首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 757 毫秒
1.
The role of the diphtheria toxin receptor in cytosol translocation   总被引:6,自引:0,他引:6  
The role of the receptor in the transport of diphtheria toxin (DT) to the cytosol was examined. A point-mutant form of DT, CRM 107 (CRM represents cross-reacting material), that has an 8,000-fold lower affinity for the DT receptor than native toxin was conjugated to transferrin and monoclonal antibodies specific for the cell-surface receptors T3 and Thy1. Conjugating the binding site-inactivated CRM 107 to new binding moieties reconstituted full toxicity, indistinguishable from native DT linked to the same ligand, indicating that the entry activity of the DT B chain can be fully separated from the receptor binding function. Like DT, the toxin conjugates exhibited a dose-dependent lag period before first-order inactivation of protein synthesis. Inactivation of the binding site of the toxin portion of the conjugate was found to have no effect on the kinetics of protein synthesis inactivation. The receptor used by the toxin determined the length of the lag period relative to the killing rate. Comparing the potency of CRM 107 conjugates with native DT, standardized for receptor occupancy, shows that new receptors can be as or more efficient than the DT receptor in transporting DT to the cytosol. The transferrin-CRM 107 conjugate, unlike native DT, was highly toxic to murine cells. All the data presented are consistent with a model that the DT receptor, other than initiating rapid internalization of the toxin to low pH compartments, is unnecessary for transport of the toxin to the cytosol and that membrane translocation activity is expressed by the DT B subunit independent of the receptor-binding site.  相似文献   

2.
Diphtheria toxin (DT) in acidic media forms ion-conducting channels across the plasma membrane and inhibits protein synthesis of both highly and poorly DT-sensitive cell lines. This results in loss of cell potassium and in entry of both sodium and protons with a concomitant rapid lowering of membrane potential. The pH dependency of the permeability changes is similar to that of the inhibition of cell protein synthesis. DT-induced ion channels close when the pH of the external medium is returned to neutrality and cells recover their normal monovalent cation content. Similar permeability changes were induced by two DT mutants defective either in enzymatic activity or in cell binding, but not with a mutant defective in membrane translocation. The implication of these findings for the mechanism of DT membrane translocation is discussed.  相似文献   

3.
In this review we discuss data obtained by our group regarding the entry of toxins, especially ricin, diphtheria toxin (DT) and Pseudomonas exotoxin A (PE) into animal cells. We studied the translocation process of these toxins using endosomes purified from lymphocytes. This process is rate-limiting for toxicity and enables these toxins to reach the cytosol where they will inactivate the protein synthesis system and kill the cell. We could show that each of these toxins uses a different strategy to cross the endosome membrane. Whereas ricin transmembrane transport only relies on cytosolic ATP hydrolysis, PE first requires exposure to the low endosomal pH (pH-6), presumably to insert into the endosome membrane, before being translocated via a process which also requires cytosolic ATP hydrolysis. DT translocation is directly triggered and energized by the endosome-cytosol pH gradient. Using conjugates with dihydrofolate reductase we could indirectly show that ricin and PE require unfolding for translocation. A deletion approach enabled to produce a more cytotoxic PE mutant by increasing its translocation activity.  相似文献   

4.
The role of diphtheria toxin (DT) B-chain subdomains in DT cytotoxicity and immunotoxin mechanism of action has been investigated. OKT3 (mAb to the CD3 surface Ag of human T lymphocytes) was conjugated to DT or the DT mutant CRM 1001, which has a cys----tyr substitution at position 471 of the B chain. OKT3-CRM 1001 immunotoxin was about 1400-fold less cytotoxic for CD3 Jurkat cells than OKT3-DT and had a 12-fold slower kinetics of protein synthesis inactivation, CRM 1001 killed DT-sensitive Vero cells at a 5000-fold higher concentration than DT. Its cell surface-binding activity was comparable to DT. Based on kinetics of cell inactivation, toxicity determination at low extracellular pH and Triton X-114 distribution, it was concluded that CRM 1001 is defective in at least one crucial step of toxin penetration and is unable to cross cell membranes as efficiently as DT. The substituted cysteine appears to be important for DT translocating functions. Data on the function of DT B-chain subdomains are relevant for the study of whole toxin conjugates and their mechanism of action.  相似文献   

