首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polarographic reduction-wave of vitamin K3 showed two inflexions in acetonitrile as solvent. The first step inflexion is caused by reduction of quinone to semiquinone stabilized as anion free-radical in acetonitrile, and the second by reduction of semiquinone to hydro-quinone dianion. With small addition of water, the dismutation of semiquinone is accelerated and the reduction-wave becomes only one step inflexion. The reduction-wave in acetonitrile is controlled by diffusion. The total wave-h eight is strictly proportional to the concentration of vitamin K3. The measurement is not disturbed by coexistent fatty substances.  相似文献   

2.
A model (NADH-phenazine methosulfate-O2) formally similar to pyridine nucleotide-dependent flavoprotein hydroxylases catalyzed the hydroxylation of several aromatic compounds. The hydroxylation was maximal at acid pH and was inhibited by ovine Superoxide dismutase, suggesting that perhydroxyl radicals might be intermediates in this process. The stoichiometry of the reaction indicated that a univalent reduction of oxygen was occurring. The correlation between the concentration of semiquinone and hydroxylation, and the inhibition of hydroxylation by ethanol which inhibited semiquinone oxidation, suggested the involvement of phenazine methosulfate-semiquinone. Activation of hydroxylation by Fe3+ and Cu2+ supported the contention that univalently reduced species of oxygen was involved in hydroxylation. Catalase was without effect on the hydroxylation by the model, ruling out H2O2 as an intermediate. A reaction sequence, involving a two-electron reduction of phenazine methosulfate to reduced phenazine methosulfate followed by disproportionation with phenazine methosulfate to generate the semiquinone, was proposed. The semiquinone could donate an electron to O2 to generate O2 which could be subsequently protonated to form the perhydroxyl radical.  相似文献   

3.
E.P.R. experiments and spin-lattice relaxation time measurements have been performed on Flavocytochrome b 2in the range 10 K to 100 K, to obtain information on the distance between the two prosthetic groups of the protein, flavin and heme. We have used the stabilization effect of pyruvate on the semiquinone form of the flavin, to compare the E.P.R. spectral shape and the relaxation properties of the radical when the heme is either in the ferrous form or in the ferric form. When the heme is ferric, no significant increase of the line broadening or enhancement of the relaxation rate of the radical can be detected in the range 10 K to 100 K. From these results, a minimum intercentre distance of 18 to 20 Å can be estimated.  相似文献   

4.
The formation of semiquinone free radicals from antitumor drugs has been studied by pulse radiolysis. The semiquinone free radicals are reactive and have short half-lives in aqueous media under anaerobic conditions. The half-lives of the radicals formed from adriamycin, mitomycin C, and 2,5-diaziridinyl-3,6-bis(carboethoxy)amine-1,4-benzoquinone (AZQ) are 50,100, and 200 μs, respectively. The mean diffusion distance of the semiquinone free radical is less than 0.6 μm. In the presence of molecular oxygen the half-life of the semiquinone free radical is shortened. Adriamycin semiquinone reacts rapidly with oxygen, k = 4.4 × 107m?1s?1. In air-saturated buffer the half-life of adriamycin semiquinone radical can be calculated to be 8 μs with a mean diffusion distance of less than 0.1 μm. If the half-lives in buffer are comparable to those within a cell, semiquinone free radicals must be generated close to the site at which they produce a biological effect. One-electron reduction potentials (E71) were determined and were AZQ, ?168 mV, adrenochrome, ?253 mV, mitomycin C, ?271 mV, adriamycin, ?292 mV, daunomycin, ?305 mV, and anthracenedione, ?348 mV. Enzymatic one-electron reduction of these antitumor quinones by NADPH-cytochrome P-450 reductase increased at more positive values of quinone E71.  相似文献   

