首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
We modulated the level of a hormone gene expression in poplars using either 35S promoter (p35S) of cauliflower mosaic virus (CaMV) or aux promoter (pAUX) of A. rhizogenes. The transgenic poplars (Populus alba × P. tremula var. glandulosa), in which the bacterial trans-zeatin secretion (tzs) gene was attached either to the 35S promoter or to the aux promoter, were compared for their performance in tissue culture as well as in nursery. Northern blot analysis of total RNA probed with tzs coding region showed that the total tzs mRNA expression by p35S was approximately 200–300-fold higher than that driven by pAUX. In contrast, the cellular zeatin content of p35S-tzs transgenic poplars was merely 13-fold of those found in pAUX-tzs plants. Due to different levels of cellular zeatin levels, the two types of transgenic poplars showed different morphogenetic as well as growth responses. The p35S-tzs transgenic plants showed morphological characteristics typical of those treated with cytokinin in culture. These include multiple axillary shoot formation, thick stems, narrow leaves and absence of roots. In contrast, the pAUX-tzs plants had slightly higher cellular cytokinin levels than did control plants and showed a lower degree of cytokinin-related phenotypes, including a few axillary shoots in root-inducing media. Since p35S-tzs did not develop roots, only pAUX-tzs transgenic poplars could be transplanted to the nursery where they resumed a close-to-normal growth. Nevertheless, pAUX-tzs plants transferred to the nursery developed cytokinin-related phenotypes, including greater number of shoots, smaller leaves and slightly retarded growth in height, but with a high total biomass.  相似文献   

2.
O-Glycosides of the cytokinin zeatin are found in many plant tissues. They provide protection against degradative enzymes and may serve as cytokinin reserves. Two zeatin glycosyltransferase (GT) genes, an O-glucosyltransferase (ZOG1) from Phaseolus lunatus and an O-xylosyltransferase (ZOX1) from P. vulgaris, were previously isolated. Five novel bean and soybean GT genes with high sequence identity to ZOG1 were isolated, sequenced, and expressed, along with two such genes from rice and one from tomato. None of the recombinant proteins showed GT activity with zeatin. By comparing the ZOG1 sequence to the 3D model of Medicago truncatula UGT71G1, four regions possibly important to zeatin binding were identified, and mutation studies identified one amino acid within each region (R59, D87, L127, and F149) whose mutation strongly impaired enzyme activity. The new bean and soybean GTs differ from ZOG1 in one (PlGT2 and GmGT2) to three (GmGT1) of these residues. Mutation of one such GT (PlGT2) to render it identical to ZOG1 at the four implicated residues conferred low enzyme activity, providing further support for the importance of these amino acids in recognizing zeatin as substrate. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
To study the effects of cytokinin O-glucosylation in monocots, maize (Zea mays L.) transformants harbouring the ZOG1 gene (encoding a zeatin O-glucosyltransferase from Phaseolus lunatus L.) under the control of the constitutive ubiquitin (Ubi) promoter were generated. The roots and leaves of the transformants had greatly increased levels of zeatin-O-glucoside. The vegetative characteristics of hemizygous and homozygous Ubi:ZOG1 plants resembled those of cytokinin-deficient plants, including shorter stature, thinner stems, narrower leaves, smaller meristems, and increased root mass and branching. Transformant leaves had a higher chlorophyll content and increased levels of active cytokinins compared with those of non-transformed sibs. The Ubi:ZOG1 plants exhibited delayed senescence when grown in the spring/summer. While hemizygous transformants had reduced tassels with fewer spikelets and normal viable pollen, homozygotes had very small tassels and feminized tassel florets, resembling tasselseed phenotypes. Such modifications of the reproductive phase were unexpected and demonstrate a link between cytokinins and sex-specific floral development in monocots.  相似文献   

4.
The cytokinin activity of the root exudate, the leaves, and the apices of vegetative and flowering white lupin plants (Lupinus albus L.) was investigated. The level of cytokinin activity in the root exudate decreased over the 11-week experimental period. Four peaks of cytokinin activity were recorded in the root exudate of 8-week-old plants after fractionation on Sephadex LH-20. Two of these peaks co-eluted with zeatin and zeatin riboside. It is suggested that the remaining peaks represent nucleotide and glucoside cytokinins. The cytokinin levels in extracts of the mature leaves fluctuated slightly over the experimental period. Three peaks of activity co-eluting with zeatin, zeatin riboside and the glucoside cytokinins were recorded in extracts of mature leaves of 8-week-old plants. In the apices cytokinin activity could only be detected in the inflorescences of flowering plants. It would appear that cytokinins produced by the roots accumulate in the fully expanded mature leaves, but are utilized in the rapidly growing apical region and in young expanding leaves.  相似文献   

