首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. This study investigates the basis and ecological significance of the extremely high propensity for mixis (sexual reproduction) observed in laboratory populations of Brachionus calyciflorus from a temporary pond in Patagonia. 2. Experiments with stem females hatched from resting eggs showed that these females were exclusively amictic but produced mictic daughters even at very low population densities. In six experiments, newly hatched stem females were cultured individually in different volumes (1.5, 12, 40 and 150 mL). The percentage of mictic daughters (mixis ratio) was high in the smaller volumes (e.g. 44–83% in 1.5 mL) and lower in the largest volume (6–21% in 150 mL). A regression analysis combining the data from these experiments showed a highly significant decrease in mixis ratio with volume and indicated that the lowest population density at which mixis still occurs (mixis threshold) would be 3.4 females L?1 (95% CL 2.9–4.0 females L?1). This value is considerably lower than mixis thresholds for other rotifers (25–250 females L?1 for many species and 9000–477 000 females L?1 for some Spanish Brachionus plicatilis). 3. In three additional experiments, stem females and their amictic daughters were cultured individually in 150 mL. The percentage of mictic daughters produced by these two generations of females was not significantly different, showing that the mixis response to crowding is not inhibited in the stem‐female generation. 4. Laboratory experiments showed that two common predators of the Patagonian B. calyciflorus (the calanoid copepod Parabroteas sarsi and the backswimmer Notonecta vereertbruggheni) each ate 60–70 B. calyciflorus predator?1 per day and cleared all rotifers from c. 250 mL per day. Thus, a very low mixis threshold and high maximal mixis ratio may ensure production of some resting eggs soon after colonisation of the pond and before complete removal from the plankton. 5. Two laboratory experiments showed that resting eggs of the Patagonian B. calyciflorus hatched at variable rates (28 and 81%) after a brief diapause when kept in the conditions under which they were produced and oviposited (20–21 °C; L: D 16: 8). Early hatching of resting eggs from pond sediment may allow multiple periods of colonisation and resting egg production in a season. This may offset the fitness cost of limited population growth through female parthenogenesis in the face of unpredictable and abrupt risk of extinction because of predators.  相似文献   

2.
In most cyclically parthenogenetic life cycles, sex is neededto produce resting stages. In several species of cyclicallyparthenogenetic rotifers, some generations of clones are notresponsive to a density-dependent signal that triggers sexualfemale production. These unresponsive rotifers hatch from restingeggs and typically pass 8–12 generations of female parthenogenesisbefore becoming receptive to the mixis signal. We addressedthe selection for mixis delay using a simulation model. A delayof sexual reproduction could increase population growth throughparthenogenesis and thus the number of resting eggs ultimatelyproduced. In a monomorphic population without mixis delay, wedetermined the optimal ratio of mictic to amictic females (mixisratio) to be 45%, and the optimal population density thresholdfor induction of mictic females (mixis threshold) to be 82 rotifersL–1. This mixis pattern, however, was not an evolutionarilystable strategy. A mixis ratio of 14% and threshold of 70 rotifersL–1 proved to be resistant to invasion by other mixispatterns. When we gave this phenotype a mixis delay of 8–10days, it could invade a population with the same mixis pattern,but lacking a mixis delay. The advantage of delaying mixis wasrelatively small, suggesting that a polymorphism is possible.  相似文献   

3.
SUMMARY 1. Sexual reproduction in the heterogonic life cycle of many rotifers occurs when amictic females, which produce diploid eggs developing parthenogenetically into females, are environmentally induced to produce mictic females. Mictic females produce haploid eggs which develop parthenogenetically into males or, if fertilised, into resting eggs – encysted embryos which develop into amictic females after an obligatory diapause. 2. A Florida strain of Brachionus calyciflorus was used to test the prediction that amictic females hatching from resting eggs (Generation 1), and those from the next few parthenogenetic generations, have a lower propensity to produce mictic daughters in response to crowding than those from later parthenogenetic generations. In 10 replicate clones, populations initiated by amictic females from generations 1, 5, 8, 12 and 18 were exposed to a standardised crowding stimulus, and the proportion of mictic females in the populations was determined. These proportions varied significantly across generations and clones. They were very low in the early generations and gradually increased to a mean of about 0.5 at Generation 12. 3. The mechanism for the transgenerational plasticity in response to crowding is not known. One possibility is that resting eggs contain an agent from their fertilised mictic mother's yolk gland that prevents development into mictic females and is transmitted in increasingly low concentrations through successive parthenogenetic generations of amictic females. 4. This parental effect may contribute to clonal fitness by ensuring that a clone developing from a resting egg will attain a higher population size through female parthenogenesis before maximising its commitment to sexual reproduction, even in the presence of a crowding stimulus from a high population density of other clones. Therefore, the number of resting eggs to which a clone contributes its genes should be maximised. 5. The clonal variation in propensity to produce mictic females in this strain indicates genetic variation in the trade‐off between maximising population growth via female parthenogenesis and increasing the probability of producing at least some resting eggs before local extinction from the plankton.  相似文献   

