首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
An adult skeleton of the pistosauroid sauropterygian Yunguisaurus liae reveals a number of morphological features not observed in the holotype, such as the complete morphology of the skull roof, stapes, atlas and axis, ventral view of the postcranium, and nearly complete limbs and tail. Size and morphological differences between the two specimens are mostly regarded as ontogenetic variation, and newly added data did not affect the phylogenetic relationships with other pistosauroids significantly. The number of mesopodia (11 carpals and 8 tarsals) exceeds that known in any other Triassic marine reptiles and does not serve as a precursor of the plesiosaurian pattern with fewer mesopodia of different topology; it demonstrates variability of the limb morphology among the Triassic pistosauroids. The pectoral girdles of Corosaurus, Augustasaurus and Yunguisaurus may indicate early stages of the adaptation towards the plesiosaurian style of paraxial limb movements with ventroposterior power stroke.  相似文献   

2.
The fossil record of metriorhynchids and plesiosaurians from the Rosso Ammonitico Veronese Formation (RAVFm, Middle–Upper Jurassic, Italy) is represented by elements collected between the eighteenth and twentieth centuries. All the metriorhynchid material is referred to the genus Neptunidraco. The first RAVFm plesiosaurian material was collected in the nineteenth century and referred to Plesiosaurus: elements are here described and interpreted as a chimerical association of crocodylomorph and plesiosaurian bones, providing the first co-occurrence of these clades in the RAVFm. The second plesiosaurian is the associated skeleton that we refer to Anguanax zignoi gen. et sp. nov. Bayesian phylogenetic analysis confirms the basal geosaurine affinities of Neptunidraco resulted by parsimony analysis. Using both methods, Anguanax was recovered as a basal pliosaurid, sister group of the clade including Marmornectes and Thalassophonea. Bayesian inference methods indicate that both Italian lineages diverged from other known lineages between 176 and 171 Mya, also showing divergence rates significantly higher than any other representative of their respective clades. We suggest a phase of rapid evolutionary adaptation to deeper marine environments in the ancestors of the Rosso Ammonitico Veronese reptiles as a response to the latest Liassic regressive regime in Northern Tethys.  相似文献   

3.
4.
侏罗纪的蛇颈龙类化石主要发现于欧洲 ,在世界的其他地区则比较少见。亚洲的蛇颈龙化石 ,尤其是侏罗纪的属种大多破碎而难以鉴别 (Sato,1 998)。到目前为止 ,Bishanopliosaurusyoungi(Dong,1 980 )和Yuzhoupliosauruschengjiangensis(Zhang,1 985)是亚洲地区最为完整的侏罗纪蛇颈龙类化石 ,并且化石产自对于蛇颈龙而言比较罕见的淡水沉积 ,因此这些材料对于了解该类群的系统发育、历史动物地理和古生态来说非常重要。本文重新详细描述了采自中国重庆自流井组东岳庙段的杨氏璧山上龙2 ) (董枝明 ,1 980 )。愈合情况不好的椎体和椎弓以及耻骨的边缘形态表明 ,杨氏璧山上龙的正型标本是一个幼年个体的头后骨架。我们的研究表明杨氏璧山上龙主要依分叉的荐肋为特征 ,而这一性状在初次发表时作为颈肋特征被描述。璧山上龙的其他特征包括侧扁的神经棘以及狭窄的乌喙骨和肱骨上有一个突。经过重新修理的标本显示 ,坐骨和耻骨相对的面呈沟槽状 ,这一现象表明它们之间的接触关系要较原来描述的情况复杂 ,是一种依靠软骨的连接 ,而非直接接触。本文对杨氏璧山上龙的腰带部分进行了重新复原。O’Keefe (2 0 0 1 )的支序分析支持将Plesiosauria二分为Plesiosauroidea和Pliosauroidea,后者包含两个科 :Pliosauridae和  相似文献   

