong tea most effectively inhibited attachment and extracts of pu-erh tea most effectively inhibited biofilm formation. SEM images showed that the S. mutans cells treated with extracts of oolong tea, or grown in medium containing extracts of pu-erh tea, were coated with tea components and were larger with more rounded shapes. The coatings on the cells consisted of flavonoids, tannins and indolic compounds. The ratio of tannins to simple phenolics in each of the coating samples was ~3:1. This study suggests potential mechanisms by which tea components may inhibit the attachment and subsequent biofilm formation of S. mutans on tooth surfaces, such as modification of cell surface properties and blocking of the activity of proteins and the structures used by the bacteria to interact with surfaces.  相似文献   

10.
Understanding of microbial metal reduction is based almost solely on studies of Gram‐negative organisms. In this study, we focus on Desulfotomaculum reducens MI‐1, a Gram‐positive metal reducer whose genome lacks genes with similarity to any characterized metal reductase. Using non‐denaturing separations and mass spectrometry identification, in combination with a colorimetric screen for chelated Fe(III)‐NTA reduction with NADH as electron donor, we have identified proteins from the D. reducens proteome not previously characterized as iron reductases. Their function was confirmed by heterologous expression in Escherichia coli. Furthermore, we show that these proteins have the capability to reduce soluble Cr(VI) and U(VI) with NADH as electron donor. The proteins identified are NADH : flavin oxidoreductase (Dred_2421) and a protein complex composed of oxidoreductase flavin adenine dinucleotide/NAD(P)‐binding subunit (Dred_1685) and dihydroorotate dehydrogenase 1B (Dred_1686). Dred_2421 was identified in the soluble proteome and is predicted to be a cytoplasmic protein. Dred_1685 and Dred_1686 were identified in both the soluble as well as the insoluble protein fraction, suggesting a type of membrane association, although PSORTb predicts both proteins are cytoplasmic. This study is the first functional proteomic analysis of D. reducens and one of the first analyses of metal and radionuclide reduction in an environmentally relevant Gram‐positive bacterium.  相似文献   

11.
The inhibitory effects of an extract of the blackcurrant (Ribes nigrum L.) against pathogens associated with oral, nasopharyngeal and upper respiratory infectious diseases; namely respiratory syncytial virus (RSV), influenza virus A and B (IFV‐A and IFV‐B), adenovirus (AdV), herpes simplex virus type 1, Haemophilus influenzae type B, Streptococcus pneumoniae and Streptococcus mutans, were investigated. Less than 1% concentration of extract of blackcurrant inhibited replication of RSV, IFV‐A and ‐B and HSV‐1 by over 50% and a 10% extract inhibited adsorption of these viruses onto the cell surface by over 95%. The effects on AdV were much less pronounced; the half minimal inhibitory concentration of AdV replication was 2.54 ± 0.26, and a 10% concentration of the extract inhibited AdV adsorption on the cell surface by 72.9 ± 3.4%. The antibacterial activities of the blackcurrant were evaluated based on its efficacy as a disinfectant. A 10% extract disinfected 99.8% of H. Influenzae type B and 78.9% of S. pneumoniae in 10 min, but had no demonstrable effect against S. mutans. The blackcurrant extract still showed antiviral and antibacterial activities after the pH had been made neutral with sodium hydroxide, suggesting that these activities are not the result of acidic reactions or of components precipitated at a neutral pH. These findings demonstrate the potential of blackcurrant extract as a functional food for oral care.  相似文献   

12.
Bartonella henselae is a slow growing, fastidious and facultative intracellular pathogen causing cat scratch disease and vasculoproliferative disorders. To date, knowledge about the pathogenicity of this human pathogenic bacterium is limited and, additionally, serodiagnosis still needs further improvement. Here, we investigated the proteome of B. henselae using 2‐D SDS‐PAGE and MALDI‐TOF‐MS. We provide a comprehensive 2‐D proteome reference map of the whole cell lysate of B. henselae with 431 identified protein spots representing 191 different proteins of which 16 were formerly assigned as hypothetical proteins. To unravel immunoreactive antigens, we applied 2‐D SDS‐PAGE and subsequent immunoblotting using 33 sera of patients suffering from B. henselae infections. The analysis revealed 79 immunoreactive proteins of which 71 were identified. Setting a threshold of 20% seroreactivity, 11 proteins turned out to be immunodominant antigens potentially useful for an improved Bartonella‐specific serodiagnosis. Therefore, we provide for the first time (i) a comprehensive 2‐D proteome map of B. henselae for further proteome‐based studies focussed on the pathogenicity of B. henselae and (ii) an integrated view into the humoral immune responses targeted against this newly emerged human pathogenic bacterium.  相似文献   

13.
We provide 2‐D gel reference maps for the apoplastic proteome of Nicotiana benthamiana leaves infiltrated or not with the bacterial gene vector Agrobacterium tumefaciens. About 90 proteins were analyzed by LC‐MS/MS for identification and function assignment. We show, overall, an effective response of the plant to agroinfiltration involving a specific, cell wall maintenance‐independent up‐regulation of defense protein secretion. The proteome maps described should be a useful tool for systemic studies on plant–pathogen interactions or cell wall metabolism. They also should prove useful for the monitoring of secreted recombinant proteins and their possible pleiotropic effects along the cell secretory pathway of N. benthamiana leaves used as an expression platform for clinically useful proteins.  相似文献   

