首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The trafficking of the insulin-sensitive glucose transporter, GLUT4, is the paradigm of how cells control the movement of membrane proteins through intricate pathways of transport in response to external stimuli, and how, by doing so, regulate their function. The GLUT4 intracellularly sequestered in resting adipocytes and muscle cells becomes exposed on their surface in response to an increase in insulin levels and muscle contraction, where it facilitates glucose uptake. Ceasing of the stimuli is followed by endocytosis of the GLUT4 molecules exposed on the plasma membrane and their recycling to the original stores, where they are retained. This review discusses current understanding of the organelles that host GLUT4 and the motifs that mediate its trafficking.  相似文献   

2.
Book reviews     
The GLUT4 facilitative glucose transporter protein is primarily expressed in muscle and adipose tissue and accounts for the majority of post-prandial glucose uptake. In the basal or non-stimulated state, GLUT4 is localized to intracellular membrane compartments sequestered away from circulating glucose. However, in response to agonist stimulation, there is a marked redistribution of the GLUT4 protein to the cell surface membrane providing a transport route for the uptake of glucose. This GLUT4 translocation can be divided into four general steps: (i) GLUT4 vesicle trafficking outofthe storage pool, (ii) docking just below the cell surface, (iii) priming via the interactions of the SNARE proteins present on the vesicular and plasma membranes, and (iv) fusion of the GLUT4 vesicle with the plasma membrane. This review focuses on recent advances made in identification and characterization of the molecular events and protein interactions involved in these steps of insulin-stimulated GLUT4 translocation.  相似文献   

3.
Phosphoinositide 3-kinase (PI3K) signaling promotes the translocation of the glucose transporter, GLUT4, to the plasma membrane in insulin-sensitive tissues to facilitate glucose uptake. In adipocytes, insulin-stimulated reorganization of the actin cytoskeleton has been proposed to play a role in promoting GLUT4 translocation and glucose uptake, in a PI3K-dependent manner. However, the PI3K effectors that promote GLUT4 translocation via regulation of the actin cytoskeleton in adipocytes remain to be fully elucidated. Here we demonstrate that the PI3K-dependent Rac exchange factor, P-Rex1, enhances membrane ruffling in 3T3-L1 adipocytes and promotes GLUT4 trafficking to the plasma membrane at submaximal insulin concentrations. P-Rex1-facilitated GLUT4 trafficking requires a functional actin network and membrane ruffle formation and occurs in a PI3K- and Rac1-dependent manner. In contrast, expression of other Rho GTPases, such as Cdc42 or Rho, did not affect insulin-stimulated P-Rex1-mediated GLUT4 trafficking. P-Rex1 siRNA knockdown or expression of a P-Rex1 dominant negative mutant reduced but did not completely inhibit glucose uptake in response to insulin. Collectively, these studies identify a novel RacGEF in adipocytes as P-Rex1 that, at physiological insulin concentrations, functions as an insulin-dependent regulator of the actin cytoskeleton that contributes to GLUT4 trafficking to the plasma membrane.  相似文献   

4.
A major consequence of insulin binding its receptor on fat and muscle cells is translocation of the facilitative glucose transporter GLUT4 from an intracellular store to the cell surface where it serves to clear glucose from the bloodstream. Sorting of GLUT4 into its insulin‐sensitive store requires the GGA [Golgi‐localized, γ‐ear‐containing, ADP ribosylation factor (ARF)‐binding] adaptor proteins, but the signal on GLUT4 to direct this sorting step is unknown. Here, we have identified a role for ubiquitination of GLUT4 in this process. We demonstrate that GLUT4 is ubiquitinated in 3T3‐L1 adipocytes, and that a ubiquitin‐resistant version fails to translocate to the cell surface of these cells in response to insulin. Our data support a model in which ubiquitination acts as a signal for the trafficking of GLUT4 from the endosomal/trans‐Golgi network (TGN) system into its intracellular storage compartment, from where it is mobilized to the cell surface in response to insulin.  相似文献   

