首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Methylation in vitro of DNA by three methyl-14C-labelled organophosphorus insecticides has been studied. The ability of methylbromphenvinphos, methylparathion and malathion to methylate N-7 of guanine in DNA can be expressed as 100:40:15. Among the methylation products, no O6-methylguanine, a known mutagen, was found. Both in the reaction with dsDNA and with ssDNA 7-methyl-guanine was the main methylation product. However, all methyl derivatives of adenine (3-methyladenine, 1-methyladenine and 7-methyladenine) constituted about 40% and 50% of all methylation products in the case of dsDNA and ssDNA, respectively. The only methyl derivative of pyrimidine we have identified was 3-methylcytosine. In the case of dsDNA 3-methylcytosine appeared in small amounts but in the alkylated ssDNA 3-methylcytosine C constituted about 20% of all alkylation products.  相似文献   

2.
A high-performance liquid chromatographic method to separate five major bases (cytosine, thymine, guanine, adenine, and uracil) and three minor methylated bases (5-methylcytosine, N6-methyladenine, and 7-methylguanine) has been developed using a volatile mobile phase under isocratic conditions. It is extended to quantitate 5-methylcytosine in trace amounts (1 in 20,000 cytosine residues). The suitability of the method has been verified by estimating 5-methylcytosine in DNAs of phi X174 and pBR322. The method has been applied to quantitate the extent of cytosine methylation in DNA of larval silk glands of Bombyx mori. Our results confirm that the pupal DNA of Drosophila melanogaster does not contain detectable amounts of 5-methylcytosine.  相似文献   

3.
ori-beta is a well-characterized origin of bidirectional replication (OBR) located approximately 17 kb downstream of the dihydrofolate reductase gene in hamster cell chromosomes. The approximately 2-kb region of ori-beta that exhibits greatest replication initiation activity also contains 12 potential methylation sites in the form of CpG dinucleotides. To ascertain whether DNA methylation might play a role at mammalian replication origins, the methylation status of these sites was examined with bisulfite to chemically distinguish cytosine (C) from 5-methylcytosine (mC). All of the CpGs were methylated, and nine of them were located within 356 bp flanking the minimal OBR, creating a high-density cluster of mCpGs that was approximately 10 times greater than average for human DNA. However, the previously reported densely methylated island in which all cytosines were methylated regardless of their dinucleotide composition was not detected and appeared to be an experimental artifact. A second OBR, located at the 5' end of the RPS14 gene, exhibited a strikingly similar methylation pattern, and the organization of CpG dinucleotides at other mammalian origins revealed the potential for high-density CpG methylation. Moreover, analysis of bromodeoxyuridine-labeled nascent DNA confirmed that active replication origins were methylated. These results suggest that a high-density cluster of mCpG dinucleotides may play a role in either the establishment or the regulation of mammalian replication origins.  相似文献   

4.
The alternating copolymer poly(dC-dG) has been methylated with either dimethyl sulphate or N-methyl-N-nitrosourea and the levels of the various methylation products determined. In addition to the 3-methylcytosine, 3-methylguanine and 7-methylguanine (produced by both agents) reaction with N-methyl-N-nitrosourea also yielded easily detectable amounts of O(6)-methylguanine and phosphotriesters. These methylated polymers were then used as templates in an in vitro assay with Escherichia coli DNA polymerase I measuring the incorporation of complementary (dCMP and dGMP) and noncomplementary (dAMP and dTMP) nucleotides. When the dimethyl sulphate-methylated polymer was used as template there was virtually no detectable incorporation of non-complementary nucleotides indicating that no miscoding could be attributed to the presence of 3-methylcytosine, 3-methylguanine or 7-methylguanine. However, when the N-methyl-N-nitrosourea-methylated polymer was used as template there was a specific incorporation of dTMP but not of dAMP. The amount of dTMP incorporated was always less than the level of O(6)-methylguanine in the template and was found to vary with the relative concentrations of the deoxynucleoside 5'-triphosphates in the assay. As the amount of dCTP present in the assay was decreased the wrong incorporation of dTMP increased and approached the level that would have been expected for a one-to-one miscoding by O(6)-methylguanine as the concentration of dCTP approached zero. The results indicate that O(6)-methylguanine is capable of miscoding with a DNA polymerase but the miscoding is competitive with the normal incorporation of dCMP: when the 5'-triphosphate precursors are present in equal amounts approximately one O(6)-methylguanine in three miscodes leading to the incorporation of dTMP.  相似文献   

5.
Plant DNA is distinguished from the DNA of all other organisms by its high content of 5-methylcytosine (5mC). 5mC levels may amount to 30% of total cytosines, distributed between the sequences CG and CXG. The results presented here show that the methylation status of CXG sequences could be influenced by culturing tobacco tissues on subtoxic concentrations of ethionine. The hypomethylating effect of ethionine, evaluated as the capability of MspI or HpaII to cleave the DNA, proved to be rather specific for CCG and differed from that or 5-azacytidine which did not discriminate between CG and CXG sequences.  相似文献   