14.
Streptococcus mutans is a cariogenic bacterium that localizes in the oral cavity. Glycyrrhetinic acid (GRA) is a major component of licorice extract. GRA and several derivatives, including disodium succinoyl glycyrrhetinate (GR‐SU), are known to have anti‐inflammatory effects in humans. In this study, the antimicrobial effect of GRA and its derivatives against the S. mutans UA159 strain were investigated. Minimum inhibitory concentrations (MICs) of GRA and GR‐SU showed antibacterial activity against the S. mutans strain, whereas other tested derivatives did not. Because GR‐SU is more soluble than GRA, GR‐SU was used for further experiments. The antibacterial activity of GR‐SU against 100 S. mutans strains was evaluated and it was found that all strains are susceptible to GR‐SU, with MIC values below 256 µg/mL. A cell viability assay showed that GR‐SU has a bacteriostatic effect on S. mutans cells. As to growth kinetics, sub‐MICs of GR‐SU inhibited growth. The effect of GR‐SU on S. mutans virulence was then investigated. GR‐SU at sub‐MICs suppresses biofilm formation. Additionally, GR‐SU greatly suppresses the pH drop caused by the addition of glucose and glucose‐induced expression of the genes responsible for acid production (ldh and pykF) and tolerance (aguD and atpD). Additionally, expression of enolase, which is responsible for the carbohydrate phosphotransferase system, was not increased in the presence of GR‐SU, indicating that GR‐SU suppresses incorporation of sugars into S. mutans. In conclusion, GR‐SU has antibacterial activity against S. mutans and also decreases S. mutans virulence.  相似文献   

15.
This study evaluated the cytotoxicity and effect of fragments derived from three oral cationic peptides (CP): LL-37, D6-17 and D1-23 against cariogenic bacteria under planktonic and biofilm conditions. For cytotoxicity analysis, two epithelial cell lines were used. The minimum inhibitory concentration and the minimal bactericidal concentration were determined for the CP fragments and the control (chlorhexidine-CHX) against cariogenic bacteria. The fractional inhibitory concentration was obtained for the combinations of CP fragments on Streptococcus mutans. Biofilm assays were conducted with the best antimicrobial CP fragment against S. mutans. The results indicated that D6-17 was not cytotoxic. D1-23, LL-37 and CHX were not cytotoxic in low concentrations. D1-23 presented the best bactericidal activity against S. mutans, S. mitis and S. salivarius. Combinations of CP fragments did not show a synergic effect. D1-23 presented a higher activity against S. mutans biofilm than CHX. It was concluded that D1-23 showed a substantial effect against cariogenic bacteria and low cytotoxicity.  相似文献   

16.
The filamentous fungus Aspergillus flavus is an opportunistic soil‐borne pathogen that produces aflatoxins, the most potent naturally occurring carcinogenic compounds known. This work represents the first gel‐based profiling analysis of A. flavus proteome and establishes a 2D proteome map. Using 2DE and MALDI‐TOF‐MS/MS, we identified 538 mycelial proteins of the aflatoxigenic strain NRRL 3357, the majority of which were functionally annotated as related to various cellular metabolic and biosynthetic processes. Additionally, a few enzymes from the aflatoxin synthesis pathway were also identified.  相似文献   

17.
18.
doi:10.1111/j.1741‐2358.2009.00325.x
A study of the efficacy of ultrasonic waves in removing biofilms Objective: The removal of adherent biofilms was assessed using ultrasonic waves in a non‐contact mode. Materials and Methods: In in vitro experiments, Streptococcus mutans (S. mutans) biofilms were exposed to ultrasonic waves at various frequencies (280 kHz, 1 MHz, or 2 MHz), duty ratios (0–90%), and exposure times (1–3 minutes), and the optimal conditions for biofilm removal were identified. Furthermore, the effect of adding a contrast medium, such as micro bubbles (Sonazoid®), was examined. The spatial distribution and architecture of S. mutans biofilms before and after ultrasonic wave exposure were examined via scanning electron microscopy. The biofilm removal effect was also examined in in vivo experiments, using a custom‐made oral cleaning device. Results: When a 280 kHz probe was used, the biofilm‐removing effect increased significantly compared to 1 and 2 MHz probes; more than 80% of the adherent biofilm was removed with a duty cycle of 50–90% and a 3 minutes exposure time. The maximum biofilm‐removing effect was observed with a duty cycle of 80%. Furthermore, the addition of micro bubbles enhanced this biofilm‐removing effect. In in vivo experiments, moderate biofilm removal was observed when a 280 kHz probe was used for 5 minutes. Conclusions: This study demonstrated that ultrasonic wave exposure in a non‐contact mode effectively removed adherent biofilms composed of S. mutans in vitro.  相似文献   

19.
20.
Streptococcus mutans is a major cause of tooth decay due to its promotion of biofilm formation and acid production. Several plant extracts have been reported to have multiple biological activities such as anti-inflammation and antibacterial effects. This study investigated the antibacterial activity of three plant extracts, phellodendron bark (PB), yucca, and black ginger, and found that PB had a stronger effect than the other extracts. Then, the minimum inhibitory concentration (MIC) of PB against 100 S. mutans strains was investigated. The MIC range of PB was 9.8–312.5 µg/mL. PB suppressed the growth kinetics of S. mutans in a dose-dependent manner, even at sub-MICs of PB. Then, we investigated the effect of PB on S. mutans virulence. The PB suppressed biofilm formation at high concentrations, although PB did not affect the expression of glucosyltransferase genes. Additionally, PB suppressed the decrease in pH from adding an excess of glucose. The expression of genes responsible for acid production was increased by the addition of excess glucose without PB, whereas their expression levels were not increased in the presence of 1× and 2× MIC of PB. Although PB showed a bacteriostatic effect on planktonic S. mutans cells, it was found that more than 2× MIC of PB showed a partial bactericidal effect on biofilm cells. In conclusion, PB not only showed antibacterial activity against S. mutans but also decreased the cariogenic activity in S. mutans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号