5.
The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis, and Panphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister‐group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid‐Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node‐based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as “all descendants of the most recent common ancestor of birds and Triceratops”. Recent cladistic analyses of early dinosaurs agree that Pisanosaurus mertii is a basal ornithischian; that Herrerasaurus ischigualastensis and Staurikosaurus pricei belong in a monophyletic Herrerasauridae; that herrerasaurids, Eoraptor lunensis, and Guaibasaurus candelariensis are saurischians; that Saurischia includes two main groups, Sauropodomorpha and Theropoda; and that Saturnalia tupiniquim is a basal member of the sauropodomorph lineage. On the contrary, several aspects of basal dinosaur phylogeny remain controversial, including the position of herrerasaurids, E. lunensis, and G. candelariensis as basal theropods or basal saurischians, and the affinity and/or validity of more fragmentary taxa such as Agnosphitys cromhallensis, Alwalkeria maleriensis, Chindesaurus bryansmalli, Saltopus elginensis, and Spondylosoma absconditum. The identification of dinosaur apomorphies is jeopardized by the incompleteness of skeletal remains attributed to most basal dinosauromorphs, the skulls and forelimbs of which are particularly poorly known. Nonetheless, Dinosauria can be diagnosed by a suite of derived traits, most of which are related to the anatomy of the pelvic girdle and limb. Some of these are connected to the acquisition of a fully erect bipedal gait, which has been traditionally suggested to represent a key adaptation that allowed, or even promoted, dinosaur radiation during Late Triassic times. Yet, contrary to the classical “competitive” models, dinosaurs did not gradually replace other terrestrial tetrapods over the Late Triassic. In fact, the radiation of the group comprises at least three landmark moments, separated by controversial (Carnian‐Norian, Triassic‐Jurassic) extinction events. These are mainly characterized by early diversification in Carnian times, a Norian increase in diversity and (especially) abundance, and the occupation of new niches from the Early Jurassic onwards. Dinosaurs arose from fully bipedal ancestors, the diet of which may have been carnivorous or omnivorous. Whereas the oldest dinosaurs were geographically restricted to south Pangea, including rare ornithischians and more abundant basal members of the saurischian lineage, the group achieved a nearly global distribution by the latest Triassic, especially with the radiation of saurischian groups such as “prosauropods” and coelophysoids.  相似文献   

6.
Although the group played an important role in the evolution of Late Mesozoic terrestrial ecosystems, the early evolutionary history of the ornithischian dinosaurs remains poorly understood. Here, we report on a new primitive ornithischian, Eocursor parvus gen. et sp. nov., from the Late Triassic (?Norian) Lower Elliot Formation of South Africa. Eocursor is known from a single specimen comprising substantial cranial and postcranial material and represents the most complete Triassic member of Ornithischia, providing the earliest evidence for the acquisition of many key ornithischian postcranial characters, including an opisthopubic pelvis. A new phylogenetic analysis positions this taxon near the base of Ornithischia, as the sister taxon to the important and diverse clade Genasauria. The problematic clade Heterodontosauridae is also positioned basal to Genasauria, suggesting that an enlarged grasping manus may represent a plesiomorphic ornithischian condition. This analysis provides additional phylogenetic support for limited ornithischian diversity during the Late Triassic, and suggests that several major ornithischian clades may have originated later than generally believed. There are few morphological differences between Late Triassic and Early Jurassic ornithischians, supporting previous suggestions that the Early Jurassic ornithischian radiation may simply represent the filling of vacant ecological space following Late Triassic terrestrial extinctions.  相似文献   

7.
Major extinctions occurred both in the sea and on land during the Late Triassic in two major phases, in the middle to late Carnian and, 12–17 Myr later, at the Triassic‐Jurassic boundary. Many recent reports have discounted the role of the earlier event, suggesting that it is (1) an artefact of a subsequent gap in the record, (2) a complex turnover phenomenon, or (3) local to Europe. These three views are disputed, with evidence from both the marine and terrestrial realms. New data on terrestrial tetrapods suggests that the late Carnian event was more important than the end‐Triassic event. For tetrapods, the end‐Triassic extinction was a whimper that was followed by the radiation of five families of dinosaurs and mammal‐like reptiles, while the late Carnian event saw the disappearance of nine diverse families, and subsequent radiation of 13 families of turtles, crocodilomorphs, pterosaurs, dinosaurs, lepidosaurs and mammals. Also, for many groups of marine animals, the Carnian event marked a more significant turning point in diversification than did the end‐Triassic event.  相似文献   

