首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The medium components for the production of extracellular cellulases by Melanocarpus sp. MTCC 3922 were optimized using solid-state fermentation. Melanocarpus sp. cultured in optimized medium containing 1.5% urea, and 0.12% KH2PO4 along with a trace element solution and surfactant (Tween 20), produced endoglucanase (142.4 U/g of substrate), Avicel-adsorbable endoglucanase (27.0 U/g of substrate), Avicelase (0.65 U/ g of substrate), FPase (39.9 U/g of substrate) and β-glucosidase (109.0 U/g of substrate) activities. The presence of sulphate ions in traces stimulated endoglucanase yields. The IEF fractionation of the crude proteins from Melanocarpus sp. showed the expression of 3, 1 and 11 isoforms of endoglucanase, β-glucosidase and xylanase, respectively.  相似文献   

2.
Summary Deoxyglucose-resistant mutants of Cellulomonas biazotea secreted elevated levels of cellulases and xylanases. The production of β-glucosidase in the constitutive mutant was increased 5-fold over its parent strain. This mutant showed an approximately 1.6-fold enhanced productivity of extracellular endo-glucanase following growth on Leptochloa fusca over the mutant parent. Extracellular production of xylanase, filter-paper cellulase (FPase) and endo-glucanase (CMCase) were also altered in the mutant. Maximum volumetric productivities for xylanase, β-xylosidase, FPase, β-glucosidase and endo-glucosidase were 451, 98, 80, 95, and 143 IU l−1 h−1 which were significantly more than their respective values from the parental strains. The enzyme preparation of the mutants exhibited improved saccharification of kallar grass straw.  相似文献   

3.
Extracellular proteases produced by Scytalidium thermophilum, grown on microcrystalline cellulose, were most active at pH 6.5–8 and 37–45 °C when incubated for 60 min. Highest protease activity was at day 3 where endoglucanase activity was low. Protease activity measurements with and without the protease inhibitors, p-chloromercuribenzoate, PMSF, antipain, E-64, EDTA and pepstatin A, suggest production of thiol-containing serine protease and serine proteases. Endoglucanase and Avicel-adsorbable endoglucanase activity in culture medium was not significantly affected by protease inhibitors.  相似文献   

4.
Studies on the feasibility of using delignified oil palm empty-fruit-bunch (OPEFB) fibres as a substrate for cellulase production by Chaetomium globosum strain 414 were carried out in shake-flask cultures containing different types and concentrations of nitrogen source. Peptone, as nitrogen source, gave maximum production of all the three main components of the cellulase complex (endoglucanase or carboxymethylcellulase, cellobiohydrolase or filter-paper-hydrolysing enzyme and β-glucosidase), followed by yeast extract, urea, KNO3 and (NH4)2SO4. The maximum specific growth rate (μmax) of C. globosum strain 414 grown in medium containing OPEFB and peptone was 0.038 h−1. In all the fermentations, the fungus was able to produce all the three cellulases with significant amounts of β-glucosidase, except when using (NH4)2SO4 as nitrogen source, where β-glucosidase was not produced. With 6 g/l peptone and 10 g/l delignified OPEFB fibres, the fungus produced maximum concentrations of FPase, carboxymethylcellulase and β-glucosidase: 1.4, 30.8 and 9.8 U/ml, giving productivities of 10, 214 and 24 U l−1h−1, respectively. The cellulase mixture, partially purified by ammonium sulphate precipitation, was able to hydrolyse delignified OPEFB fibres, converting about 68 % of the cellulosics to reducing sugars after 5 days. Received: 17 June 1996 / Received revision: 18 November 1996 / Accepted: 23 November 1996  相似文献   

5.
The extracellular enzymes of seven fungal strains isolated from koala faeces have been comprehensively characterised for the first time, revealing potential for biotechnological applications. The fungal isolates were grown in a hydrolase-inducing liquid medium and the supernatants were analysed using enzyme assays and zymogram gels. Temperature and pH profiles were established for xylanase (EC 3.2.1.8 endo-1,4-β-xylanase), mannanase (EC 3.2.1.78 mannan endo-1,4-β-mannosidase), endoglucanase (EC 3.2.1.4 cellulase), β-glucosidase (EC 3.2.1.21 β-glucosidase), amylase (EC 3.2.1.1 α-amylase), lipase (EC 3.1.1.3 triacylglycerol lipase) and protease (EC 3.4 peptidase) activities. Comparisons were made to the high-secreting hypercellulolytic mutant strain Trichoderma reesei RUT-C30 and the wild-type T. reesei QM6a. The isolates from koala faeces Gelasinospora cratophora A10 and Trichoderma atroviride A2 were good secretors of total protein and heat-tolerant enzymes. Doratomyces stemonitis C8 secreted hemicellulase(s), endoglucanase(s) and β-glucosidase(s) with neutral to alkaline pH optimums. A cold-tolerant lipase was secreted by Mariannaea camptospora A11. The characteristics displayed by the enzymes are highly sought after for industrial processes such as the manufacture of paper, detergents and food products. Furthermore, the enzymes were produced at good starting levels that could be increased further by strain improvement programs.  相似文献   