5.
The temperature dependence of the partial reactions leading to turn-over of the UQH2:cyt c 2 oxidoreductase of Rhodobacter sphaeroides have been studied. The redox properties of the cytochrome components show a weak temperature dependence over the range 280–330 K, with coefficients of about 1 m V per degree; our results suggest that the other components show similar dependencies, so that no significant change in the gradient of standard free-energy between components occurs over this temperature range. The rates of the reactions of the high potential chain (the Rieske iron sulfur center, cytochromes c 1 and c 2, reaction center primary donor) show a weak temperature dependence, indicating an activation energy < 8 kJ per mole for electron transfer in this chain. The oxidation of ubiquinol at the Qz-site of the complex showed a strong temperature dependence, with an activation energy of about 32 kJ mole–1. The electron transfer from cytochrome b-566 to cytochrome b-561 was not rate determining at any temperature, and did not contribute to the energy barrier. The activation energy of 32 kJ mole–1 for quinol oxidation was the same for all states of the quinone pool (fully oxidized, partially reduced, or fully reduced before the flash). We suggest that the activation barrier is in the reaction by which ubiquinol at the catalytic site is oxidized to semiquinone. The most economical scheme for this reaction would have the semiquinone intermediate at the energy level indicated by the activation barrier. We discuss the plausibility of this simple model, and the values for rate constants, stability constant, the redox potentials of the intermediate couples, and the binding constant for the semiquinone, which are pertinent to the mechanism of the ubiquinol oxidizing site.Abbreviations (BChl)2 P870, primary donor of the photochemical reaction center - b/c 1 complex ubiquinol: cytochrome c 2 oxidoreductase - cyt b H cytochrome b-561 or higher potential cytochrome b - cyt b L cytochrome b-566, or low potential cytochrome b - cyt c 1, cyt c 2, cyt c t cytochromes c 1 and c 2, and total cytochrome c (cyt c 1 and cyt c 2) - Fe.S Rieske-type iron sulfur center, Q - QH2 ubiquinone, ubiquinol - Qz, QzH2, Qz ubiquinone, ubiquinol, and semiquinone anion of ubiquinone, bound at quinol oxidizing site - Qz-site ubiquinol oxidizing site (also called Qo-(outside) - Qo (Oxidizing) - QP (Positive proton potential) site) - Qc-site uubiquinone reductase site (also called the Qi-(inside) - QR (Reducing), or - QN (Negative proton potential) site) - UHDBT 5-(n-undecyl)-6-hydroxy-4,7-dioxobenzothiazol  相似文献   

6.
The inhibition by superoxide dismutase of cytochrome c reduction by a range of semiquinone radicals has been studied. The semiquinones were produced from the parent quinones by reduction with xanthine and xanthine oxidase. Most of the quinones studied were favored over O2 as the enzyme substrate, and in air as well as N2, semiquinone radicals rather than superoxide were produced and they caused the cytochrome c reduction. With all but one of the quinones (benzoquinone), cytochrome c reduction in air was inhibited by superoxide dismutase, but the amount of enzyme required for inhibition was up to 100 times greater than that required to inhibit reduction by superoxide. It was highest for the quinones with the highest redox potential. These results demonstrate how superoxide dismutase can inhibit cytochrome c reduction by species other than superoxide. They can be explained by the dismutase displacing the equilibrium: semiquinone + O2 ? quinone + O2? to the right, thereby allowing the forward reaction to out-compete other reactions of the semiquinone. The implication from these findings that superoxide dismutase-inhibitable reduction of cytochrome c may not be a specific test for superoxide production is discussed.  相似文献   

7.
Superoxide oxidizes epinephrine to a semiquinone, initiating a series of reactions leading to the colored product adrenochrome. This popular assay for superoxide is more sensitive at higher pH, and it does not work if dopamine is used instead of epinephrine. A kinetic analysis shows that these effects can be explained by competing reactions that lower the yield of the observed product. The catecholamine quinone may cyclize to form the absorbing product, or it may be reduced back to the semiquinone by superoxide. For epinephrine, the quinone cyclizes quickly and adrenochrome formation dominates, but for dopamine, the quinone cyclizes slowly and the back reaction prevails. The yield of adrenochrome increases if the epinephrine semiquinone reacts with O2 to form more superoxide, but this reaction competes with disproportionation of the semiquinone. Because disproportionation slows as pH increases, both superoxide formation and the yield of adrenochrome increase at higher pH.  相似文献   