8.
9.
Jobst Wendt 《Palaeontology》2018,61(4):575-595
The first tunicates with a calcareous exoskeleton are reported from Late Triassic buildup‐slope deposits of the Dolomites. Although examples of this group have been known since the early 1900s from the middle–upper Permian of eastern Asia and Sicily as Khmeria, they were erroneously attributed to rugose corals. These early representatives are small, double‐valved, conical skeletons, which evolved into multi‐plated capsules with up to 35 opercula. The latter are joined along zigzag margins, which in life could probably be opened for the atrial and branchial siphons. The construction and shape of these skeletons distinguish them from plants or other invertebrate phyla, while they share several similarities with living tunicates, specifically to sessile ascidians. Apart from a soft‐bodied genus from the lower Cambrian of China, ascidians are known only from isolated spicules, which occur sporadically from the Lower Jurassic onwards. The calcareous skeleton of these Late Triassic tunicates consists of aragonitic fibres, which form spherulitic or clinogonal microstructures. It seems that the stellate aragonitic spicules of Jurassic to Recent ascidians are a vestige of Permian–Triassic ancestors, which after the Carnian lost the ability to construct compound solid skeletons but partly still retain a soft double‐valved or multi‐operculate cellulose‐like tunic. The following taxa are described as new: Order Khmeriamorpha with the genera Khmeria Mansuy and Zardinisoma gen. nov., and the following species: Khmeria stolonifera (late Permian), Khmeria minima (Late Triassic), Zardinisoma japonicum (late Permian), Z. cassianum, Z. pyriforme, Z. polyplacophorum and Z. pauciplacophorum (all Late Triassic).  相似文献   

10.
Summary During the Middle and early Late Triassic carbonate ramps and rimmed platforms developed at the northwestern margin of the Tethys ocean. In the Northern Calcareous Alps, Anisian stacked homoclinal ramps evolved through a transitional stage with distally steepened ramps to huge rimmed platforms of Late Ladinian to Early Carnian age. Middle Triassic to early Late Triassic facies and biota of basin, slope and platform depositional systems are described. Special emphasis is given to foraminifers, sponges, microproblematic organisms and algae. The Ladinian to early Carnian reef associations are characterized by the abundance of segmented sponges, microproblematica, biogenic crusts and synsedimentary cements. Among the foraminifers, recifal forms likeHydrania dulloi andCucurbita infundibuliformis (Carnian in age) are reported from the Northern Calcareous Alps for the first time. Some sphinctozoid sponges likeParavesicocaulis concentricus were known until now only from the Hungarian and Russian Triassic.  相似文献   

11.
Research this century has greatly improved our knowledge of the origin and early radiation of dinosaurs. The unearthing of several new dinosaurs and close outgroups from Triassic rocks from various parts of the world, coupled with improved phylogenetic analyses, has set a basic framework in terms of timing of events and macroevolutionary patterns. However, important parts of the early dinosauromorph evolutionary history are still poorly understood, rendering uncertain the phylogenetic position of silesaurids as either non‐dinosaur Dinosauriformes or ornithischians, as well as that of various early saurischians, such as Eoraptor lunensis and herrerasaurs, as either noneusaurischians or members of the sauropodomorph or theropod lineages. This lack of agreement in part derives from a patchy distribution of traits among early members of the main dinosauromorph lineages and requires a more meticulous assessment of characters and homologies than those recently conducted. Presently, the oldest uncontroversial dinosaur records come from Late Triassic (Carnian) rocks of South America, southern Africa and India, hinting at a south‐western Pangaea origin of the group. Besides, macroevolutionary approaches suggest that the rise of dinosaurs was a more gradual process than previously understood. Obviously, these tentative scenarios need to be tested by new fossil finds, which should also help close the major gaps recognized in the fossil record of Triassic dinosauromorphs.  相似文献   

12.
Abstract: Restudy of skulls and available postcrania of the proterochampsian archosauriform Proterochampsa barrionuevoi from the Ischigualasto Formation (Upper Triassic, Carnian) in the San Juan Province, Argentina, confirms that the genus is diagnosed by autapomorphies that include dermal sculpturing consisting of prominent ridges and nodular protuberances, a large hook‐like lateral projection on the quadratojugal, an antorbital fossa restricted to a depression along the maxilla, lateral expansion of the premaxilla anterior to the premaxilla–maxilla contact, absence of a supratemporal fossa, exclusion of jugal from suborbital fenestra, basal tubera of parabasisphenoid facing ventrally and reaching laterally beyond the basipterygoid process, and a ventral lamina on the angular. Proterochampsa nodosa is a valid species distinguished from Pbarrionuevoi by fewer cranial ridges with larger protuberances, relatively smaller supratemporal fenestrae and width of frontals between orbits less than that of the nasals. A phylogenetic analysis supports the monophyly of Proterochampsia consisting of Proterochampsa, Chanaresuchus bonapartei, Gualosuchus reigi, Tropidosuchus romeri and Cerritosaurus binsfeldi. A temporal separation between the two basal proterochampsians with earliest records in the Late Triassic (Proterochampsa and Cerritosaurus) and Chanaresuchus, Gualosuchus and Tropidosuchus in the Middle Triassic indicates hidden proterochampsian diversity in the Middle Triassic.  相似文献   