5.
6.
A cytokinin biosynthetic gene encoding isopentenyl transferase (ipt) was cloned with its native promoter from Agrobacterium tumefaciens and introduced into tobacco plants. Indolebutyric acid was applied in rooting medium and morphologically normal transgenic tobacco plants were regenerated. Genetic analysis of self-fertilized progeny showed that a single copy of intact ipt gene had been integrated, and T2 progeny had become homozygous for the transgene. Stable inheritance of the intact ipt gene in T2 progeny was verified by Southern hybridization. Northern blot hybridization revealed that the expression of this ipt gene was confined in leaves and stems but undetectable in roots of the transgenic plants. Endogenous cytokinin levels in the leaves and stems of the transgenic tobaccos were two to threefold higher than that of control, but in roots, both the transgenic and control tobaccos had similar cytokinin levels. The elevated cytokinin levels in the transgenic tobacco leaves resulted in delayed leaf senescence in terms of chlorophyll content without affecting the net photosynthetic rate. The root growth and morphology of the plant were not affected in the transgenic tobacco.  相似文献   

7.
A reduced concentration of cytokinins may cause the abnormal growth and development found in F1 hybrids between Andean and Mesoamerican races of Phaseolus vulgaris L. In this study, concentrations of the transportable cytokinin zeatin riboside (ZR) were measured by ELISA for ZR (cross reactivities dihydrozeatin, 14%, zeatin 7.6%) in roots, stems, and leaves of a Phaseolus Mesoamerican landrace (P. vulgaris L. cv. Redkloud), an Andean landrace (P. vulgaris L. cv. Batt), and their F1 hybrids. Concentrations of ZR in roots and leaves of F1 hybrids were significantly less than that found in roots and leaves of parental cultivars. Approximately 90% of the ZR found in F1 hybrids was found sequestered in the stems, whereas cytokinins of the parental cultivars were distributed throughout the plant (roots: Batt 37%, Redkloud, 44%; stems: Batt 35%, Redkloud 42%; leaves: Batt 28%, Redkloud 14%). These results suggest that abnormal growth and development of F1 hybrids may involve interruption of the regulation of cytokinin allocation, thereby disrupting the root-shoot feedback loop between root-sourced cytokinins and putative shoot-produced factors. Received October 15, 1998; accepted May 12, 1999  相似文献   

8.
The young and old leaves of Salix babylonica contain at least four cell division-inducing compounds which coeluted with zeatin, zeatin riboside and their glucosylated derivatives. During the course of the growing season quantitative changes in the cytokinin content of the leaves were observed. The cytokinin glucosides increased as the leaves aged. The compounds which co-chromatographed with zeatin and zeatin riboside initially increased until early autumn and then decreased as the leaves senesced. It appears as though the cytokinins transported from the roots are metabolized in the leaves and are converted to their glucosides. Although it has been reported in the literature that Salix root exudate contains very small amounts of cytokinin in late summer and autumn, these compounds increase in the leaves for most of the growing season, suggesting that the leaves may not only obtain cytokinins from the roots but may well be an active site of cytokinin synthesis. It is, however, possible that cytokinins are also transported to the leaves via the phloem, thus accounting for their accumulation in these organs.  相似文献   

9.
Transgenic plants of tobacco (Nicotiana tabacum L) and European plum (Prunus domestica L) were produced by transforming with the apple class 1 KNOX genes (MdKN1 and MdKN2) or corn KNOX1 gene. Transgenic tobacco plants were regenerated in vitro from transformed leaf discs cultured in a medium lacking cytokinin. Ectopic expression of KNOX genes retarded shoot growth by suppressing elongation of internodes in transgenic tobacco plants. Expression of each of the three KNOX1 genes induced malformation and extensive lobbing in tobacco leaves. In situ regeneration of adventitious shoots was observed from leaves and roots of transgenic tobacco plants expressing each of the three KNOX genes. In vitro culture of leaf explants and internode sections excised from in vitro grown MdKN1 expressing tobacco shoots regenerated adventitious shoots on MS (Murashige and Skoog 1962) basal medium in the absence of exogenous cytokinin. Transgenic plum plants that expressed the MdKN2 or corn KNOX1 gene grew normally but MdKN1 caused a significant reduction in plant height, leaf shape and size and produced malformed curly leaves. A high frequency of adventitious shoot regeneration (96%) was observed in cultures of leaf explants excised from corn KNOX1-expressing transgenic plum shoots. In contrast to KNOX1-expressing tobacco, leaf and internode explants of corn KNOX1-expressing plum required synthetic cytokinin (thidiazuron) in the culture medium to induce adventitious shoot regeneration. The induction of high-frequency regeneration of adventitious shoots in vitro from leaves and stem internodal sections of plum through the ectopic expression of a KNOX1 gene is the first such report for a woody perennial fruit trees.  相似文献   