5.
动物脂肪和肌肉组织中葡萄糖的摄取是通过受胰岛素调控的GLUT4储存囊泡的运输实现的.Sec1p的同源物Munc18c被认为是通过控制SNARE复合物的装配来使GLUT4囊泡锚定到质膜上的重要物质.我们发现Munc18c的缺失没有影响GLUT4的转运上膜,也没有影响Syntaxin4在细胞膜上的定位.在缺少Munc18c和功能性Syntaxin2的时候,GLUT4的转运可能和Munc18b有关.在3T3-L1脂肪细胞中与Syntaxin4具有强烈相互作用的是Munc18c而不是Munc18a和Munc18b.然而,当缺少Munc18c时,Munc18a和Munc18b与Syntaxin4体现出较弱的相互作用.因此,Syntaxin4可能在胰岛素刺激GLUT4转运过程中起到重要的作用,且与SM蛋白的相互作用是有代偿性的.  相似文献   

6.
Insulin activates a cascade of signaling molecules, including Rac-1, Akt, and AS160, to promote the net gain of glucose transporter 4 (GLUT4) at the plasma membrane of muscle cells. Interestingly, constitutively active Rac-1 expression results in a hormone-independent increase in surface GLUT4; however, the molecular mechanism and significance behind this effect remain unresolved. Using L6 myoblasts stably expressing myc-tagged GLUT4, we found that overexpression of constitutively active but not wild-type Rac-1 sufficed to drive GLUT4 translocation to the membrane of comparable magnitude with that elicited by insulin. Stimulation of endogenous Rac-1 by Tiam1 overexpression elicited a similar hormone-independent gain in surface GLUT4. This effect on GLUT4 traffic could also be reproduced by acutely activating a Rac-1 construct via rapamycin-mediated heterodimerization. Strategies triggering Rac-1 “superactivation” (i.e. to levels above those attained by insulin alone) produced a modest gain in plasma membrane phosphatidylinositol 3,4,5-trisphosphate, moderate Akt activation, and substantial AS160 phosphorylation, which translated into GLUT4 translocation and negated the requirement for IRS-1. This unique signaling capacity exerted by Rac-1 superactivation bypassed the defects imposed by JNK- and ceramide-induced insulin resistance and allowed full and partial restoration of the GLUT4 translocation response, respectively. We propose that potent elevation of Rac-1 activation alone suffices to drive insulin-independent GLUT4 translocation in muscle cells, and such a strategy might be exploited to bypass signaling defects during insulin resistance.  相似文献   

7.
Insulin-regulated trafficking of the facilitative glucose transporter GLUT4 has been studied in many cell types. The translocation of GLUT4 from intracellular membranes to the cell surface is often described as a highly specialised form of membrane traffic restricted to certain cell types such as fat and muscle, which are the major storage depots for insulin-stimulated glucose uptake. Here, we discuss evidence that favours the argument that rather than being restricted to specialised cell types, the machinery through which insulin regulates GLUT4 traffic is present in all cell types. This is an important point as it provides confidence in the use of experimentally tractable model systems to interrogate the trafficking itinerary of GLUT4.  相似文献   

8.
Glucose entry into muscle cells is precisely regulated by insulin, through recruitment of GLUT4 (glucose transporter-4) to the membrane of muscle and fat cells. Work done over more than two decades has contributed to mapping the insulin signalling and GLUT4 vesicle trafficking events underpinning this response. In spite of this intensive scientific research, there are outstanding questions that continue to challenge us today. The present review summarizes the knowledge in the field, with emphasis on the latest breakthroughs in insulin signalling at the level of AS160 (Akt substrate of 160 kDa), TBC1D1 (tre-2/USP6, BUB2, cdc16 domain family member 1) and their target Rab proteins; in vesicle trafficking at the level of vesicle mobilization, tethering, docking and fusion with the membrane; and in the participation of the cytoskeleton to achieve optimal temporal and spatial location of insulin-derived signals and GLUT4 vesicles.  相似文献   