13.
《Comptes Rendus Palevol》2003,2(1):103-117
Until 1960, the record of dinosaurs was rather poor in Switzerland. Between 1960 and 1980, several new localities with plateosaurid remains as well as prosauropod and theropod tracks were found in Late Triassic sabkha and floodplain environments. The discovery of large surfaces with sauropod tracks in the Late Jurassic of the Jura Mountains in 1987 triggered a stream of new data. More than 20 new localities with tracks from both sauropod and theropod dinosaurs in different stratigraphic levels have been found since then. The latest discoveries include trackways of iguanodontids from the Early Cretaceous of the central Swiss Alps and a large Late Jurassic surface with trackways of small sauropods in the northernmost part of the Jura Mountains. The best skeletal record comes from the Late Triassic, with scattered data from the Late Jurassic. The track and trackway record appears to be best in the Late Jurassic. To cite this article: C.A. Meyer, B. Thüring, C. R. Palevol 2 (2003) 103–117.  相似文献   

14.
Noriphyllia gen. n. is a distinctive coral representing the Coryphylliidae, a group of Late Triassic scleractinian corals. Coral faunas of this age are poorly known. The new coral is distinguished from related corals belonging to the reimaniphylliids by key features of septal microstructure as discerned in thin sections. This microstructure consists of a straight/wavy midseptal zone and lateral septal stereome organized into thin fascicles of fibres, producing a fine and sharp micromorphology of the septal sides. The solitary genus Noriphyllia gen. n. contains two Early Norian species: N. anatoliensis sp. n. chosen as the type species and N. dachsteinae sp. n., and a Carnian species referred to as N. monotutoensis sp. n. The new genus is widely distributed in the Late Triassic, Early Norian reef facies of the Tethys region (Northern Calcareous Alps, Austria; Taurus Mountains, Turkey) and it also occurs in the Carnian of Timor. Noriphyllia gen. n. is unique and details of its microstructural features add new understanding to the composition of both Late Carnian and Early Norian corals.  相似文献   

15.
Abstract

Two recent studies have independently recovered Pisanosaurus mertii – long thought to represent the oldest known member of Ornithischia – within Silesauridae. These finds are expanded upon here, as are the implications of this hypothesis. Based upon these finds, it now appears that Ornithischia was absent in the Triassic Period entirely, which constitutes a major incongruence between the fossil record and current phylogenetic hypotheses, particularly the traditional model of dinosaur interrelationships in which Ornithischia and Saurischia are sister-taxa. It has been suggested previously that Ornithischia was simply a rare component of Late Triassic faunas, or that perhaps the clade’s ecology or geographic distribution were not conducive to producing a fossil record. Here I propose that phylogeny could hold the solution to this problem. I examine how an alternative position for Ornithischia – nested either within Theropoda or Sauropodomorpha – could be the reason behind their later appearance and relative rarity in the Early Jurassic. An Early Jurassic origin of Ornithischia would force us to consider that the anatomical similarities between ornithischians and Early Jurassic taxa might not be convergences, and to broaden the current datasets of early dinosaurs to test these ideas.  相似文献   

16.
The Triassic fossil record points to the monophyly of the Pectinoidea (scallops), all members of which have a triangular resilium with a nonmineralized medial core that functions below the hinge line. The elastic properties of this resilium in extant taxa predict that the initial adaptation of the Pectinoidea was to swimming. This is indeed corroborated by the shell form of Pernopecten , the earliest known pectinoidean genus, which ranged from late Devonian to earliest Triassic. The new family Entolioididae, a largely Triassic group, provides the missing link between the Pernopectinidae and the families Propeamussiidae, Entoliidae, and Pectinidae, all of which originated by the Middle Triassic and survive to the present day. A new Triassic genus Filamussium shows that the Propeamussiidae originated from the Entolioididae, not directly from the Pernopectinidae as previously supposed. Evidence from morphology, the fossil record, and molecular genetics indicates that the family Spondylidae originated in the Middle Jurassic from an ancestor within the Pectinidae, possibly the genus Spondylopecten , which was already present in the Late Triassic. Journal compilation © 2006 The Linnean Society of London, Zoological Journal of the Linnean Society , 2006, 148 , 313–342. No claim to original US government works  相似文献   