10.
Summary Kanamycin-resistant plants of belladonna (Atropa belladonna) were obtained after Agrobacterium mediated transformation. When a rolC gene, which is one of the loci located on Ri plasmid of Agrobacterium rhizogenes, was co-introduced with a kanamycin resistant (NPT II) gene under control of a cauliflower mosaic virus 35S promoter, the rolC gene was expressed strongly in leaves, flowers, stems and roots. The transformed plants exhibited dramatic promotion of flowering, reduced apical dominance, pale and lanceolated leaves and smaller flowers. On the other hand, when native rolC gene was co-introduced with NPT II, the transgenic plants obtained did not exhibit the altered phenotypes observed in 35S-rolC transformants, and the expression level of the rolC gene was much lower than in 35S-rolC transformants. These results suggest that the morphological changes in transgenic Atropa belladonna were related to the degree of expression of the rolC gene.Abbreviations native rolC rolC gene under control of its own promoter - 35S-rolC rolC gene under control of a cauliflower mosaic viras 35S promoter  相似文献   

11.
12.
The responses of antioxidant enzymes (AOE) ascorbate peroxidase (APX), glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT) in soluble protein extracts from leaves and roots of tobacco (Nicotiana tabacum L. cv. Samsun NN) plants to the drought stress, salinity and enhanced zinc concentration were investigated. The studied tobacco included wild-type (WT) and transgenic plants (AtCKX2) harbouring the cytokinin oxidase/dehydrogenase gene under control of 35S promoter from Arabidopsis thaliana (AtCKX2). The transgenic plants exhibited highly enhanced CKX activity and decreased contents of cytokinins and abscisic acid in both leaves and roots, altered phenotype, retarded growth, and postponed senescence onset. Under control conditions, the AtCKX2 plants exhibited noticeably higher activity of GR in leaves and APX and SOD in roots. CAT activity in leaves always decreased upon stresses in WT while increased in AtCKX2 plants. On the contrary, the SOD activity was enhanced in WT but declined in AtCKX2 leaves. In roots, the APX activity prevailingly increased in WT while mainly decreased in AtCKX2 in response to the stresses. Both WT and AtCKX2 leaves as well as roots exhibited elevated abscisic acid content and increased CKX activity under all stresses while endogenous CKs and IAA contents were not much affected by stress treatments in either WT or transgenic plants.  相似文献   

13.
To investigate the role of mitochondrial farnesyl diphosphate synthase (FPS) in plant isoprenoid biosynthesis we characterized transgenic Arabidopsis thaliana plants overexpressing FPS1L isoform. This overexpressed protein was properly targeted to mitochondria yielding a mature and active form of the enzyme of 40 kDa. Leaves from transgenic plants grown under continuous light exhibited symptoms of chlorosis and cell death correlating to H2O2 accumulation, and leaves detached from the same plants displayed accelerated senescence. Overexpression of FPS in mitochondria also led to altered leaf cytokinin profile, with a reduction in the contents of physiologically active trans-zeatin- and isopentenyladenine-type cytokinins and their corresponding riboside monophosphates as well as enhanced levels of cis-zeatin 7-glucoside and storage cytokinin O-glucosides. Overexpression of 3-hydroxy-3-methylglutaryl coenzyme A reductase did not prevent chlorosis in plants overexpressing FPS1L, but did rescue accelerated senescence of detached leaves and restored wild-type levels of cytokinins. We propose that the overexpression of FPS1L leads to an enhanced uptake and metabolism of mevalonic acid-derived isopentenyl diphosphate and/or dimethylallyl diphosphate by mitochondria, thereby altering cytokinin homeostasis and causing a mitochondrial dysfunction that renders plants more sensitive to the oxidative stress induced by continuous light.  相似文献   