5.
Previously a mathematical model was proposed that quantitatively related protein synthesis inhibition kinetics of antitransferrin receptor-gelonin immunotoxins to the cellular trafficking of the targeting agent. That work is here extended to describe protein synthesis inhibition kinetics of immunotoxins containing the diphtheria toxin mutant CRM107. CRM107 differs from gelonin in both translocation and ribosomal inactivation mechanisms. Targeting agents used were antitransferrin monoclonal antibodies 5E9 and OKT9, OKT9Fab, and transferrin. CRM107 conjugates inhibited protein synthesis at substantially lower concentrations than gelonin conjugates; this effect was attributed to substantially higher translocation rates for CRM107. However, under certain conditions, CRM107 immunotoxin-treated cells were able to recover completely; this behavior was never observed with gelonin immunotoxins. To quantitatively capture this phenomenon, extracellular and cytosolic degradation of the toxin as well as growth-related recovery from toxin-induced damage were incorporated into the mathematical model. Translocation and cytosolic degradation rate constants were determined for each immunotoxin. Unlike the gelonin conjugates, the translocation rate of CRM107 conjugates depended on the targeting molecule. This provided indirect evidence that CRM107 remains disulfide linked to the targeting agent for at least part of the translocation process. Although the CRM107 conjugates all had higher translocation rates and inhibited protein synthesis at lower concentrations than the gelonin conjugates, the cells' ability to recover from protein synthesis inhibition at low immunotoxin concentrations limits the utility of CRM107 conjugates for targeted cell killing.  相似文献   

6.
We have utilized a new class of acid-cleavable protein cross-linking reagents in the construction of antibody-diphtheria toxin conjugates (Srinivaschar, K., and Neville, D. M., Jr. (1989) Biochemistry 28, 2501-2509). The potency of anti-CD5 conjugates assayed by inhibition of protein synthesis on CD5 bearing cells (Jurkat) is correlated with cross-linker hydrolytic rates. The maximum increase in potency of the cleavable conjugates over non-cleavable conventional conjugates is 50-fold and is specific for the CD5 uptake route as judged by competition with excess anti-CD5. The potency of conjugates made from diphtheria toxin and the anti-high molecular weight melanoma-associated antigen (HMW-MAA) is enhanced 3-10-fold by a cleavable cross-linker. However the potency of transferrin or anti-CD3 diphtheria toxin conjugates is only minimally enhanced (2-3-fold). Mutant diphtheria toxins, CRM103 and CRM9, previously shown to express less than 1/100 of the wild type in binding affinity were substituted into these conjugates as probes for possible intracellular toxin receptor interactions. Both mutants were equally as toxic to Jurkat target cells exhibiting 1/700 the wild-type potency. CRM9 non-cleavable conjugates were equally as potent as wild-type conjugates for transferrin and anti-CD3-mediated uptake but not for anti-CD5-mediated uptake where toxicity was reduced 60-fold over the wild-type analog. The cleavable cross-linker enhanced the toxicity of anti-CD5-CRM103 and anti-CD5-CRM9 conjugates, but potency was only 1/10 that of the analogous wild-type cleavable conjugate. These data are consistent with a model in which potentiation of toxicity of the anti-CD5 and anti-high molecular weight melanoma-associated antigen conjugates by the cleavable cross-linker occurs from an enhanced intracellular toxin-toxin receptor interaction that ultimately results in increased toxin translocation to the cytosol compartment. In contrast, these data indicate that the anti-CD3 and transferrin uptake systems do not require this interaction in agreement with previous work (Johnson, V.G., Wilson, D., Greenfield, L., and Youle, R. J. (1988) J. Biol. Chem. 263, 1295-1300).  相似文献   

7.
The Rho-GTPases-activating toxin CNF1 (cytotoxic necrotizing factor 1) delivers its catalytic activity into the cytosol of eukaryotic cells by a low pH membrane translocation mechanism reminiscent of that used by diphtheria toxin (DT). As DT, CNF1 exhibits a translocation domain (T) containing two predicted hydrophobic helices (H1-2) (aa 350-412) separated by a short peptidic loop (CNF1-TL) (aa 373-386) with acidic residues. In the DT loop, the loss of charge of acidic amino acids, as a result of protonation at low pH, is a critical step in the transfer of the DT catalytic activity into the cytosol. To determine whether the CNF1 T domain operates similarly to the DT T domain, we mutated several ionizable amino acids of CNF1-TL to lysine. Single substitutions such as D373K or D379K strongly decreased the cytotoxic effect of CNF1 on HEp-2 cells, whereas the double substitution D373K/D379K induced a nearly complete loss of cytotoxic activity. These single or double substitutions did not modify the cell-binding, enzymatic or endocytic activities of the mutant toxins. Unlike the wild-type toxin, single- or double-substituted CNF1 molecules bound to the HEp-2 plasma membrane could not translocate their enzymatic activity directly into the cytosol following a low pH pulse.  相似文献   