6.
Abstract— Alkylation of rat brain nucleic acids in vivo was measured after a single intravenous injection (1 mmol/kg body wt.) of N -[14C]methyl- N -nitrosourea and [14C]methyl methanesulphonate. The main product with both compounds was 7-methylguanine, The extents of methylation on this position in DNA and RNA were similar with methylnitrosourea but methyl methanesulphonate produced twice as much 7-methylguanine in DNA as in cytoplasmic RNA. Brain DNA from rats treated with labelled methylnitrosourea contained radioactive O 6-methylguanine, accounting for about 12 per cent of the radioactivity present as 7-methylguanine and cytoplasmic RNA contained about half this amount of O 6-methylguanine. Neither DNA nor cytoplasmic RNA from methyl methanesulphonatetreated rats contained any detectable O 6-methylguanine. Treatment with both compounds resulted in varying small amounts of methylation of other nucleic acid bases including 1-methyladenine, 3-methyladenine and 3-methylcytosine. The possible relevance of alkylation of brain nucleic acids to the induction of brain tumours is discussed.  相似文献   

7.
8.
The only natural postsynthetic modification known to occur in mammalian DNA is the methylation in the 5 position of deoxycytidines. Of the four 5'-CpN-3' dinucleotides (ie. CpG, CpC, CpA, and CpT), the dinucleotide which contains the highest proportion of deoxycytidines methylated is CpG, with 40 to 80% methylation in different mammalian genomes. It has also been shown that CpA, CpT, and CpC are methylated as well but to a much lower extent. Here we report the result of a full nearest neighbour analysis (together with quantitation of methylation levels in the 4 CpN dinucleotides) for DNA from human spleen. Using the values we have calculated the overall frequencies for all the methylated dinucleotides in the human genome. Because of the relative underrepresentation (by 7 to 10 fold) of the CpG dinucleotide, only 45.5% of total mC was present in mCpG, with 54.5% in mCpA, mCpT plus mCpC. These calculations have implications for studies into the function and significance of DNA methylation in mammalian cells.  相似文献   

9.
DNA methylation and the frequency of CpG in animal DNA.   总被引:120,自引:35,他引:85       下载免费PDF全文
An analysis of nearest neighbour dinucleotide frequencies and the level of DNA methylation in animals strongly supports the suggestion that 5-methylcytosine (5mC) tends to mutate abnormally frequently to T. This tendency is the likely cause of the CpG deficiency in heavily methylated genomes.  相似文献   

10.
Dickey JS  Van Etten JL  Osheroff N 《Biochemistry》2005,44(46):15378-15386
Topoisomerase II from Paramecium bursaria chlorella virus-1 (PBCV-1) and chlorella virus Marburg-1 (CVM-1) displays an extraordinarily high in vitro DNA cleavage activity that is 30-50 times higher than that of human topoisomerase IIalpha. This remarkable scission activity may reflect a unique role played by the type II enzyme during the viral life cycle that extends beyond the normal control of DNA topology. Alternatively, but not mutually exclusively, it may reflect an adaptation to some aspect of the viral environment that differs from the in vitro conditions. To this point, the genomes of many chlorella viruses contain high levels of N6-methyladenine (6mA) and 5-methylcytosine (5mC), but the DNA employed in vitro is unmodified. Therefore, to determine whether methylation impacts the ability of chlorella virus topoisomerase II to cleave DNA, the effects of 6mA and 5mC on the PBCV-1 and CVM-1 enzymes were examined. Results indicate that 6mA strongly inhibits DNA scission mediated by both enzymes, while 5mC has relatively little effect. At levels of 6mA and 5mC methylation comparable to those found in the CVM-1 genome (10% 6mA and 42% 5mC), the level of DNA cleavage decreased approximately 4-fold. As determined using a novel rapid quench pre-equilibrium DNA cleavage system in conjunction with oligonucleotide binding and ligation assays, this decrease appears to be caused primarily by a slower forward rate of DNA scission. These findings suggest that the high DNA cleavage activity of chlorella virus topoisomerase II on unmodified nucleic acid substrates may reflect, at least in part, an adaptation to act on methylated genomic DNA.  相似文献   