14.
Tobacco shoots exposed to elevated endogenous or exogenous cytokinin levels are unable to develop roots and lack apical dominance. We have isolated cDNA copies of five mRNA species that accumulate to elevated levels in such cytokinin-stressed shoots via differential screening of a cDNA library of transgenic shoots which contain an active T-DNA cytokinin gene (T-cyt gene) from Agrobacterium tumefaciens. Four of the cDNA clones were found to correspond to plant defence-related mRNAs, encoding extensin, chitinase, PR-1 and a PR-1-like protein, respectively. In normal tobacco plants PR-1 mRNA is relatively rare in all organs. The other four mRNAs occur at relatively low levels in shoots, especially in leaves, but are very prevalent in roots. Extensin mRNA, for example, is not detectable in leaves, while it is an abundant mRNA in roots and stems. In normal shoots cultured on cytokinin-containing medium all five mRNAs accumulate to elevated levels, similar to those found in transgenic T-cyt shoots. We conclude that the imposed cytokinin stress causes changes in the tissue-specific control of the levels of several defence-related mRNA species in tobacco.  相似文献   

15.
For studying the effects of endogenous ferritin gene expressions (NtFer1, GenBank accession number ay083924; and NtFer2, GenBank accession number ay141105) on the iron homeostasis in transgenic tobacco (Nicotiana tabacum L.) plants expressing soybean (Glycine max Merr) ferritin gene (SoyFer1, GenBank accession number m64337), the transgenic tobacco has been produced by placing soybean ferritin cDNA cassette under the control of the CaMV 35S promoter. The exogenous gene expression was examined by both Northern- and Western-blot analyses. Comparison of endogenous ferritin gene expressions between nontransformant and transgenic tobacco plants showed that the expression of NtFer1 was increased in the leaves of transgenic tobacco plants, whereas the NtFer2 expression was unchanged. The iron concentration in the leaves of transgenic tobacco plants was about 1.5-folds higher than that in nontransformant. Enhanced growth of transgenic tobacco was observed at the early development stages, resulting in plant height and fresh weights significantly greater than those in the nontransformant. These results demonstrated that exogenous ferritin expression induced increased expression of at least one of the endogenous ferritin genes in transgenic tobacco plants by enhancing the ferric chelate reductase activity and iron transport ability of the root, and improved the rate of photosynthesis.  相似文献   

16.
The responses of tobacco plants over-expressing trans-zeatin O-glucosyltransferase gene under constitutive or senescence-inducible promoter (35S:ZOG1 and SAG12:ZOG1) and of wild type (WT) plants to water stress and subsequent rehydration were compared. In plants sufficiently supplied with water, both transgenics have higher net photosynthetic rate (PN) in upper and middle leaves and higher stomatal conductance (gs) in middle leaves than WT. Water use efficiency (WUE = PN/E) was higher in both transgenics than in WT. During prolonged water stress, both PN and E declined to a similar extent in both transgenics and WT plants. However, 7 d after rehydration PN in SAG:ZOG (upper and middle leaves) and 35S:ZOG (upper leaves) was higher than that in WT plants. Increased content of endogenous CKs in 35S:ZOG plants did not prevent their response to ABA application and the results obtained did not support concept of CK antagonism of ABA-induced stomatal closure. The chlorophyll (Chl) a+b content was mostly higher in both transgenics than in WT. During water stress and subsequent rehydration it remained unchanged in upper leaves, decreased slightly in middle leaves only of WT, while rapidly in lower leaves. Total degradation of Chl, carotenoids and xanthophyll cycle pigments (XCP) was found under severe water stress in lower leaves. Carotenoid and XCP contents in middle and upper leaves mostly increased during development of water stress and decreased after rehydration. While β-carotene content was mostly higher in WT, neoxanthin content was higher in transgenics especially in 35S:ZOG under severe stress and after rehydration. The higher content of XCP and degree of their deepoxidation were usually found in upper and middle leaves than in lower leaves with exception of SAG:ZOG plants during mild water stress.  相似文献   

17.
The content of cytokinins and pigments together with the morphological parameters and fresh weight were estimated in durum wheat (Triticum durum Desf.) plants 2–4 days after introduction into their rhizosphere of an aliquot of Bacillus suspension using the strains that differed in their ability of producing cytokinins. The experiments were performed under laboratory conditions at the optimum light intensity and mineral nutrition. Inoculation with microorganisms incapable to synthesize cytokinins did not affect the total cytokinin content in the wheat plants, whereas the presence of cytokinin-producing microorganisms in the rhizosphere was accompanied by a considerable increase in the total cytokinin content and the accumulation of individual hormones. On the second day after inoculation, a dramatic increase in zeatin riboside and zeatin O-glucoside contents was observed in the roots, and at the next day the accumulation of zeatin riboside and zeatin was registered in the shoots of treated plants. The increase in cytokinin content promoted plant growth (the increased leaf length and width and a faster accumulation of plant fresh and dry weight). Plant treatment with a substance obtained from microorganisms incapable to synthesize hormones resulted in the insignificant growth stimulation. Plant treatment with a substance obtained from cytokinin-producing microorganisms increased leaf chlorophyll content; in this case, the level of chlorophylls was comparable to that observed in the plants treated with a synthetic cytokinin benzyladenine. The role of cytokinins of microbial origin as a factor providing for growth-stimulating effect of bacteria on plants is discussed.  相似文献   