4.
1. Life‐table experiments with Brachionus calyciflorus test several hypotheses related to the idea that sexual reproduction in monogonont rotifers should occur when food resources are favourable. 2. The food concentration necessary for a fertilised mictic female to produce one phenotypically normal resting egg was higher than that for an amictic female to produce one daughter. At the lowest concentration of Cryptomonas erosa (1.25 × 103 cells mL?1), the lifetime fecundity of these two types of females was 0.9 and 1.4, respectively. 3. The lifetime fecundity of both fertilised mictic females and amictic females increased with food concentration to 3.4 resting eggs and 15.2 daughters female?1, respectively. The approach to maximal fecundity with increasing food concentration was more rapid for fertilised mictic females, such that their lifetime fecundity relative to that of amictic females gradually decreased from 0.64 (at 1.25 × 103 C. erosa mL?1) to 0.22 (at 2.5 × 104 C. erosa mL?1). 4. The probability of a fertilised mictic female producing one or more abnormal resting eggs during her lifetime was high (approximately 75%). The mean proportion of abnormal eggs produced per female varied among the different food‐concentration treatments (26–38%) but was not higher at the low food concentrations. 5. The proportion of normal resting eggs that hatched was high (51–71%); those produced at low food concentrations were no less likely to hatch than those produced at high food concentrations. No abnormal resting eggs hatched. 6. The probability of a fertilised mictic female producing an abnormal resting egg increased rapidly with her age at all food concentrations. The probability of a normal resting egg hatching declined with maternal age at the low food concentration in one of two experiments. 7. The results support the idea that induction of mictic females should occur when food resources are good. Coincidence of sexual reproduction with low food availability risks low production of resting eggs for several reasons. Population size may be small, with a low probability of encounters between young mictic females and males, and fertilised mictic females may be unable to mature and produce resting eggs.  相似文献   

5.
In the rotifer Brachionus calyciflorus mictic-female production is density-dependent and appears to be induced by a chemical—a quorum sensing molecule—produced by the females themselves. Even at the highest densities, however, populations never become entirely mictic: i.e., some amictic females continue to be produced. Surprisingly, the phenomenon also occurs in clonal laboratory populations with genetically identical individuals. Here, we study how this ecologically adaptive phenomenon is generated at the level of individual reproducing females. In a life-history experiment we subjected 123 amictic females of a clone of B. calyciflorus separately to a daily renewed stimulus of culture medium conditioned at a density of 30 females ml−1. For each of these mothers we isolated the lifetime offspring individually and recorded whether these females were amictic or mictic. Mothers produced on average 16 offspring but none of the mothers produced 100% mictic offspring; the average proportion of mictic females was 30%, despite the extremely strong stimulus. The distribution of amictic vs. mictic offspring was not uniform over the mothers’ lifetime. Early and late offspring had a low probability of being mictic whereas mid-aged mothers produced the highest proportion of mictic daughters (up to 56%). We conclude that not all oocytes of B. calyciflorus can be turned into mictic females, even when the mictic-female-inducing stimulus is extremely high. Propensity to become a mictic female also depends on the rank of an egg within a female’s offspring production. Despite these regularities, we observed considerable stochastic variability with respect to individual mothers’ life histories. Guest editors: S. S. S. Sarma, R. D. Gulati, R. L. Wallace, S. Nandini, H. J. Dumont & R. Rico-Martínez. Advances in Rotifer Research.  相似文献   