8.
Diphtheria toxin (DT) contains separate domains for receptor-specific binding, translocation, and enzymatic activity. After binding to cells, DT is taken up into endosome-like acidic compartments where the translocation domain inserts into the endosomal membrane and releases the catalytic domain into the cytosol. The process by which the catalytic domain is translocated across the endosomal membrane is known to involve pH-induced conformational changes; however, the molecular mechanisms are not yet understood, in large part due to the challenge of probing the conformation of the membrane-bound protein. In this work neutron reflection provided detailed conformational information for membrane-bound DT (CRM197) in situ. The data revealed that the bound toxin oligomerizes with increasing DT concentration and that the oligomeric form (and only the oligomeric form) undergoes a large extension into solution with decreasing pH that coincides with deep insertion of residues into the membrane. We interpret the large extension as a transition to the open form. These results thus indicate that as a function of bulk DT concentration, adsorbed DT passes from an inactive state with a monomeric dimension normal to the plane of the membrane to an active state with a dimeric dimension normal to the plane of the membrane.  相似文献   

9.
Two substances possessing the ability to bind to diphtheria toxin (DT) were found to be present in a membrane fraction from DT-sensitive Vero cells. One of these substances was found on the basis of its ability to bind DT and inhibit its cytotoxic effect. This inhibitory substance competitively inhibited the binding of DT to Vero cells. However this inhibitor could not bind to CRM197, the product of a missense mutation in the DT gene, and did not inhibit the binding of CRM197 to Vero cells. Moreover, similar levels of the inhibitory activity were observed in membrane fractions from DT-insensitive mouse cells, suggesting the inhibitor is not the DT receptor which is specifically present in DT-sensitive cells. The second DT-binding substance was found in the same Vero cell membrane preparation by assaying the binding of 125I-labeled CRM197. Such DT-binding activity could not be observed in membrane preparation from mouse L cells. From competition studies using labeled DT and CRM proteins, we conclude that this binding activity is due to the surface receptor for DT. Treatment of these substances with several enzymes revealed that the inhibitor was sensitive to certain RNases but resistant to proteases, whereas the DT receptor was resistant to RNase but sensitive to proteases. The receptor was solubilized and partially purified by chromatography on CM-Sepharose column. Immunoprecipitation and Western blotting analysis of the partially purified receptor revealed that a 14.5-kD protein is the DT receptor, or at least a component of it.  相似文献   

10.
A detailed proteolysis study of internalized diphtheria toxin (DT) within rat liver endosomes was undertaken to determine whether DT-resistant species exhibit defects in toxin endocytosis, toxin activation by cellular enzymes or toxin translocation to its cytosolic target. Following administration of a saturating dose of wild-type DT or nontoxic mutant DT (mDT) to rats, rapid endocytosis of the intact 62-kDa toxin was observed coincident with the endosomal association of DT-A (low association) and DT-B (high association) subunits. Assessment of the subsequent post-endosomal fate of internalized mDT revealed a sustained endo-lysosomal transfer of the mDT-B subunit accompanied by a net decrease in intact mDT and mDT-A subunit throughout the endo-lysosomal apparatus. In vitro proteolysis of DT, using an endosomal lysate, was observed at both neutral and acidic pH, with the subsequent generation of DT-A and DT-B subunits (pH 7) or DT fragments with low ADP-ribosyltransferase activity (pH 4). Biochemical characterization revealed that the neutral endosomal DT-degrading activity was due to a novel luminal 70-kDa furin enzyme, whereas the aspartic acid protease cathepsin D (EC 3.4.23.5) was identified as being responsible for toxin degradation at acidic pH. Moreover, an absence of in vivo association of the DT-A subunit with cytosolic fractions was identified, as well as an absence of in vitro translocation of the DT-A subunit from cell-free endosomes into the external milieu. Based on these findings, we propose that, in rat, resistance to DT may originate from two different mechanisms: the ability of free DT-A subunits to be rapidly proteolyzed by acidic cathepsin D within the endosomal lumen, and/or the absence of DT translocation across the endosomal membrane, which may arise from the absence of a functional cytosolic translocation factor previously reported to participate in the export of DT from human endosomes.  相似文献   