6.
Xylanase, β-glucosidase, β-xylosidase, endoglucanase and polygalacturonase production fromCurvularia inaequalis was carried out by means of solid-state and submerged fermentation using different carbon sources. β-Glucosidase. β-xylosidase, polygalacturonase and xylanase produced by the microorganisms were characterized. β-Glucosidase presented optimum activity at pH 5.5 whereas xylanase, poly-galacturonase and β-xylosidase activities were optimal at pH 5.0. Maximal activity of β-glucosidase was determined at 60°C, β-xylosidase at 70°C, and polygalacturonase and xylanase at 55°C. These enzymes were stable at acidic to neutral pH and at 40–45 °C. The crude enzyme solution was studied for the hydrolysis of agricultural residues.  相似文献   

7.
Direct utilization of untreated oil palm trunk (OPT) for cellulases and xylanase production by Aspergillus fumigatus SK1 was conducted under solid-state fermentation (SSF). The highest activities of extracellular cellulases and xylanases were produced at 80% moisture level, initial pH 5.0, 1 × 108 spore/g (inoculum) with 125 μm of OPT as sole carbon source. The cellulases and xylanase activities obtained were 54.27, 3.36, 4.54 and 418.70 U/g substrates for endoglucanase (CMCase), exoglucanase (FPase), β-glucosidase and xylanase respectively. The crude cellulases and xylanase required acidic condition to retain their optimum activities (pH 4.0). Crude cellulases and xylanase were more stable at 40 °C compared to their optimum activities conditions (60 °C for FPase and 70 °C for CMCase, β-glucosidase and xylanase). SDS-PAGE and zymogram analysis showed that Aspergillus fumigatus SK1 could secrete cellulases (endoglucanase, exoglucanase and β-glucosidase), xylanase and protease. Enzymatic degradation of alkaline treated OPT with concentrated crude cellulases and xylanases resulted in producing polyoses.  相似文献   

8.
Abstract

This study employed two commercial enzyme preparations to examine the effects of endoglucanase, xylanase or their combination on in vitro volatile fatty acid (VFA) production by ruminal microbial populations. Batch ruminal cultures were established with one of various feedstuffs or with a fescue hay-based diet and ruminal fluid from a heifer fed a 40% forage:60% concentrate diet. Addition of xylanase at 135 xylanase units (XU) per ml increased total VFA production from the fescue hay-based diet (44.3 vs. 57.2 mM, p < 0.05) without changing the acetate to propionate (A:P) ratio. Addition of endoglucanase at 2, 3, 4, and 5 carboxymethyl cellulase units (CMCU) per ml increased total VFA production from the fescue hay-based diet on average by 36% (p < 0.05). Addition of 3, 4 and 5 CMCU/ml also decreased (p < 0.05) the A:P ratio. The combined addition of xylanase (135 XU/ml) and endoglucanase (5 CMCU/ml) increased total VFA production from the fescue hay-based diet (40.9 vs. 61.5 mM, p < 0.05) and reduced the A:P ratio (3.4 vs. 1.5, p < 0.05). The effects of endoglucanase and xylanase supplementation on in vitro VFA production varied across the various substrates used. However, endoglucanase supplementation consistently reduced the A:P ratio with all substrates tested. The effects of the enzyme combination were generally greater than either enzyme alone. We conclude that endoglucanase and xylanase activities differ in their ability to affect ruminal VFA production, and endoglucanase but not xylanase, may improve fermentation efficiency by reducing the A:P ratio.  相似文献   