6.
E. Lubzens  G. Minkoff 《Oecologia》1988,75(3):430-435
Summary The sequence of the appearance of mixis in the rotifer Brachionus plicatilis was followed among the descendents of amictic rotifers transferred from a high salinity media (40 S) to a low one (9 S). All the neonates that hatched from the amictic eggs, after being transferred to a low salinity, were amictic. Each one of these neonates was cultured individually and its offspring removed periodically every 8–10 h. It was observed that throughout their reproductive phase, these parental females retained their potential to produce either mictic or amictic offspring. All the first produced neonates developed into amictic females, but among those produced later, three patterns were prevalent. The prevalent pattern (type A) was one in which the probability of a neonate being mictic increased towards the middle of the parents' reproductive phase and was followed by a slow decline. In the second pattern (type B), the probability of a daughter being mictic was constant throughout the parents' reproductive phase. It is suspected that the quality of food supplied to the rotifers determines the appearance of patterns, A, B or C. It is postulated that the innate capacity of rotifers to undergo mixis is genetically controlled, while its expression is modulated by environmental conditions.  相似文献   

7.
1. One at a time during the reproductive period of amictic females, oocytes fill with yolk and undergo a mitotic maturation division (oogenesis), are oviposited as single cells, and then develop parthenogenetically into females. Sexual reproduction in Brachionus and several other genera is initiated when amictic females are crowded and oviposit some eggs induced to differentiate into mictic females. Mictic females produce haploid eggs that can develop parthenogentically into males or be fertilised and develop into diapausing embryos called resting eggs. 2. This study examines the time when oocytes in amictic females respond to maternal population density. Is the fate of all oocytes in the germarium irreversibly determined during the early postnatal life of the mother, or is each oocyte labile until just before oviposition? In the former case, the probability of an amictic female producing a mictic daughter at any time throughout her reproductive period would reflect the population density she experienced while young and not that at the time she oviposited an egg. 3. Amictic females of two clones of a Florida strain of B. calyciflorus were cultured singly from birth at a low or high density (in a large or small volume) until about halfway through their reproductive period and then switched (experimental treatment), or not (control treatment), to the other density condition. The results indicate that the female fate of an oocyte is determined by maternal population density during oogenesis. Eggs oviposited soon after transfer from low to high density had the same, or a higher, probability of becoming mictic females compared with those produced by control females kept at the high density; eggs oviposited after transfer from the high to the low density had the same low probability of becoming mictic females as those produced by control females kept at the low density. 4. Control females kept at the high density were less likely to produce mictic daughters as they aged. This decline is not because of a decreased propensity of older females to respond to crowding, as older females responded maximally when transferred from a low to a high population density. 5. As oocytes in amictic females respond to maternal population density only during oogenesis, there is a negligible lag between the population‐density signal in the environment and the commitment to sexual reproduction. This minimises the obligatory two‐generation lag between this signal and production of resting eggs, and thus reduces the possibility that crowding will lead to food limitation before production of these eggs.  相似文献   

8.
Life cycle patterns of rotifers in Lake Peipsi   总被引:1,自引:0,他引:1  
Virro  Taavi 《Hydrobiologia》2001,(1):85-93
Life cycle strategies of rotifers in Lake Peipsi (Estonia) were examined. Bisexual (mictic) reproduction was detected in 26 species. Life cycle patterns were determined for 17 species. All three basic life cycle patterns were represented, with some evidence of intraspecific variability. The midcycle pattern, with mixis occurring near the population maximum, prevailed. Extended mixis was observed in littoral populations of Polyarthra luminosa and P. remata. Most species probably are monocyclic. Polyarthra dolichoptera and Synchaeta oblonga may be dicyclic. Mictic periods were not detected in Conochilus hippocrepis and C. unicornis, which probably are acyclic in L. Peipsi. Mictic ratios and egg ratios were calculated for some of the dominant species. The highest amictic egg ratios were observed slightly before or at the population maxima. High mictic ratios (1.0) indicated very intense bisexual reproduction in populations of A. fissa, P. dolichoptera and S. verrucosa. Definite periods of bisexual reproduction could not be distinguished in the rotifer community. During May–October, the spread of mictic reproduction merely reflects the general seasonal distribution of rotifers. Their life cycle strategies represent specific adaptations to unpredictability of their habitat. The results of the study confirm that mixis is an anticipatory event, and not a response to environment deterioration, or an ending of a rotifer population cycle.  相似文献   