11.
The tRNA methyltransferases from Paramecium aurelia were investigated. The effects of varying the Mg2+ and NH4+ concentrations, pH, and temperature on the methylation of Escherichia coli B tRNA using extracts from P. aurelia were determined. Optimum tRNA methyltransferase activity was observed at pH 7.8 and 37 degrees C. The Mg2+ optimum occurred at 0.66 mM in the absence of NH4+ while the NH4+ optimum occurred at 100 mM in the absence of Mg2+. Analysis of the bases methylated in (E. coli B) tRNA by extracts of P. aurelia showed the presence of 1-methyladenine, 1-methylguanine, N2-methylguanine, N2,N2-dimethylguanine and methylated pyrimidine nucleotides. In comparison, an analysis of the in vivo methylation of tRNA from P. aurelia showed the presence of 1-methyladenine, 6-methyladenine, 6,6-dimethyladenine, 1-methylguanine, N2-methylguanine, N2,N2-dimethylguanine, 7-methylguanine, and methylated pyrimidine nucleotides. The pattern of methylation of tRNA in P. aurelia is similar to that observed in other eukaryotes.  相似文献   

12.
Restriction-modification (R-M) systems pose a major barrier to DNA transformation and genetic engineering of bacterial species. Systematic identification of DNA methylation in R-M systems, including N6-methyladenine (6mA), 5-methylcytosine (5mC) and N4-methylcytosine (4mC), will enable strategies to make these species genetically tractable. Although single-molecule, real time (SMRT) sequencing technology is capable of detecting 4mC directly for any bacterial species regardless of whether an assembled genome exists or not, it is not as scalable to profiling hundreds to thousands of samples compared with the commonly used next-generation sequencing technologies. Here, we present 4mC-Tet-assisted bisulfite-sequencing (4mC-TAB-seq), a next-generation sequencing method that rapidly and cost efficiently reveals the genome-wide locations of 4mC for bacterial species with an available assembled reference genome. In 4mC-TAB-seq, both cytosines and 5mCs are read out as thymines, whereas only 4mCs are read out as cytosines, revealing their specific positions throughout the genome. We applied 4mC-TAB-seq to study the methylation of a member of the hyperthermophilc genus, Caldicellulosiruptor, in which 4mC-related restriction is a major barrier to DNA transformation from other species. In combination with MethylC-seq, both 4mC- and 5mC-containing motifs are identified which can assist in rapid and efficient genetic engineering of these bacteria in the future.  相似文献   

13.
It is controversial whether DNA methylation plays a functional role in Drosophila. We have studied testis DNA of Drosophila melanogaster Meigen, 1830 with antisera against 5-methylcytosine (5mC) and found no evidence for the presence of significant amounts of 5mC. Reactions occur only with 1 of 3 5mC antisera, but they are restricted to nuclear regions without detectable amounts of DNA. The antisera apparently cross-react with other nuclear components. If the murine de novo DNA methyltransferases, DNMT3A and DNMT3B, are expressed under the control of the spermatocyte-specific beta2-tubulin promoter in testes, DNA methylation is not increased and no effects on the fertility of the fly are seen. DNA methylation has, therefore, no functional relevance in the male germ line of Drosophila.  相似文献   

14.
DNA methylation in plants   总被引:4,自引:0,他引:4  
B F Vanyushin  M D Kirnos 《Gene》1988,74(1):117-121
  相似文献   

15.
A monoclonal antibody (IgM) against 5-methylcytosine (mC) was isolated and characterized. It showed a high specificity for mC with a cross-reactivity of less than 1% with cytosine and 0.1% with thymidine. An improved immunohybridization method, originally developed with polyclonal antibodies (Sano et al. (1980) Proc. Natl. Acad. Sci. USA 77, 3581), was applied to detect mC in immobilized DNA using the new monoclonal preparation. Human genomic DNA was cleaved with the restriction enzyme EcoRI and successively fractionated by malachite-green affinity chromatography and agarose gel electrophoresis. The fractionated DNA was transferred to nitrocellulose paper and treated with the anti-mC monoclonal antibody. Heavy methylation was observed in EcoRI-ladders of repetitive sequences of 1360, 1750, 2200 and 3400 bp, while 340, 660 and 2700 bp fragments were less methylated. The results show that methylation occurs in limited subsets of satellite II and III repetitive DNAs that contain high amounts of methylatable CpG dinucleotides, or CpG clusters.  相似文献   

16.
We have reported that production and characterization of antibodies highly specific to 5-methyl-cytosine (5mC) and the development of a sensitive immunochemical method for the detection of 5mC in DNA [FEBS Lett. (1982) 150, 469]. Extension of this method to two other modified bases, 6-methyladenine (6mA) and 7-methylguanine (7mG), is reported here. By use of this immunochemical approach, we are able to detect 5mC, 6mA and 7mG in human and Drosophila DNA and confirm their presence in the DNA of two mealybug species.  相似文献   