11.
Diphtheria toxin (DT) is a disulfide linked AB-toxin consisting of a catalytic domain (C), a membrane-inserting domain (T), and a receptor-binding domain (R). It gains entry into cells by receptor-mediated endocytosis. The low pH ( approximately 5.5) inside the endosomes induces a conformational change in the toxin leading to insertion of the toxin in the membrane and subsequent translocation of the C domain into the cell, where it inactivates protein synthesis ultimately leading to cell death. We have used a highly reactive hydrophobic photoactivable reagent, DAF, to identify the segments of DT that interact with the membrane at pH 5.2. This reagent readily partitions into membranes and, on photolysis, indiscriminately inserts into lipids and membrane-inserted domains of proteins. Subsequent chemical and/or enzymatic fragmentation followed by peptide sequencing allows for identification of the modified residues. Using this approach it was observed that T domain helices, TH1, TH8, and TH9 insert into the membrane. Furthermore, the disulfide link was found on the trans side leaving part of the C domain on the trans side. This domain then comes out to the cis side via a highly hydrophobic patch corresponding to residues 134-141, originally corresponding to a beta-strand in the solution structure of DT. It appears that the three helices of the T domain could participate in the formation of a channel from a DT-oligomer, thus providing the transport route to the C domain after the disulfide reductase separates the two chains.  相似文献   

12.
Diphtheria toxin (DT) and its N-terminal fragment A (FA) catalyse the transfer of the ADP-ribose moiety of nicotinamide adenine dinucleotide (NAD) into a covalent linkage with eukaryotic elongation factor 2 (eEF2). DT-induced cytotoxicity is versatile, and it includes DNA cleavage and the depolymerisation of actin filaments. The inhibition of the ADP-ribosyltransferase (ADPrT) activity of FA did not affect the deoxyribonuclease activity of FA or its interaction with actin. The toxin entry rate into cells (HUVEC) was determined by measuring the ADP-ribosyltransferase activity. DT uptake was nearly 80% after 30 min. The efficiency was determined as Km = 2.2 nM; Vmax = 0.25 pmol.min−1. The nuclease activity was tested with hyperchromicity experiments, and it was concluded that G-actin has an inhibitory effect on DT nuclease activity. In thepresence of DT and mutant of diphtheria toxin (CRM197), F-actin depolymerisation was determined with gel filtration, WB and fluorescence techniques. In the presence of DT and CRM197, 60–65% F-actin depolymerisation was observed. An in vitro FA-actin interaction and F-actin depolymerisation were reported in our previous paper. The present study thus confirms the depolymerisation of actin cytoskeleton in vivo.  相似文献   

13.
Translocation of diphtheria toxin (DT) or ricin to the cytosol is the rate-limiting step responsible for (pseudo) first-order decline in protein synthesis observed in intoxicated cell populations. The requirements for energy utilization in the translocation of both toxins are examined by perturbing the intoxication during this period of protein synthesis decline. Translocation of either toxin is blocked at 4 degrees C and requires energy. Ricin translocation is tightly coupled to ATP hydrolysis with no involvement of membrane potential. Cell depolarization slows the rate of DT translocation but does not block completely. Elimination of transmembrane pH gradients alone does not affect DT translocation; however, in combination with depolarization, translocation is blocked virtually completely. Energy requirements for DT intoxication are mediated by establishing a plasma membrane potential and a pH gradient across some cellular membrane. It is proposed that a postendocytotic vesicle containing processed DT fuses with the plasma membrane. Either component of the proton motive force across the plasma membrane then drives DT translocation. Ricin apparently utilizes a different energy coupling mechanism at a different intracellular site, thus demonstrating toxin specificity in the translocation mechanism.  相似文献   