9.
The effects of organophosphate pesticide, diazinon, on life history parameters and hatchability of resting eggs of rotifer Brachionus plicalitis were assessed. Newly hatched (<1 h-old) neonates were individually cultured in six varying concentrations (0/control, 0.1, 1.0, 2.5, 5.0 and 10.0 mg/l) of diazinon. The life history parameters such as time (h) the rotifers bear first egg and release first neonate, reproductive period, net reproductive rate, mixis, intrinsic rate of population increase, and life span were evaluated. Results showed that among the life history parameters, the time the rotifers took to release neonates is the most sensitive, giving the lowest EC50 value of 1.24 mg/l. The fecundity of maternal females, amictic and mictic daughters was also investigated. Rotifers exposed to 10.0 mg/l produced significantly fewer amictic daughters, and at this concentration, rotifers did not produce any mictic daughter. At 5.0 mg/l, the number of male offspring was significantly lower than the control. Furthermore, the hatchability of resting eggs produced by the rotifers was evaluated when exposed to diazinon: from birth until they produced resting eggs (early development); during late developmental stage of resting eggs (before diapause); and during diapausing stage. The hatchability of the resting eggs was not affected when exposure was timed at late developmental and diapausing stages. Overall results showed that even though amictic females reproduced normally in the presence of low-concentration of diazinon, sexual reproduction is severely affected, especially the hatchability of resting eggs when the exposure was timed on its early developmental stages. Guest editors: S. S. S. Sarma, R. D. Gulati, R. L. Wallace, S. Nandini, H. J. Dumont & R. Rico-Martínez Advances in Rotifer Research  相似文献   

10.
We studied the effects of juvenile hormone and precocene on reproduction of the rotifer Brachionus calyciflorus. Amictic females of B. calyciflorus that were 2‐4 hours old were exposed to different concentrations of juvenile hormone (0.004, 0.02, 0.1, 0.5, 2.5, 12.5 mg/L) and/or precocene (0.05, 0.25, 0.75, 3.75, 7.5 mg/L) for 24 h. They were then transferred to a new medium without hormone and checked every 2 h during the next 48 h, and thereafter monitored daily until the individual died. Precocene had no effects on the length of the rotifer juvenile period, hatching time of the first neonate, lifetime reproduction, or the mixis ratio. In contrast, juvenile hormone at 0.5, 2.5, and 12.5 mg/L significantly prolonged the juvenile period by 6.1, 9.2, and 8.6%, respectively. When 26‐28‐h‐old amictic females were exposed to the same concentration series of juvenile hormone or precocene, precocene at 3.75 mg/L resulted in an increase in lifetime reproduction of 30.39%. However, at 0.75 and 3.75 mg/L precocene, a significantly lower percentage of mictic females was found, whereas juvenile hormone had no effect on the lifetime reproduction or mixis ratio. The population growth test showed that juvenile hormone had significant effects on the population growth rate and mixis ratio, but no effect on resting egg production. In comparison, precocene had no effect on any of these parameters. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Xi  Yi-Long  Huang  Xiang-Fei  Jin  Hong-Jun 《Hydrobiologia》2001,(1):95-98
This study describes the life history characteristics of amictic, unfertilized mictic and fertilized mictic females of the rotifer Brachionus calyciflorus cultured individually on two different algae at 0.1 mg ml–1 food concentration and 27 °C. The duration of the juvenile period of amictic females was significantly shorter on Chlorella pyrenoidosa Chick than on Scenedesmus obliquus Kütz or both algae together. The duration of the juvenile period of unfertilized mictic females was significantly longer, and the number of eggs produced by amictic females was significantly larger on Chlorella pyrenoidosa than on S. obliquus. When fed the same type of alga, the duration of the juvenile period of the fertilized mictic females was the longest among the three types of females, and the durations of the reproductive period of the amictic females and the post-reproductive period of the fertilized mictic females were longer than, or equal to those of the other two types of females, respectively. The number of eggs produced by an unfertilized mictic female was the largest among the three types of females, and that of amictic females was larger than or equal to that of fertilized mictic females, depending on the type of diet.  相似文献   