9.
One of the most important metabolic actions of insulin is catalysing glucose uptake into skeletal muscle and adipose tissue. This is accomplished via activation of the phosphatidylinositol-3-kinase/Akt signalling pathway and subsequent translocation of GLUT4 from intracellular storage vesicles to the plasma membrane. As such, this represents an ideal system for studying the convergence of signal transduction and protein trafficking. The GLUT4 translocation process is complex, but can be dissected into at least four discrete trafficking steps. This raises the question as to which of these is the major regulated step in insulin-stimulated GLUT4 translocation. Numerous molecules have been reported to regulate GLUT4 trafficking. However, with the exception of TBC1D4, the molecular details of these distal signalling arms of the insulin signalling network and how they modify distinct steps of GLUT4 trafficking have not been established. We discuss the need to adopt a more global approach to expand and deepen our understanding of the molecular processes underpinning this system. Strategies that facilitate the generation of detailed models of the entire insulin signalling network will enable us to identify the critical nodes that control GLUT4 traffic and decipher emergent properties of the system that are not currently apparent.  相似文献   

10.
Insulin maintains whole body blood glucose homeostasis, in part, by regulating the amount of the GLUT4 glucose transporter on the cell surface of fat and muscle cells. Insulin induces the redistribution of GLUT4 from intracellular compartments to the plasma membrane, by stimulating a large increase in exocytosis and a smaller inhibition of endocytosis. A considerable amount is known about the molecular events of insulin signaling and the complex itinerary of GLUT4 trafficking, but less is known about how insulin signaling is transmitted to GLUT4 trafficking. Here, we show that the AS160 RabGAP, a substrate of Akt, is required for insulin stimulation of GLUT4 exocytosis. A dominant-inhibitory mutant of AS160 blocks insulin stimulation of exocytosis at a step before the fusion of GLUT4-containing vesicles with the plasma membrane. This mutant, however, does not block insulin-induced inhibition of GLUT4 endocytosis. These data support a model in which insulin signaling to the exocytosis machinery (AS160 dependent) is distinct from its signaling to the internalization machinery (AS160 independent).  相似文献   

11.
Insulin causes the rapid translocation of the glucose transporter GLUT4 from intracellular sites to the plasma membrane in fat and muscle cells. There is considerable evidence that the signaling to this trafficking process is downstream of the insulin-activated protein kinase Akt. One Akt substrate that connects signaling to trafficking is a 160 kDa GTPase activating protein for Rabs. Another potential connecting substrate is the protein Synip, which associates with the SNARE syntaxin4. A recent study presents evidence that Akt phosphorylates Synip on serine 99, at least in vitro, and proposes that this phosphorylation enables GLUT4 translocation by causing the dissociation of Synip from syntaxin4. In the present study we show that marked overexpression of Synip mutant S99A, which lacks this phosphorylation site, has no effect on insulin-stimulated GLUT4 translocation in 3T3-L1 adipocytes. This finding is strong evidence that phosphorylation of Synip on serine 99 is not required for GLUT4 translocation.  相似文献   

12.
《Cellular signalling》2014,26(8):1636-1648
Insulin and muscle contraction each stimulate translocation of the glucose transporter GLUT4 to the plasma membrane in skeletal muscle, an important process regulating whole-body glucose homeostasis. RalA mediates insulin-stimulated GLUT4 translocation; however, it is unclear how this small GTPase is regulated in skeletal muscle in response to insulin. Here, we identified GARNL1/RalGAPα1, a major α subunit of the Ral-GTPase activating protein in skeletal muscle, as a protein whose phosphorylation and binding to the regulatory 14-3-3 proteins is stimulated by insulin and also by muscle contraction. The insulin-stimulated interaction with 14-3-3 involved PKB/Akt-mediated phosphorylation of Thr735 on GARNL1/RalGAPα1. Knockdown of GARNL1/RalGAPα1 increased, while overexpression of GARNL1/RalGAPα1Thr735Ala mutant protein decreased, the RalA activation and the RalA-dependent GLUT4 translocation in response to insulin in muscle cells. These findings show that GARNL1/RalGAPα1 is the missing link that connects the insulin-PKB/Akt signaling pathway with the activation of the RalA small GTPase in muscle cells. GARNL1/RalGAPα1 and its phosphorylation and/or binding to 14-3-3s are critical for GLUT4 trafficking through RalA in muscle cells.  相似文献   