8.
To clarify the mechanism of the cardiotoxic action of adriamycin (ADM), the participation of free radicals from ADM in cardiotoxicity was investigated through the protective action of glutathione (GSH) or by using electron spin resonance (ESR). Oxidation of ADM by horseradish peroxidase and H2O2 (HRP-H2O2) was blocked by GSH concentration dependently. Inactivation of creatine kinase (CK) induced during interaction of ADM with HRP-H2O2 was also protected by GSH. Other anthracycline antitumor drugs that have a p-hydroquinone structure in the B ring also inactivated CK, and GSH inhibited the inactivation of CK. These results suggest that ADM was activated through oxidation of the p-hydroquinone in the B ring by HRP-H2O2. Although ESR signals of the oxidative ADM B ring semiquinone were not detected, glutathionyl radicals were formed during the interaction of ADM with HRP-H2O2 in the presence of GSH. ADM may be oxidized to the ADM B ring semiquinone and then reacts with the SH group. However, ESR signals of ADM C ring semiquinone, which was reductively formed by xanthine oxidase (XO) and hypoxanthine (HX) under anaerobic conditions, were not diminished by GSH, but they completely disappeared with ferric ion. These results indicate that oxidative ADM B ring semiquinones oxidized the SH group in CK, but reductive ADM C ring semiquinone radicals may participate in the oxidation of lipids or DNA and not of the SH group.  相似文献   

9.
Pulse radiolysis of aqueous solutions containing adriamycin and redox indicators of known one-electron reduction potential (E1) shows that its E1 at pH 7 is ?328 mV (vs NHE). The variation E1 with pH in the range 6–12 shows that the net charge on the semiquinone at pH 7 is zero. As well as the pKa values of 2.9 and ≥ 14 established independently, the semiquinone has a pKa close to 9.2. The new data enable the structure and likely reactivity of the semiquinone to be specified.  相似文献   

10.
Quinones such as ubiquinone are the lipid soluble electron and proton carriers in the membranes of mitochondria, chloroplasts and oxygenic bacteria. Quinones undergo controlled redox reactions bound to specific sites in integral membrane proteins such as the cytochrome bc1 oxidoreductase. The quinone reactions in bacterial photosynthesis are amongst the best characterized, presenting a model to understand how proteins modulate cofactor chemistry. The free energy of ubiquinone redox reactions in aqueous solution and in the QA and QB sites of the bacterial photosynthetic reaction centers (RCs) are compared. In the primary QA site ubiquinone is reduced only to the anionic semiquinone (Q•−) while in the secondary QB site the product is the doubly reduced, doubly protonated quinol (QH2). The ways in which the protein modifies the relative energy of each reduced and protonated intermediate are described. For example, the protein stabilizes Q•− while destabilizing Q= relative to aqueous solution through electrostatic interactions. In addition, kinetic and thermodynamic mechanisms for stabilizing the intermediate semiquinones are compared. Evidence for the protein sequestering anionic compounds by slowing both on and off rates as well as by binding the anion more tightly is reviewed.  相似文献   

11.
Purple, photosynthetic reaction centers from Rhodobacter sphaeroides bacteria use ubiquinone (UQ10) as both primary (QA) and secondary (QB) electron acceptors. Many quinones reconstitute QA function, while a few will act as QB. Nine quinones were tested for their ability to bind and reconstitute QA and QB functions. Only ubiquinone (UQ) reconstitutes both functions in the same protein. The affinities of the non-native quinones for the QB site were determined by a competitive inhibition assay. The affinities of benzoquinones, naphthoquinone (NQ), and 2-methyl-NQ for the QB site are 7 ± 3 times weaker than that at QA site. However, di-ortho-substituted NQs and anthraquinone bind tightly to the QA site (K d ≤ 200 nM), and ≥1,000 times more weakly to the QB site, perhaps setting a limit on the size of the site. With a low-potential electron donor, 2-methyl, 3-dimethylamino-1,4-NQ, (Me-diMeAm-NQ) at QA, QB reduction is 260 meV, more favorable than with UQ as QA. Electron transfer from Me-diMeAm-NQ at the QA site to NQ at the QB site can be detected. In the QB site, the NQ semiquinone is estimated to be ≈60–100 meV higher in energy than the UQ semiquinone, while in the QA site, the semiquinone energy level is similar or lower with NQ than with UQ. Thus, the NQ semiquinone is more stable in the QA than in the QB site. In contrast, the native UQ semiquinone is ≈60 meV lower in energy in the QB than in the QA site, stabilizing forward electron transfer from QA to QB.  相似文献   