12.
采用单个体培养方法,研究了孤雌生殖的累积世代数和雌体年龄对萼花臂尾轮虫混交雌体形成和产卵量的影响,结果表明,随着轮虫孤雌生殖累积世代数和增加,各代中的总混交雌体百分率呈减小的趋势,年轮的雌体可产生较多的混交雌体,非混交雌体所产后代中的总混交雌体百分率具有随其祖母年龄的增大而增大的趋势,孤雌生殖的累积世代数对轮对轮虫非混交雌体的平均产卵量无显著的影响,非混交雌体的年龄对其报代的平均产卵量亦无显著的影响。  相似文献   

13.
Carmona  María José  Gómez  Africa  Serra  Manuel 《Hydrobiologia》1995,313(1):365-371
Populations of the rotifer Brachionus plicatilis were monitored in three small ponds in a marsh on the Mediterranean coast. Samples were taken approximately every three weeks from July 1992 to November 1993. Salinity, temperature, conductivity, pH and oxygen concentration were measured in the field. Population density was determined from preserved quantitative samples. Individuals were classified as mictic females, amictic females, non-ovigerous females, and males, differentiating between two morphotypes (S and L). From these counts, a level of mixis was calculated. We also determined the proportion of mictic females in natural populations by culturing females isolated from fresh samples. From these data, mictic patterns over time and correlation between levels of mixis and environmental and population parameters were analyzed. From a previous study S and L morphotypes were known to correspond to genetically different clonal groups. Our data showed that reproduction was predominantly parthenogenetic in these clonal groups, but mictic females were found in most samples, the proportion of mictic females ranging from 0 to 29%. The clonal groups showed different patterns of mixis. L clonal group presented a continuous sexual reproductive pattern. In contrast, S clones showed a rather punctuated mictic pattern. A positive correlation between levels of sexual reproduction and population density was found for S and L groups. However, they differed in their density threshold for mictic reproduction. The adaptive meaning of these patterns and their implications in maintaining genetic diversity within and between populations are discussed.  相似文献   

14.
Ingestion of one prey rotifer containing about 0.02 pg tocopherol was sufficient to cause young amictic females to produce a high proportion of mictic daughters. Varying the concentration of emulsified tocopherol ol and the population density of amictic females suggested that mictic-female induction approached an all-or-nothing response at relatively high population densities and increased with population density only when population densities were very low. Amictic females hatching from resting eggs were less likely to produce mictic daughters than those hatching from parthenogenetic eggs.  相似文献   

15.
The monogonont rotifer Brachionus plicatilis produces resting eggs through sexual reproduction (mixis), which is affected by external and internal factors. We collected resting eggs from rotifers cultured at 15 and 25°C and hatched them with and without 14-day dormancy in the dark. Stem females hatched from both conditions were further cultured at 15, 20 and 25°C. We obtained two phenotypes, one with high mixis (more than 50%), which was hatched from resting eggs formed at 15°C without dormancy, and another in which sexual reproduction occurred at 25°C and resting eggs were formed at 15°C with a 14-day dormancy. In the latter phenotype, mictic females appeared at 15°C, but not at 25°C. Using subtractive hybridization, we isolated one gene from the latter phenotype of females that had no significant similarity to known genes in BLAST searches. We propose that this gene is unique to rotifer mictic reproduction. Ongoing characterization of this gene attempts understand its role in mixis.  相似文献   

16.
Many aquatic species usually considered to be 'cosmopolitan' have been identified as cryptic species complexes, based on deep genetic differentiation. However, reproductive isolation among sibling cryptic species has rarely been studied, and interspecific hybridization is common in some taxa.We investigated isolation mechanisms and possible introgression among three cyclical parthenogenetic rotifer species in the Epiphanes senta complex that are found in very different freshwater habitats: temperate floodplains, subtropical desert rock pools and a tropical alpine lake. Whereas Epiphanes ukera is reproductively isolated from E. chihuahuaensis and E. hawaiiensis, the latter hybridize under laboratory conditions.While reproductive isolation is incomplete, RAPD profiles indicated unique genetic signatures and showed no evidence for introgression, indicating that these three species are diverging and have independent evolutionary trajectories.Testing cues for sexual reproduction in these cyclic parthenogens demonstrated that mixis in E. chihuahuaensis and E. ukera is influenced by population density, whereas E. hawaiiensis females rarely produce mictic offspring regardless of density. Different mixis cues are likely to separate sexual periods and effectively cause reproductive isolation between the species. Epiphanes ukera and E. chihuahuaensis males display mate guarding behaviour, and E. ukera males distinguish between conspecific and heterospecific females in mate choice experiments. Geographic isolation, along with different cues for mixis induction and mate recognition, act as reproductive barriers among these sibling species.  相似文献   