18.
The activity of the phytohormone cytokinin depends on a complex interplay of factors such as its metabolism, transport, stability, and cellular/tissue localization. O-glucosides of zeatin-type cytokinins are postulated to be storage and/or transport forms, and are readily deglucosylated. Transgenic tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) plants were constructed over-expressing Zm-p60.1, a maize beta-glucosidase capable of releasing active cytokinins from O- and N3-glucosides, to analyse its potential to perturb zeatin metabolism in planta. Zm-p60.1 in chloroplasts isolated from transgenic leaves has an apparent K(m) more than 10-fold lower than the purified enzyme in vitro. Adult transgenic plants grown in the absence of exogenous zeatin were morphologically indistinguishable from the wild type although differences in phytohormone levels were observed. When grown on medium containing zeatin, inhibition of root elongation was apparent in all seedlings 14 d after sowing (DAS). Between 14 and 21 DAS, the transgenic seedlings accumulated fresh weight leading later (28-32 DAS) to ectopic growths at the base of the hypocotyl. The development of ectopic structures correlated with the presence of the enzyme as demonstrated by histochemical staining. Cytokinin quantification showed that transgenic seedlings grown on medium containing zeatin accumulate active metabolites like zeatin riboside and zeatin riboside phosphate and this might lead to the observed changes. The presence of the enzyme around the base of the hypocotyl and later, in the ectopic structures themselves, suggests that the development of these structures is due to the perturbance in zeatin metabolism caused by the ectopic presence of Zm-p60.1.  相似文献   

19.
We studied the effects of cytokinin benzyladenine (BA) and ethylene on the senescence in the dark of detached leaves of Arabidopsis thaliana(L.) Heynh wild-type plants and theeti-5mutant, which was described in the literature as the ethylene-insensitive one. Leaf senescence was assessed from a decrease in the chlorophyll content. The content of endogenous cytokinins (zeatin and zeatin riboside) was estimated by the ELISA technique. We demonstrated that the content of endogenous cytokinins in the leaves of the three-week-old eti-5mutants exceeded that of the wild-type leaves by an order of magnitude; in the five-week-old mutants, by several times; and in the seven-week-old plants, the difference became insignificant. Due to the excess of endogenous cytokinins in the three–five-week-old mutant leaves, their senescence in the dark was retarded and exogenous cytokinin affected these leaves to a lesser extent. The seven-week-old mutant and the wild-type leaves, which contained practically similar amounts of endogenous cytokinins, did not differ in these indices. Thus, the level of endogenous cytokinins determined the rate of senescence and the leaf response to cytokinin treatment. Ethylene accelerated the senescence of detached wild-type leaves. Ethylene action increased with increasing its concentration from 0.1 to 100 l/l. BA (10–6M) suppressed ethylene action. Similar data were obtained for the eti-5mutant leaves. We therefore suggest that the mutant leaves comprised the pathways of the ethylene signal reception and transduction, which provided for the acceleration of their senescence.  相似文献   

20.
The substrate specificity of two recombinant enzymes, zeatin O-glucosyltransferase 1 (ZOG1) and zeatin O-xylosyltransferase 1 (ZOX1), was further characterised. ZOG1 utilises zeatin (Z), UDPG, and UDPX as substrates to form O-glucosylzeatin (OGZ) and O-xylosylzeatin (OXZ) but has higher affinity to UDPG than UDPX. ZOX1 uses only UDPX, converting Z to OXZ. Dihydrozeatin (DHZ) is also a substrate for both enzymes, but only in combination with UDPX, giving rise to O-xylosyldihydrozeatin (OXDHZ). O-Glucosyldihydrozeatin (OGDHZ) is not formed by ZOG1, possibly due to steric hindrance. Regions relevant to UDPG/UDPX affinity and competition were identified using hybrid enzymes derived from domain exchanges of parental genes. The N-terminal half of the enzyme is important in this respect. The BstEII-BstAPI segment of ZOG1 correlates with inhibition of O-xylosyltransferase activity by UDPG while the BstAPI-Eco0109 segment of ZOG1 is required for utilisation of UDPG as the sugar donor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号