17.
Phytosaurs are a diverse and morphologically distinctive clade of superficially crocodile‐like archosauriforms that had a near global distribution during the Late Triassic. Because their remains are among the most abundant vertebrate remains recovered in many Upper Triassic terrestrial formations, phytosaurs are used extensively in long‐range biochronological and biostratigraphic correlations. The biochronologically oldest and earliest branching known phytosaurs include an array of nominal species from the early Late Triassic of the United States, Germany, Poland, Morocco, and India that have been synonymized within the genus Paleorhinus, and subsequently used to define a global ‘Paleorhinus biochron’. However, recent phylogenetic work suggested that the North American species previously referred to Paleorhinus are paraphyletic. Here, we reassess the systematics and anatomy of putative specimens of Paleorhinus from southern Germany. Two well‐preserved basal phytosaur skulls from the Blasensandstein (Carnian) of Bavaria form the holotypes of Francosuchus angustifrons and Ebrachosuchus neukami, both of which were synonymized with Paleorhinus by previous workers. We demonstrate that Francosuchus angustifrons shares unique synapomorphies with specimens referred to Paleorhinus bransoni from the Late Triassic of Texas, and thus refer the species to Paleorhinus. By contrast, the longirostrine Ebrachosuchus is highly distinctive in morphology, and our new cladistic analysis of Phytosauria demonstrates that it represents a valid taxon that is more closely related to Phytosauridae than to Paleorhinus. We provide the first autapomorphy‐based support for a monophyletic but restricted Paleorhinus (supported by a nodal row on the jugal, and low paired ridges on the squamosal) and confirm that previous broader conceptions of Paleorhinus are likely to be paraphyletic. © 2013 The Linnean Society of London  相似文献   

18.
The French dinosaur record is one of the most extensive in Europe; it ranges stratigraphically from the Late Triassic to the Latest Cretaceous. All major clades of dinosaurs but marginocephalians are known. About 20 species are based on significant material; the theropods are the best represented. Most of these taxa have been described or revised in recent years. Important specimens have been discovered in the Late Triassic of eastern France, the Middle Jurassic of Normandy, and the Late Cretaceous of Provence and Languedoc. The ichnological record is good for the Late Triassic-Early Jurassic, and the Late Cretaceous egg sites are among the richest in the world. To cite this article: R. Allain, X.P. Suberbiola, Palevol 2 (2003) 27–44.  相似文献   

19.
Sphenodontians were a successful group of rhynchocephalian reptiles that dominated the fossil record of Lepidosauria during the Triassic and Jurassic. Although evidence of extinction is seen at the end of the Laurasian Early Cretaceous, they appeared to remain numerically abundant in South America until the end of the period. Most of the known Late Cretaceous record in South America is composed of opisthodontians, the herbivorous branch of Sphenodontia, whose oldest members were until recently reported to be from the Kimmeridgian–Tithonian (Late Jurassic). Here, we report a new sphenodontian, Sphenotitan leyesi gen. et sp. nov., collected from the Upper Triassic Quebrada del Barro Formation of northwestern Argentina. Phylogenetic analysis identifies Sphenotitan as a basal member of Opisthodontia, extending the known record of opisthodontians and the origin of herbivory in this group by 50 Myr.  相似文献   

20.
Despite their rarity today, rhynchocephalians formed a diverse Early Mesozoic clade with a comparatively good fossil record. They had a Pangaean distribution in the Late Triassic and Early Jurassic, although the Gondwanan record remains more limited than the Laurasian one. We report here on new sphenodontian material from the Jurassic Kota Formation of peninsular India. Two taxa are represented, and both are attributed to new genera. One is a relatively derived sphenodontian with a premaxillary morphology similar to that of the Late Triassic/ Early Jurassic genus Clevosaurus. The other is somewhat more primitive in its morphology, although clearly a crown-group sphenodontian. In addition, three dentary fragments and a partial maxilla signal the presence of a primitive pleurodont lepidosauromorph similar to the basal rhynchocephalians Gephyrosaurus and Diphydonto-saurus from Britain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号