13.
GLUT4在胰岛素调控葡萄糖转运中作用   总被引:1,自引:0,他引:1  
机体的血糖平衡调节主要依赖于胰岛素,其中一个重要的机制是胰岛素通过调控GLUT4的囊泡运转来调节脂肪细胞和肌细胞对葡萄糖的摄取。由胰岛素受体介导的一系列磷酸化过程能调节一些关键的GLUT4转运相关蛋白质的活性,这些蛋白质包括小GTP酶、拴系复合体和囊泡融合体。而这些蛋白质又反过来通过内膜系统调节GLUT4储存囊泡的生成、滞留,并调控这些囊泡的靶向出胞方式。了解这些过程有助于解释2型糖尿病中胰岛素耐受的机制,并可能为糖尿病提供新的靶向治疗方法。  相似文献   

14.
Insulin triggers glucose uptake into skeletal muscle and adipose tissues by gaining the available number of glucose transporter 4 (GLUT4) on the cell surface. GLUT4-loaded vesicles are targeted to plasma membrane from the intracellular reservoir through multiple trafficking and fusion processes that are mainly regulated by Akt. However, it is still largely unknown how GLUT4 expression in the cell surface is promoted by insulin. In the present study, we identified tomosyn at Ser-783 as a possible Akt-substrate motif and examined whether the phosphorylation at Ser-783 is involved in the regulation of GLUT4 expression. Both Akt1 and Akt2 phosphorylated the wild-type tomosyn, but not the mutant tomosyn in which Ser-783 was replaced with Ala. Phosphorylation of tomosyn at Ser-783 was also observed in the intact cells by insulin stimulation, which was blocked by PI3K inhibitor, LY294002. In vitro pull-down assay showed that phosphorylation of tomosyn at Ser-783 by Akt inhibited the interaction with syntaxin 4. Insulin stimulation increased GLUT4 in the cell surface of CHO-K1 cells to promote glucose uptake, however exogenous expression of the mutant tomosyn attenuated the increase by insulin. These results suggest that Ser-783 of tomosyn is a target of Akt and is implicated in the interaction with syntaxin 4.  相似文献   

15.
Insulin stimulates glucose transport in muscle and adipose cells by stimulating translocation of glucose transporter 4 (GLUT4) to the plasma membrane. In a recent Cell Metabolism paper, Stenkula et al. found that insulin controls the spatial distribution of GLUT4 on the surface of isolated adipose cells through regulation of their post-fusion dispersal. The presence of GLUT4 in plasma membrane-associated clusters is suggestive of a new paradigm in membrane protein recycling.  相似文献   

16.
GLUT4 is the main glucose transporter activated by insulin in skeletal muscle cells and adipocytes. GLUT4 storage vesicles (GSVs) traffic in endocytic and exocytic compartments. In the basal state, GLUT4 compartments are preferentially sequestered in perinuclear deposits wherein stimuli including insulin and non-insulin factors can increase GLUT4 vesicle formation, its exocytosis, and fusion to plasma membrane. In addition to well-established effectors of insulin signaling pathway, such as PKCzeta and Akt, the cytoskeletal network is implicated in GLUT4 translocation. This review will discuss the mechanisms and activation of GLUT4 trafficking and incorporating to PM from three aspects: known molecules of the insulin signaling pathway; Rho and Rab family proteins and cytoskeletal molecules.  相似文献   