12.
The cytochrome bo(3) ubiquinol oxidase from Escherichia coli resides in the bacterial cytoplasmic membrane and catalyzes the two-electron oxidation of ubiquinol-8 and four-electron reduction of O(2) to water. The one-electron reduced semiquinone forms transiently during the reaction, and the enzyme has been demonstrated to stabilize the semiquinone. The semiquinone is also formed in the D75E mutant, where the mutation has little influence on the catalytic activity, and in the D75H mutant, which is virtually inactive. In this work, wild-type cytochrome bo(3) as well as the D75E and D75H mutant proteins were prepared with ubiquinone-8 (13)C-labeled selectively at the methyl and two methoxy groups. This was accomplished by expressing the proteins in a methionine auxotroph in the presence of l-methionine with the side chain methyl group (13)C-labeled. The (13)C-labeled quinone isolated from cytochrome bo(3) was also used for the generation of model anion radicals in alcohol. Two-dimensional pulsed EPR and ENDOR were used for the study of the (13)C methyl and methoxy hyperfine couplings in the semiquinone generated in the three proteins indicated above and in the model system. The data were used to characterize the transferred unpaired spin densities on the methyl and methoxy substituents and the conformations of the methoxy groups. In the wild type and D75E mutant, the constraints on the configurations of the methoxy side chains are similar, but the D75H mutant appears to have altered methoxy configurations, which could be related to the perturbed electron distribution in the semiquinone and the loss of enzymatic activity.  相似文献   

13.
In many energy transducing systems which couple electron and proton transport, for example, bacterial photosynthetic reaction center, cytochrome bc1-complex (complex III) and E. coli quinol oxidase (cytochrome bo3 complex), two protein-associated quinone molecules are known to work together. T. Ohnishi and her collaborators reported that two distinct semiquinone species also play important roles in NADH-ubiquinone oxidoreductase (complex I). They were called SQNf (fast relaxing semiquinone) and SQNs (slow relaxing semiquinone). It was proposed that QNf serves as a “direct” proton carrier in the semiquinone-gated proton pump (Ohnishi and Salerno, FEBS Letters 579 (2005) 4555), while QNs works as a converter between one-electron and two-electron transport processes. This communication presents a revised hypothesis in which QNf plays a role in a “direct” redox-driven proton pump, while QNs triggers an “indirect” conformation-driven proton pump. QNf and QNs together serve as (1e?/2e?) converter, for the transfer of reducing equivalent to the Q-pool.  相似文献   

14.
Recent progress in understanding the Q-cycle mechanism of the bc1 complex is reviewed. The data strongly support a mechanism in which the Qo-site operates through a reaction in which the first electron transfer from ubiquinol to the oxidized iron–sulfur protein is the rate-determining step for the overall process. The reaction involves a proton-coupled electron transfer down a hydrogen bond between the ubiquinol and a histidine ligand of the [2Fe–2S] cluster, in which the unfavorable protonic configuration contributes a substantial part of the activation barrier. The reaction is endergonic, and the products are an unstable ubisemiquinone at the Qo-site, and the reduced iron–sulfur protein, the extrinsic mobile domain of which is now free to dissociate and move away from the site to deliver an electron to cyt c1 and liberate the H+. When oxidation of the semiquinone is prevented, it participates in bypass reactions, including superoxide generation if O2 is available. When the b-heme chain is available as an acceptor, the semiquinone is oxidized in a process in which the proton is passed to the glutamate of the conserved -PEWY- sequence, and the semiquinone anion passes its electron to heme bL to form the product ubiquinone. The rate is rapid compared to the limiting reaction, and would require movement of the semiquinone closer to heme bL to enhance the rate constant. The acceptor reactions at the Qi-site are still controversial, but likely involve a “two-electron gate” in which a stable semiquinone stores an electron. Possible mechanisms to explain the cyt b150 phenomenon are discussed, and the information from pulsed-EPR studies about the structure of the intermediate state is reviewed.The mechanism discussed is applicable to a monomeric bc1 complex. We discuss evidence in the literature that has been interpreted as shown that the dimeric structure participates in a more complicated mechanism involving electron transfer across the dimer interface. We show from myxothiazol titrations and mutational analysis of Tyr-199, which is at the interface between monomers, that no such inter-monomer electron transfer is detected at the level of the bL hemes. We show from analysis of strains with mutations at Asn-221 that there are coulombic interactions between the b-hemes in a monomer. The data can also be interpreted as showing similar coulombic interaction across the dimer interface, and we discuss mechanistic implications.  相似文献   