9.
Summary The production of cellulase and xylanase was investigated with a newly isolated strain of Trichoderma viride BT 2169. The medium composition was optimized on a shake-flask scale using the Graeco-Latin square technique. The temperature and time for optimal growth and production of the enzymes in shake cultures were optimized using a central composite design. The temperature optima for maximal production of filter paper cellulase (FPase), xylanase and -gluosidase were 32.8°, 34.7° and 31.1° C, respectively, and the optimum times for production of these enzymes were found to be 144, 158 and 170 h, respectively. The optimized culture medium and conditions (33° C) gave 0.55 unit of FPase, 188.1 units of xylanase and 3.37 units of -glucosidase per milliliter of culture filtrate at 144 h of shake culture. Among different carbon sources tested, the maximum enzyme activities were produced with sulphite pulp and all three enzymes were produced irrespective of the carbon sources used. Batch fermentation in a laboratory fermentor using 2% sulphite pulp allowed the production of 0.61 unit of FPase, 145.0 units of xylanase and 2.72 units of -glucosidase. In a fed-batch fermentation on 6% final Avicel concentration FPase and -glucosidase were 3.0 and 2.4 times higher respectively than those in batch fermentation on 2% Avicel. The pH and temperature optima as well as pH and temperature stabilities of T. viride enzymes were found to be comparable to T. reesei and some other fungal enzymes.  相似文献   

10.
Solid-state fermentation conditions for cellulases production by a newly isolated Penicillium chrysogenum QML-2 were investigated using statistical methods. At first, significant variables for cellulases production including (NH4)2SO4, initial pH and inoculum size were screened by using Plackett-Burman Design. Then the optimal regions of the significant variables were investigated by using the method of steepest ascent. Finally, central composite design and response surface analysis were adopted to determine the optimal values of the significant variables and investigate the combined effects of each variable’s pair on cellulases production. The results showed that the optimal ranges of (NH4)2SO4 concentration, initial pH and inoculum size for three types of cellulases activities were 1.97–2.15 g, pH 4.32–4.41 and 13.3–13.7% (v/w), respectively. Using the mixture of corn stover powder and wheat bran (CSP/WB, 1/1) as carbon source, the optimization resulted in 370.15, 101.76 and 321.56 U/g for maximal endoglucanase activity, filter paper activity and β-glucosidase activity, respectively. Compared with maximum values of cellulases activities (endoglucanase activity 85.21 U/g, filter paper activity 16.62 U/g and β-glucosidase activity 67.68 U/g) obtained under unoptimized conditions, the optimization resulted in 3.34, 5.12 and 3.75 folds improvement for endoglucanase activity, filter paper activity and β-glucosidase activity, respectively. For chitosan hydrolysis, the crude cellulases had the optimal temperature of 55°C, pH of 4.4 and exhibited Michaelis constant (K m) value of 8.34 mg/ml and maximum velocity (V max) of 2.21 μmol glucosamine/min by 1 ml of the crude cellulases.  相似文献   

11.
The strain of Trichoderma reesei Rut C-30 was subjected to mutation after treatment with N-methyl-N′-nitro-N-nitrosoguanidine (NG) for 6 h followed by UV irradiation for 15 min. Successive mutants showed enhanced cellulase production, clear hydrolysis zone and rapid growth on Avicel-containing plate. Particularly, the mutant NU-6 showed approximately two-fold increases in activity of both FPA and CMCase in shake flask culture when grown on basal medium containing peptone (1%) and wheat bran (1%). The enzyme production was further optimized using eight different media. When a mixture of lactose and yeast cream was used as cellulase inducer, the mutant NU-6 yielded the highest enzyme and cell production with a FPase activity of 6.2 U ml−1, a CMCase activity of 54.2 U ml−1, a β-glucosidase activity of 0.39 U ml−1, and a fungal biomass of 12.6 mg ml−1. It deserved noting that the mutant NU-6 also secreted large amounts of xylanases (291.3 U ml−1). These results suggested that NU-6 should be an attractive producer for both cellulose and xylanase production.  相似文献   

12.
A method for analysis of the component composition of multienzyme complexes secreted by the filamentous fungus Trichoderma reesei was developed. The method is based on chromatofocusing followed by further identification of protein fractions according to their substrate specificity and molecular characteristics of the proteins. The method allows identifying practically all known cellulases and hemicellulases of T. reesei: endoglucanase I (EG I), EG II, EG III, cellobiohydrolase I (CBH I), CBH II, xylanase I (XYL I), XYL II, beta-xylosidase, alpha-L-arabinofuranosidase, acetyl xylan esterase, mannanase, alpha-galactosidase, xyloglucanase, polygalacturonase, and exo-beta-1,3-glucosidase. The component composition of several laboratory and commercial T. reesei preparations was studied and the content of the individual enzymes in these preparations was quantified. The influence of fermentation conditions on the component composition of secreted enzyme complexes was revealed. The characteristic features of enzyme preparations obtained in "cellulase" and "xylanase" fermentation conditions are shown.  相似文献   