14.
Quantal entry of diphtheria toxin to the cytosol   总被引:2,自引:0,他引:2  
The rate-limiting step in diphtheria toxin (DT) intoxication of Vero cells has been determined utilizing cycloheximide as an inhibitor of the intoxication process. Cycloheximide is shown to inhibit the toxin catalyzed ADP-ribosylation of elongation factor 2 (EF-2). The inhibition is blocked by puromycin thus establishing the ribosome as the location of cycloheximide protection. Washing cells free of cycloheximide rapidly reverses the protective effect. The initial rates of protein synthesis inhibition observed after removal of cycloheximide from DT-intoxicated cells are 5 to 12-fold greater than rates observed in unprotected cells and are shown to reflect ADP-ribosylation of EF-2 by cytosolic DT. Ten to thirty minutes after cycloheximide removal, the rate of protein synthesis inhibition abruptly changes to values identical to those of unprotected cells. Both the initial rates and extent of the initial rapid inactivation are directly related to toxin concentration and time of incubation with DT in the presence of cycloheximide. We concluded that: the rate-limiting step in protein synthesis inhibition by DT is not the ADP-ribosylation of EF-2 by cytosolic toxin but rather the earlier entry step of DT into the cytosol. DT enters the cytosol as a bolus of sufficient size to rapidly inactivate all EF-2 in that cell. It is inferred from 1 and 2 that the first order inactivation rate exhibited by DT is the result of the probability of the release of a bolus of toxin to the cytosol of any cell in the population per unit time. Autoradiographic analysis of intoxicated cell populations support this two-population state model. The size of a single bolus or quantum of DT is calculated from data over the range of 10(-11) to 10(-9) M DT and is found to remain constant. We suggest that the cytosolic entry mechanism of DT results from a unique ability of the internalized toxin molecules to destabilize the vesicular membrane resulting in a random release of a bolus of toxin into the cytosol. Because the bolus size remains constant over a 50-fold change in receptor occupancy the possibility is raised that DT undergoes a post-receptor packaging process, package size remaining a constant and package number increasing with receptor occupancy.  相似文献   

15.
We previously developed a method termed "toxin receptor-mediated cell knockout" (TRECK). By the TRECK method, a single or repeated shot(s) of diphtheria toxin (DT) conditionally ablates a specific cell population from transgenic mice expressing the DT receptor transgene under the control of a cell type-specific promoter. In some cases of TRECK, frequent and high-dose administration of DT is required, raising the concern that these frequent injections of DT could cause production of anti-DT antibody, which would neutralize further DT administration. To solve this problem, we aimed to generate transgenic mice genetically expressing a nontoxic DT mutant, with the expectation that they may naturally acquire immune tolerance to DT. Unexpectedly, the G52E DT mutant, which is well known as the nontoxic DT variant cross reacting material 197 (CRM197), exhibited cytotoxicity in yeast and mammalian cells. Cytotoxicity of CRM197 was abrogated in cells mutated for elongation factor 2 (EF-2), indicating that CRM197 exerts its toxic effects through EF-2, similar to wild-type DT. On the other hand, the K51E/E148K DT mutant exhibited no detectable cytotoxicity. This led us to successfully obtain DT gene transgenic mice, which exhibited no histological abnormalities, and indeed acquired immune tolerance to DT.  相似文献   

16.
A proper amino terminus of diphtheria toxin is important for cytotoxicity   总被引:1,自引:0,他引:1  
A series of deletions and substitutions were made at the 5' end of the gene fusion between the first 388 codons of diphtheria toxin (DT) and a cDNA encoding human IL2. The chimeric protein (DT388-IL2) was expressed and purified from E. coli and found to be very cytotoxic to a human T cell line, HUT 102, that expresses a large number of IL2 receptors. Deletion of the first five amino acids of DT resulted in a non-cytotoxic chimeric protein that had both ADP-ribosylation activity and IL2 receptor binding activity. Deletion of the first two amino acids of DT had little effect on cytotoxicity, while deletion of the first four amino acids or of two acidic residues at positions 3 and 4 greatly reduced cytotoxicity. Unexpectedly, a mutant containing a single leucine in place of the first two amino acids (gly, ala) was 2-3 fold more active. The amino terminus of DT may participate in the translocation of the A chain to the cytosol in a manner similar to Pseudomonas exotoxin (PE) in which a specific C-terminal sequence has been proposed to be involved in its cytotoxicity.  相似文献   

17.
CRM197, a mutated diphtheria toxin (DT), has long been recognized to be a non-toxic protein. Based on its non-toxic feature, this protein has been utilized for various purposes, including as an inhibitor of heparin-binding EGF-like growth factor (HB-EGF) and as an immunological adjuvant for vaccination. Here we show evidence that CRM197 has a weak toxicity. This toxicity was observed in cells over-expressing the DT receptor/proHB-EGF, but not in parental cells, indicating that the toxicity was mediated through DT receptor. CRM197 did not show any toxicity toward DT-resistant cells, which have a mutation in elongation factor 2, and a cell-free assay revealed the existence of weak EF-2-ADP ribosylation activity in fragment A of CRM197. Thus, the present study indicates a requirement for specific care in the use of CRM197 at a high dosage, although the toxicity of CRM197 is about 10(6) times less than that of wild-type DT. We found that a monoclonal antibody to DT inhibited CRM197 toxicity, but did not affect the inhibitory activity of CRM197 toward HB-EGF-induced mitogenic activity. CRM197 strongly inhibits tumour growth in nude mice. The anti-DT monoclonal antibody administered with CRM197 reduced the anti- tumourigenic effect of CRM197, indicating that the toxicity of CRM197 potentiates its anti- tumourigenic effect.  相似文献   