15.
Direct determinations of the concentration of semiquinone spin in redox equilibrium with the cytochrome b2 moiety were carried out at room temperature in the presence of added pyruvate or in its absence. Results show that redox potentials of the one-electron couples of the prosthetic flavin are markedly affected by binding of pyruvate the reaction product in the oxidation of l-lactate. The proportion of flavin semiquinone nearly reaches then 100 per cent.  相似文献   

16.
Raul Covian 《BBA》2008,1777(9):1079-1091
The dimeric cytochrome bc1 complex catalyzes the oxidation-reduction of quinol and quinone at sites located in opposite sides of the membrane in which it resides. We review the kinetics of electron transfer and inhibitor binding that reveal functional interactions between the quinol oxidation site at center P and quinone reduction site at center N in opposite monomers in conjunction with electron equilibration between the cytochrome b subunits of the dimer. A model for the mechanism of the bc1 complex has emerged from these studies in which binding of ligands that mimic semiquinone at center N regulates half-of-the-sites reactivity at center P and binding of ligands that mimic catalytically competent binding of ubiquinol at center P regulates half-of-the-sites reactivity at center N. An additional feature of this model is that inhibition of quinol oxidation at the quinone reduction site is avoided by allowing catalysis in only one monomer at a time, which maximizes the number of redox acceptor centers available in cytochrome b for electrons coming from quinol oxidation reactions at center P and minimizes the leakage of electrons that would result in the generation of damaging oxygen radicals.  相似文献   

17.
One hypothesis of triazine-type herbicide action in photosynthetic material is that the herbicide molecule competes with a secondary quinone acceptor, B, for a binding site at the reaction center of photosystem II. The binding affinity of B has been suggested to change with its level of reduction, being most strongly bound in its semiquinone form. To test this hypothesis, [14C]atrazine binding studies have been carried out under different photochemically induced levels of B reduction in Pisum sativum. It is found that herbicide binding is reduced in continuously illuminated samples compared to dark-adapted samples. Decreased binding of atrazine corresponds to an increase in the semiquinone form of B. With flash excitation, the herbicide binding oscillates with a cycle of two, being low on odd-numbered flashes when the amount of semiquinone form of B is greatest. Treatment with NH2OH was found to significantly decrease the strength of herbicide binding in the dark as well as stop the ability of p-benzoquinone to oxidize the semiquinone form of B. It is suggested that the mode of action of NH2OH is disruption of quinones or their environment on both the oxidizing and reducing sides of photosystem II. Herbicide binding was found to be unaltered under conditions when p-benzosemiquinone oxidation of the reduced primary acceptor, Q, is herbicide insensitive; weak herbicide binding cannot explain this herbicide insensitivity. It is concluded that the quinone-herbicide competition theory of herbicide action is correct. Also, since quinones are lipophilic the importance of the lipid composition of the thylakoid membrane in herbicide interactions is stressed.  相似文献   