13.
The anaerobic fungus Anaeromyces mucronatus KF8 grown in batch culture on M10 medium with rumen fluid and microcrystalline cellulose as carbon source produced a broad range of enzymes requisite for degradation of plant structural and storage saccharides including cellulase, endoglucanase, xylanase, α-xylosidase, β-xylosidase, α-glucosidase, β-glucosidase, β-galactosidase, mannosidase, cellobiohydrolase, amylase, laminarinase, pectinase and pectate lyase. These enzymes were detected in both the intra- and extracellular fractions, but production into the medium was prevalent with the exception of intracellular β-xylosidase, chitinases, N-acetylglucosaminidase, and lipase. Xylanase activity was predominant among the polysaccharide hydrolases. Extracellular production of xylanase was stimulated by the presence of cellobiose and oat spelt xylan. Zymogram of xylanases of strain KF8 grown on different carbon sources revealed several isoforms of xylanases with approximate molar masses ranging from 26 to 130 kDa.  相似文献   

14.
We demonstrate glutamate production from β-glucan using endoglucanase (EG)-expressing Corynebacterium glutamicum. The signal sequence torA derived from Escherichia coli K12, which belongs to the Tat pathway, was suitable for secreting EG of Clostridium thermocellum using C. glutamicum as a host. Using the torA signal sequence, endoglucanase from Clostridium cellulovorans 743B was successfully expressed, and the secreted EG produced 123 mg of reducing sugar from 5 g of β-glucan at 30 °C for 72 h, which is the optimal condition for C. glutamicum growth. Subsequently, glutamate fermentation from β-glucan was carried out with the addition of Aspergillus aculeatus β-glucosidase produced by recombinant Aspergillus oryzae. Using EG-secreting C. glutamicum, 178 mg/l of glutamate was produced from 15 g of β-glucan. This is the first report of glutamate fermentation from β-glucan using endoglucanase-secreting C. glutamicum.  相似文献   

15.
A new gene, RuCelA, encoding a bifunctional xylanase/endoglucanase, was cloned from a metagenomic library of yak rumen microorganisms. RuCelA showed activity against xylan and carboxymethylcellulose (CMC), suggesting bifunctional xylanase/endoglucanase activity. The optimal conditions for xylanase and endoglucanase activities were 65°C, pH 7.0 and 50°C, pH 5.0, respectively. In addition, the presence of Co+ and Co2+ can greatly improve RuCelA's endoglucanase activity, while inhibits its xylanase activity. Further examination of substrate preference showed a higher activity against barley glucan and lichenin than against xylan and CMC. Using xylan and barley glucan as substrates, RuCelA displayed obvious synergistic effects with β-1,4-xylosidase and β-1,4-glucosidase. Generation of soluble oligosaccharides from lignocellulose is the key step in bioethanol production, and it is greatly notable that RuCelA can produce xylo-oligosaccharides and cello-oligosaccharides in the continuous saccharification of pretreated rice straw, which can be further degraded into fermentable sugars. Therefore, the bifunctional RuCelA distinguishes itself as an ideal candidate for industrial applications.  相似文献   

16.
Mannan and xylan present in bleached softwood dissolving pulp were found to be partially resistant to hemicellulases even after repeated enzyme treatment. Despite the additional effect of an endoglucanase from Gloeophyllum sepiarium, which increased the␣accessibility of mannan and xylan to a mannanase from Sclerotium rolfsii and to a xylanase from Thermomyces lanuginosus, the enzyme mixture solubilized only half of the hemicellulose present in the pulp. Half of the remaining hemicellulose present in the pulp appeared to be entrapped within the cellulose matrix while the other half was associated with lignin-carbohydrate complexes. The latter hemicellulose portion was isolated and characterized. Chromatography and spectroscopic techniques revealed the presence of two types of lignin-carbohydrate complex, a galactoglucomannan-lignin complex (degree of polymerization DP 50–60) and a xylan-lignin complex (DP >200). Received: 8 December 1997 / Received revision: 30 April 1998 / Accepted: 8 May 1998  相似文献   

17.
The β-mannanase gene (man1) from Aspergillus aculeatus MRC11624 (Izuka) was patented for application in the coffee industry. For production of the enzyme, the gene was originally cloned and expressed in Saccharomyces cerevisiae. However the level of production was found to be economically unfeasible. Here we report a 13-fold increase in enzyme production through the successful expression of β-mannanase of Aspergillus aculeatus MRC11624 in Aspergillus niger under control of the A. niger glyceraldehyde-3-phosphate dehydrogenase promoter (gpd P) and the A. awamori glucoamylase terminator (glaAT). The effect of medium composition on mannanase production was evaluated, and it was found that the glucose concentration and the organic nitrogen source had an effect on both the volumetric enzyme activity and the specific enzyme activity. The highest mannanase activity levels of 16,596 nkat ml−1 and 574 nkat mg−1 dcw were obtained for A. niger D15[man1] when cultivated in a process-viable medium containing corn steep liquor as the organic nitrogen source and high glucose concentrations.  相似文献   