18.
The insertion of the A domain of diphtheria toxin into model membranes has been shown to be both pH- and temperature-dependent (Hu and Holmes (1984) J. Biol. Chem. 259, 12226-12233). In this report, the insertion behavior of two mutant proteins of diphtheria toxin, CRM197 and CRM9, was studied and compared to that of wild-type toxin. Results indicated that both CRM197 and CRM9 resembled toxin with respect to the pH-dependence of binding to negatively-charged liposomes at room temperature. However, CRM197 differed from toxin with respect to both the pH- and temperature-dependence of fragment A insertion; fragment A197 inserts more readily into the bilayer at 0 degrees C and low pH or at neutral pH and room temperature than does wild type fragment A under these same conditions. This result indicates that the single amino acid substitution in the A domain of CRM197 facilitates entry of fragment A197 into the membrane, suggesting that CRM197 may be conformationally distinct from native toxin. In fact, the fluorescence spectra of CRM197 and wild-type toxin as well as their respective tryptic peptide patterns indicate that, at pH 7, CRM197 more closely resembles the acid form of wild-type toxin than the native form of toxin. These data suggest that CRM197 may be naturally in a more 'insertion-competent' conformation. In contrast, the mutation in the B domain of CRM9 which results in a 1000-fold decrease in binding affinity for plasma membrane receptors apparently does not cause a change in either the insertion of fragment A9 or the lipid-binding properties of CRM9 relative to toxin.  相似文献   

19.
M Lanzrein  O Sand    S Olsnes 《The EMBO journal》1996,15(4):725-734
We have investigated the role of the transmembrane and cytoplasmic domains of the diphtheria toxin (DT) receptor [heparin-binding epidermal growth factor (HB-EGF) precursor] in the intoxication pathway. Two mutants were constructed in which these domains were replaced by either a 37 amino acid sequence signalling membrane attachment via a glycosylphosphatidylinositol (GPI) anchor (DTR-GPI) or by the transmembrane and cytoplasmic domains of the human EGF receptor (DTR-EGFR). Similar amounts of DTA fragment were translocated through the plasma membrane of NIH 3T3 cells transfected with the wild-type receptor (DTR), DTR-GPI and DTR-EGFR, but translocation was about six times less efficient in the case of DTR-GPI and DTR-EGFR when taking into account the number of receptors expressed. Interestingly, DT-induced 22Na+ influx was weak in DTR-EGFR cells and not detectable in DTR-GPI cells. Whole cell patch-clamp analysis showed the DT at low pH induced depolarization and decreased input resistance in DTR cells (and to a lesser extent also in DTR-EGFR cells) but not in DTR-GPI cells. These results suggest that the transmembrane and cytoplasmic part of the receptor might be involved in channel activity and that translocation of the A fragment is independent of toxin-induced cation channel activity.  相似文献   

20.
Translocation is a necessary and rate-limiting step for diphtheria toxin (DT) cytotoxicity. We have reconstituted DT translocation in a cell-free system using endosomes purified from lymphocytes and have demonstrated this using two different probe/cell systems, which provided identical results: 125I-DT/human CEM cells and 125I-transferrin-DT/mouse BW cells. The cell-free DT translocation process was found to be dependent on the presence of the pH gradient endosome (pH 5.3)/cytosol (pH 7). Among the pH equilibrating agents, nigericin (5 microM) was found to be the most effective, inhibiting DT translocation by 88%. An optimum pH value of 7 on the cytosolic side of the membrane (pH gradient approximately 1.7) was determined. ATP per se is not required for DT translocation. 125I-DT translocation was 3-fold more active from late than from early endosomes, probably because of their slightly more acidic pH. Only the A chain of the toxin was found to escape from either 125I-DT/CEM or 125I-transferrin-DT/BW endosomes. Translocation of control endosome labels (125I-transferrin and 125I-horseradish peroxidase) was never observed. We also show that DT receptors present on resistant (mouse) cells block the translocation of the toxin and are responsible for the resistance of these cells to DT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号