18.
The mechanism of molecular oxygen activation is the subject of controversy in the copper amine oxidase family. At their active sites, copper amine oxidases contain both a mononuclear copper ion and a protein-derived quinone cofactor. Proposals have been made for the activation of molecular oxygen via both a Cu(II)-aminoquinol catalytic intermediate and a Cu(I)-semiquinone intermediate. Using protein crystallographic freeze-trapping methods under low oxygen conditions combined with single-crystal microspectrophotometry, we have determined structures corresponding to the iminoquinone and semiquinone forms of the enzyme. Methylamine reduction at acidic or neutral pH has revealed protonated and deprotonated forms of the iminoquinone that are accompanied by a bound oxygen species that is likely hydrogen peroxide. However, methylamine reduction at pH 8.5 has revealed a copper-ligated cofactor proposed to be the semiquinone form. A copper-ligated orientation, be it the sole identity of the semiquinone or not, blocks the oxygen-binding site, suggesting that accessibility of Cu(I) may be the basis of partitioning O2 activation between the aminoquinol and Cu(I).  相似文献   

19.
We have investigated the production of reactive oxygen species (ROS) by Complex I in isolated open bovine heart submitochondrial membrane fragments during forward electron transfer in presence of NADH, by means of the probe 2′,7′-Dichlorodihydrofluorescein diacetate. ROS production by Complex I is strictly related to its inhibited state. Our results indicate that different Complex I inhibitors can be grouped into two classes: Class A inhibitors (Rotenone, Piericidin A and Rolliniastatin 1 and 2) increase ROS production; Class B inhibitors (Stigmatellin, Mucidin, Capsaicin and Coenzyme Q2) prevent ROS production also in the presence of Class A inhibitors. Addition of the hydrophilic Coenzyme Q1 as an electron acceptor potentiates the effect of Rotenone-like inhibitors in increasing ROS production, but has no effect in the presence of Stigmatellin-like inhibitors; the effect is not shared by more hydrophobic quinones such as decyl-ubiquinone. This behaviour relates the prooxidant CoQ1 activity to a hydrophilic electron escape site. Moreover the two classes of Complex I inhibitors have an opposite effect on the increase of NADH-DCIP reduction induced by short chain quinones: only Class B inhibitors allow this increase, indicating the presence of a Rotenone-sensitive but Stigmatellin-insensitive semiquinone species in the active site of the enzyme. The presence of this semiquinone was also suggested by preliminary EPR data. The results suggest that electron transfer from the iron-sulphur clusters (N2) to Coenzyme Q occurs in two steps gated by two different conformations, the former being sensitive to Rotenone and the latter to Stigmatellin.  相似文献   

20.
Copper amine oxidases catalyze the oxidative deamination of primary amines operating through a ping-pong bi bi mechanism, divided into reductive and oxidative half-reactions. Considerable debate still exists regarding the role of copper in the oxidative half-reaction, where O2 is reduced to H2O2. Substrate-reduced amine oxidases display an equilibrium between a Cu(II) aminoquinol and a Cu(I) semiquinone, with the magnitude of the equilibrium constant being dependent upon the enzyme source. The initial electron transfer to dioxygen has been proposed to occur from either the reduced Cu(I) center or the reduced aminoquinol cofactor. In order for Cu(I) to be involved, it must be shown that the rate of electron transfer (k ET) between the aminoquinol and Cu(II) is sufficiently rapid to place the Cu(I) semiquinone moiety on the mechanistic pathway. To further explore this issue, we measured the intramolecular electron transfer rate for the Cu(II) aminoquinol ⇆ Cu(I) semiquinone equilibrium in Arthrobacter globiformis amine oxidase (AGAO) by temperature-jump relaxation techniques. The results presented herein establish that k ET is greater than the rate of catalysis (k cat) for the preferred amine substrate β-phenylethylamine at three pH values, thereby permitting the Cu(I) semiquinone to be a viable catalytic intermediate during enzymatic reoxidation in this enzyme. The data show that k ET is approximately equivalent at pH 6.2 and 7.2, being 2.5 times k cat for these pH values. At pH 8.2, however, k ET decreases, becoming comparable to k cat. Potential reasons for the decreased k ET at basic pH are presented. The implications of these results in light of a previously published study measuring reoxidation rates of substrate-reduced AGAO are also addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号