17.
Exploring the whereabouts of GLUT4 in skeletal muscle (review)   总被引:4,自引:0,他引:4  
The glucose transporter GLUT4 is expressed in muscle, fat cells, brain and kidney. In contrast to other glucose transporters, GLUT4 in unstimulated cells is mostly intracellular. Stimuli such as insulin and muscle contractions then cause the translocation of GLUT4 to the cell surface. Questions related to GLUT4 storage compartments, trafficking to the surface membrane, and nature of the intracellular pools, have kept many groups busy for the past 20 years. Yet, one of the main questions in the field remains the universality of GLUT4 features. Can one extrapolate work done on fat cells to muscle or brain? Or vice-versa? Can one use cultures to predict GLUT4 behaviour in fully differentiated tissues? This review summarizes the authors' knowledge of GLUT4 biology in skeletal muscle, which is the predominant tissue for glucose homeostasis. The results are compared to those obtained with the fat cell system, and an attempt is made to assess the universality principle.  相似文献   

18.
Delivery of the glucose transporter type 4 (GLUT4) from an intracellular location to the cell surface in response to insulin represents a specialized form of membrane traffic, known to be impaired in the disease states of insulin resistance and type 2 diabetes. Like all membrane trafficking events, this translocation of GLUT4 requires members of the SNARE family of proteins. Here, we discuss two SNARE complexes that have been implicated in insulin-regulated GLUT4 traffic: one regulating the final delivery of GLUT4 to the cell surface in response to insulin and the other controlling GLUT4's intracellular trafficking.  相似文献   

19.
The GLUT4 facilitative glucose transporter protein is primarily expressed in muscle and adipose tissue and accounts for the majority of post-prandial glucose uptake. In the basal or non-stimulated state, GLUT4 is localized to intracellular membrane compartments sequestered away from circulating glucose. However, in response to agonist stimulation, there is a marked redistribution of the GLUT4 protein to the cell surface membrane providing a transport route for the uptake of glucose. This GLUT4 translocation can be divided into four general steps: (i) GLUT4 vesicle trafficking out of the storage pool, (ii) docking just below the cell surface, (iii) priming via the interactions of the SNARE proteins present on the vesicular and plasma membranes, and (iv) fusion of the GLUT4 vesicle with the plasma membrane. This review focuses on recent advances made in identification and characterization of the molecular events and protein interactions involved in these steps of insulin-stimulated GLUT4 translocation.  相似文献   

20.
Membrane water channel aquaporin-2 (AQP2) and glucose transporter 4 (GLUT4) exhibit a common feature in that they are stored in intracellular storage compartments and undergo translocation to the plasma membrane upon hormonal stimulation. We compared the intracellular localization and trafficking of AQP2 and GLUT4 in polarized Madin-Darby canine kidney cells stably transfected with human AQP2 (MDCK-hAQP2) by immunofluorescence microscopy. When expressed in MDCK-hAQP2 cells, GLUT4 and GLUT4—EGFP were predominantly localized in the perinuclear region close to and within the Golgi apparatus, similar to endogenous GLUT4 in adipocytes and myocytes. In addition, GLUT4 was occasionally seen in EEA1-positive early endosomes. AQP2, on the other hand, was sequestered in subapical Rab11-positive vesicles. In the basal state, the intracellular storage site of GLUT4 was distinct from that of AQP2. Forskolin induced translocation of AQP2 from the subapical storage vesicles to the apical plasma membrane, which did not affect GLUT4 localization. When forskolin was washed out, AQP2 was first retrieved to early endosomes from the apical plasma membrane, where it was partly colocalized with GLUT4. AQP2 was then transferred to Rab11-positive storage vesicles. These results show that AQP2 and GLUT4 share a common compartment after retrieval from the plasma membrane, but their storage compartments are distinct from each other in polarized MDCK-hAQP2 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号