18.
The enhancement of enzyme complex produced by Penicillium echinulatum grown in several culture media components (bagasse sugarcane pretreated by various methods, soybean meal, wheat bran, sucrose, and yeast extract) was studied to increment FPase, xylanase, pectinase, and β-glucosidase enzyme activities. The present results indicated that culture media composed with 10 g/L of the various bagasse pretreatment methods did not have any substantial influence with respect to the FPase, xylanase, and β-glucosidase attained maximum values of, respectively, 2.68 FPU/mL, 2.04, and 115.4 IU/mL. On the other hand, proposed culture media to enhance β-glucosidase production composed of 10 g/L steam-exploded bagasse supplemented with soybean flour 5.0 g/L, yeast extract 1.0 g/L, and sucrose 10.0 g/L attained, respectively, 3.19 FPU/mL and 3.06 IU/mL while xylanase was maintained at the same level. The proteomes obtained from the optimized culture media for enhanced FPase, xylanase, pectinase, and β-glucosidase production were analyzed using mass spectrometry and a panel of GH enzyme activities against 16 different substrates. Culture medium designed to enhance β-glucosidase activity achieved higher enzymatic activities values (13 measured activities), compared to the culture media for FPase/pectinase (9 measured activities) and xylanase (7 measured activities), when tested against the 16 substrates. Mass spectrometry analyses of secretome showed a consistent result and the greatest number of spectral counts of Cazy family enzymes was found in designed β-glucosidase culture medium, followed by FPase/pectinase and xylanase. Most of the Cazy identified protein was cellobiohydrolase (GH6 and GH7), endoglucanase (GH5), and endo-1,4-β-xylanase (GH10). Enzymatic hydrolysis of hydrothermally pretreated sugarcane bagasse performed with β-glucosidase enhanced cocktail achieved 51.4 % glucose yield with 10 % w/v insoluble solids at enzyme load of 15 FPU/g material. Collectively the results demonstrated that it was possible to rationally modulate the GH activity of the enzymatic complex secreted by P. echinulatum using adjustment of the culture medium composition. The proposed strategy may contribute to increase enzymatic hydrolysis of lignocellulosic materials.  相似文献   

19.
A rifampin-resistant mutant ofCellulomonas biazotea secreted elevated levels of cellulasesin vivo. The cellulase production in the mutant was not inhibited in the presence of 5% glucose, cellobiose or glycerol in the solid medium. The mutant exhibited approximately two- to three-fold enhanced product yields and productivity of cellular β-glucosidase over the wild parent in shake-flask culture studies when grown on either cellulosic or lignocellulosic substrates. Extracellular production of filter paper cellulase (FPase) and endo-glucanase (CMCase) were also significantly (p≤0.05) altered. During growth of the mutant on α-cellulose, the maximum volumetric productivities for CMCase, FPase and β-glucosidase were 52, 23.3, and 15.2 IUL−1 h−1,i.e 118, 121, and 229% their respective values for the parental strain. Some enzyme properties of the mutant cellulases were altered. Mutant-derived cellulases produced higher yields of glucose arising by degradation of bagasse, wheat straw, and α-cellulose (1.53-, 1.57-, and 1.75-fold, respectively).  相似文献   

20.
Summary Xylanase from Scytalidium thermophilum was immobilized on Eudragit L-100, a pH sensitive copolymer of methacrylic acid and methyl methacrylate. The enzyme was non-covalently immobilized and the system expressed 70% xylanase activity. The immobilized preparation had broader optimum temperature of activity between 55 and 65 °C as compared to 65 °C in case of free enzyme and broader optimum pH between 6.0 and 7.0 as compared to 6.5 in case of free enzyme. Immobilization increased the t1/2 of enzyme at 60 °C from 15 to 30 min with a stabilization factor of 2. The Km and Vmax values for the immobilized and free xylanase were 0.5% xylan and 0.89 μmol/ml/min and 0.35% xylan and 1.01 μmol/ml/min respectively. An Arrhenius plot showed an increased value of activation energy for immobilized xylanase (227 kcal/mol) as compared to free xylanase (210 kcal/mol) confirming the higher temperature stability of the free enzyme. Enzymatic saccharification of xylan was also improved by xylanase immobilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号