17.
In cyclical parthenogens such as aphids, cladocerans and rotifers, the coupling between sexual reproduction and the production of resting stages (diapausing eggs) imposes strong constraints on the timing of sex. Whereas induction of sex is generally triggered by environmental cues, the response to such cues may vary across individuals according to genetic and nongenetic factors. In this study, we explored genetic and epigenetic causes of variation for the propensity for sex using a collection of strains from a Spanish population of monogonont rotifers (Brachionus plicatilis) in which variation for the threshold population density at which sex is induced (mixis threshold) had been documented previously. Our results show significant variation for the mixis threshold among 20 clones maintained under controlled conditions for 15 asexual generations. The effect of the number of clonal generations since hatching of the diapausing egg on the mixis ratio (proportion of sexual offspring produced) was tested on 4 clones with contrasted mixis thresholds. The results show a negative correlation between the mixis threshold and mixis ratio, as well as a significant effect of the number of clonal generations since fertilization, sex being repressed during the first few generations after hatching of the diapausing egg.  相似文献   

18.
Induction of mictic females, and hence initiation of sexuality, in the life cycle of some Brachionus requires an environmental stimulus associated with crowding. The inducing stimulus appears to be a taxonomically specific chemical released into the environment by the rotifers. Oocytes are induced to develop into mictic females before they are oviposited by their amictic mothers and begin cleavage divisions. Thus, the inducer affects the oocyte in the maternal body cavity either directly or indirectly by altering the physiology of its mother. The level of sexual reproduction expressed in populations of a Florida strain of B. calyciflorus is controlled by two types of endogenous factors and by the degree of crowding. First, some fraction of genetically identical oocytes in a clonal population fails to respond to even extreme crowding conditions, thus ensuring some potential for continued population growth by female parthenogenesis. Second, the propensity of amictic females to produce mictic daughters is extremely low when they hatch from fertilized resting eggs and then gradually increases to an asymptote after about 12 parthenogenetic generations. This multigenerational parental effect likely is due to a cytoplasmic factor in fertilized eggs that inhibits expression of the mictic-female phenotype and that is gradually diluted in successive parthenogenetic generations. The effect may increase a clone's genetic contribution to the resting-egg bank by increasing its population size through parthenogenetic generations before mictic females are induced.  相似文献   

19.
Recent theoretical work has shown that haplodiploid cyclical parthenogens, such as rotifers, are expected to have an equal frequency of male‐producing and resting‐egg producing females during their sexual phase. We tested this prediction by following sexual reproduction dynamics in two laboratory populations and one field population of the rotifer Brachionus plicatilis through two growing seasons. We recorded population density, proportion of sexual females, and sex allocation (the proportion of male‐producing sexual females as a fraction of total sexual females). We found this sex allocation ratio to vary from 0.3 to 1.0 in single sampling events. However, when we computed sex allocation by using the integrated densities of both male‐producing sexual females and resting‐egg producing sexual females over time, the two laboratory populations and one of the two field growing seasons showed sex allocation ratios that did not significantly differ from the expected value of 0.5.  相似文献   

20.
萼花臂尾轮虫有性生殖、种群增长和休眠卵产量间的关系   总被引:7,自引:3,他引:4  
席贻龙  曹明  黄祥飞 《应用生态学报》2002,13(12):1649-1654
利用种群指数增长和Logistic增长模型,通过计算机模拟研究了萼花臂尾轮虫有性生殖发生的频率,后代中的混交雌体发率对种群增长和休眠卵产量的影响。在所模拟的参数范围内,随有性生殖发生频率由100%减小到20%,获得了大休眠卵产量所需的混交雌体百分率由9%增大到69%,随密度制约作用的增大(环境容纳量K值由1000减小到100),该混交雌体百分率由18%增大到69%,休眠卵产量由1072.10降低至133.67,种群的内禀增长率与获得最大休眠卵产量所需的混交雌体百分率间呈曲线相关。当有性生殖发生得越频繁,种群增长所受的密度制约作用较小时,后代中10%-30%的个体为混交雌体时的种群中休眠卵产量较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号