17.
Summary Sequence data from regions of five vertebrate vitellogenin genes were used to examine the frequency, distribution, and mutability of the dinucleotide CpG, the preferred modification site for eukaryotic DNA methyltransferases. The observed level of the CpG dinucleotide in all five genes was markedly lower than that expected from the known mononucleotide frequencies. CpG suppression was greater in introns than in exons. CpG-containing codons were found to be avoided in the vitellogenin genes, but not completely despite the redundancy of the genetic code. Frequency and distribution patterns of this dinucleotide varied dramatically among these otherwise closely related genes. Dense clusters of CpG dinucleotides tended to appear in regions of either functional or structural interest (e.g., in the transposon-like Vi-element ofXenopus) and these clusters contained 5-methylcytosine (5 mC). 5 mC is known to undergo deamination to form thymidine, but the extent to which this transition occurs in the heavily methylated genomes of vertebrates and its contribution to CpG suppression are still unclear. Sequence comparison of the methylated vitellogenin gene regions identified CT and GA substitutions that were found to occur at relatively high frequencies. The predicted products of CpG deamination, TpG and CpA, were elevated. These findings are consistent with the view that CpG distribution and methylation are interdependent and that deamination of 5 mC plays an important role in promoting evolutionary change at the nucleotide sequence level.  相似文献   

18.
DNA methylation at cytosine-phosphate-guanine (CpG) dinucleotides changes as a function of age in humans and animal models, a process that may contribute to chronic disease development. Recent studies have investigated the role of an oxidized form of DNA methylation – 5-hydroxymethylcytosine (5hmC) – in the epigenome, but its contribution to age-related DNA methylation remains unclear. We tested the hypothesis that 5hmC changes with age, but in a direction opposite to 5-methylcytosine (5mC), potentially playing a distinct role in aging. To characterize epigenetic aging, genome-wide 5mC and 5hmC were measured in longitudinal blood samples (2, 4, and 10 months of age) from isogenic mice using two sequencing methods – enhanced reduced representation bisulfite sequencing and hydroxymethylated DNA immunoprecipitation sequencing. Examining the epigenome by age, we identified 28,196 unique differentially methylated CpGs (DMCs) and 8,613 differentially hydroxymethylated regions (DHMRs). Mouse blood showed a general pattern of epigenome-wide hypermethylation and hypo-hydroxymethylation with age. Comparing age-related DMCs and DHMRs, 1,854 annotated genes showed both differential 5mC and 5hmC, including one gene – Nfic – at five CpGs in the same 250 bp chromosomal region. At this region, 5mC and 5hmC levels both decreased with age. Reflecting these age-related epigenetic changes, Nfic RNA expression in blood decreased with age, suggesting that age-related regulation of this gene may be driven by 5hmC, not canonical DNA methylation. Combined, our genome-wide results show age-related differential 5mC and 5hmC, as well as some evidence that changes in 5hmC may drive age-related DNA methylation and gene expression.  相似文献   

19.
Although methylation of DNA at some sites regulates gene expression, 5mC at many sites does not appear to have any effect. We present evidence that hemimethylation at many different sites can act as a discrimination signal in mismatch repair. Deamination of 5mC in a symmetrically methylated doublet CpG yields the mismatched base pair T/G in a hemi-methylated doublet pair. Because both bases in the mismatched pair are normal constituents of DNA, identifying the incorrect base is problematic. The only apparent distinction of the two is the methylation on the strand opposite the deamination event. Using available methylases we have produced hemi-methylated SV40 DNAs that are mismatched at a single T/G or A/C basepair in a sequence that mimics the lesion resulting from the deamination of a 5mCpG. Methylation at the adjacent cytosine results in the replacement of the T much more frequently than when no methylation is present in the heteroduplex. Cytosine methylation at sites farther removed from the mismatch is equally effective in replacing the incorrect T at the mismatch. Although methylation in vertebrates is almost exclusively on cytosine in the doublet CpG, methylation of cytosines in other doublets, as well as methylation of adenosine, also act as strand discrimination signals. Perhaps some of the excess methylation in vertebrate DNAs may serve to direct mismatch repair.  相似文献   

20.
DNA甲基化是最主要的表观遗传修饰之一,主要发生在胞嘧啶第五位碳原子上,称为5-甲基胞嘧啶。哺乳动物DNA甲基化由从头DNA甲基转移酶DNMT3A/3B在胚胎发育早期建立。细胞分裂过程中甲基化模式的维持由DNA甲基转移酶DNMT1实现。TET家族蛋白氧化5-甲基胞嘧啶成为5-羟甲基胞嘧啶、5-醛基胞嘧啶和5-羧基胞嘧啶,从而起始DNA的去甲基化过程。这些DNA甲基化修饰酶精确调节DNA甲基化的动态过程,在整个生命发育过程中发挥重要作用,其失调也与多种疾病发生密切相关。本文对近年来DNA甲基化修饰酶的结构与功能研究进行讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号