首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
Escherichia coli expresses two DNA repair methyltransferases (MTases) that repair the mutagenic O6-methylguanine (O6MeG) and O4-methylthymine (O4MeT) DNA lesions; one is the product of the inducible ada gene, and here we confirm that the other is the product of the constitutive ogt gene. We have generated various ogt disruption mutants. Double mutants (ada ogt) do not express any O6MeG/O4MeT DNA MTases, indicating that Ada and Ogt are probably the only two O6MeG/O4MeT DNA MTases in E. coli. ogt mutants were more sensitive to alkylation-induced mutation, and mutants arose linearly with dose, unlike ogt+ cells, which had a threshold dose below which no mutants accumulated; this ogt(+)-dependent threshold was seen in both ada+ and ada strains. ogt mutants were also more sensitive to alkylation-induced killing (in an ada background), and overexpression of the Ogt MTase from a plasmid provided ada, but not ada+, cells with increased resistance to killing by alkylating agents. The induction of the adaptive response was normal in ogt mutants. We infer from these results that the Ogt MTase prevents mutagenesis by low levels of alkylating agents and that, in ada cells, the Ogt MTase also protects cells from killing by alkylating agents. We also found that ada ogt E. coli had a higher rate of spontaneous mutation than wild-type, ada, and ogt cells and that this increased mutation occurred in nondividing cells. We infer that there is an endogenous source of O6MeG or O4MeT DNA damage in E. coli that is prevalent in nondividing cells.  相似文献   

2.
DNA repair is essential for combatting the adverse effects of damage to the genome. One example of base damage is O(6)-methylguanine (O(6)mG), which stably pairs with thymine during replication and thereby creates a promutagenic O(6)mG:T mismatch. This mismatch has also been linked with cellular toxicity. Therefore, in the absence of repair, O(6)mG:T mismatches can lead to cell death or result in G:C-->A:T transition mutations upon the next round of replication. Cysteine thiolate residues on the Ada and Ogt methyltransferase (MTase) proteins directly reverse the O(6)mG base damage to yield guanine. When a cytosine is opposite the lesion, MTase repair restores a normal G:C pairing. However, if replication past the lesion has produced an O(6)mG:T mismatch, MTase conversion to a G:T mispair must still undergo correction to avoid mutation. Two mismatch repair pathways in E. coli that convert G:T mispairs to native G:C pairings are methyl-directed mismatch repair (MMR) and very short patch repair (VSPR). This work examined the possible roles that proteins in these pathways play in coordination with the canonical MTase repair of O(6)mG:T mismatches. The possibility of this repair network was analyzed by probing the efficiency of MTase repair of a single O(6)mG residue in cells deficient in individual mismatch repair proteins (Dam, MutH, MutS, MutL, or Vsr). We found that MTase repair in cells deficient in Dam or MutH showed wild-type levels of MTase repair. In contrast, cells lacking any of the VSPR proteins MutS, MutL, or Vsr showed a decrease in repair of O(6)mG by the Ada and Ogt MTases. Evidence is presented that the VSPR pathway positively influences MTase repair of O(6)mG:T mismatches, and assists the efficiency of restoring these mismatches to native G:C base pairs.  相似文献   

3.
Escherichia coli ada ogt mutants, which are totally deficient in O6-methylguanine-DNA methyltransferases, have an increased spontaneous mutation rate. This phenotype is particularly evident in starving cells and suggests the generation of an endogenous DNA alkylating agent under this growth condition. We have found that in wild-type cells, the level of the inducible Ada protein is 20-fold higher in stationary-phase and starving cells than in rapidly growing cells, thus enhancing the defense of these cells against DNA damage. The increased level of Ada in stationary cells is dependent on RpoS, a stationary-phase-specific sigma subunit of RNA polymerase. We have also identified a potential source of the mutagenic agent. Nitrosation of amides and related compounds can generate directly acting methylating agents and can be catalyzed by bacteria] enzymes. E. coli moa mutants, which are defective in the synthesis of a molybdopterin cofactor required by several reductases, are deficient in nitrosation activity. It is reported here that a moa mutant shows reduced generation of a mutagenic methylating agent from methylamine (or methylurea) and nitrite added to agar plates. Moreover, a moa mutation eliminates much of the spontaneous mutagenesis in ada ogt mutants. These observations indicate that the major endogenous mutagen is not S-adenosylmethionine but arises by bacterially catalyzed nitrosation.  相似文献   

4.
Escherichia coli has two DNA repair methyltransferases (MTases): the 39-kilodalton (kDa) Ada protein, which can undergo proteolysis to an active 19-kDa fragment, and the 19-kDa DNA MTase II. We characterized DNA MTase II in cell extracts of an ada deletion mutant and compared it with the purified 19-kDa Ada fragment. Like Ada, DNA MTase II repaired O6-methylguanine (O6MeG) lesions via transfer of the methyl group from DNA to a cysteine residue in the MTase. Substrate competition experiments indicated that DNA MTase II repaired O4-methylthymine lesions by transfer of the methyl group to the same active site within the DNA MTase II molecule. The repair kinetics of DNA MTase II were similar to those of Ada; both repaired O6MeG in double-stranded DNA much more efficiently than O6MeG in single-stranded DNA. Chronic pretreatment of ada deletion mutants with sublethal (adapting) levels of two alkylating agents resulted in the depletion of DNA MTase II. Thus, unlike Ada, DNA MTase II did not appear to be induced in response to chronic DNA alkylation at least in this ada deletion strain. DNA MTase II was much more heat labile than Ada. Heat lability studies indicated that more than 95% of the MTase in unadapted E. coli was DNA MTase II. We discuss the possible implications of these results for the mechanism of induction of the adaptive response. A similarly active 19-kDa O6MeG-O4-methylthymine DNA MTase was identified in Salmonella typhimurium.  相似文献   

5.
6.
J C Delaney  J M Essigmann 《Biochemistry》2001,40(49):14968-14975
Understanding the origins of mutational hotspots is complicated by the intertwining of several variables. The selective formation, repair, and replication of a DNA lesion, such as O(6)-methylguanine (m(6)G), can, in principle, be influenced by the surrounding nucleotide environment. A nearest-neighbor analysis was used to address the contribution of sequence context on m(6)G repair by the Escherichia coli methyltransferases Ada or Ogt, and on DNA polymerase infidelity in vivo. Sixteen M13 viral genomes with m(6)G flanked by all permutations of G, A, T, and C were constructed and individually transformed into repair-deficient and repair-proficient isogenic cell strains. The 16 genomes were introduced in duplicate into 5 different cellular backgrounds for a total of 160 independent experiments, for which mutations were scored using a recently developed assay. The Ada methyltransferase demonstrated strong 5' and 3' sequence-specific repair of m(6)G in vivo. The Ada 5' preference decreased in the general order: GXN > CXN > TXN > AXN (X = m(6)G, N = any base), while the Ada 3' preference decreased in the order: NX(T/C) > NX(G/A), with mutation frequencies (MFs) ranging from 35% to 90%. The Ogt methyltransferase provided MFs ranging from 10% to 25%. As was demonstrated by Ada, the Ogt methyltransferase repaired m(6)G poorly in an AXN context. When both methyltransferases were removed, the MF was nearly 100% for all sequence contexts, consistent with the view that the replicative DNA polymerase places T opposite m(6)G during replication irrespective of the local sequence environment.  相似文献   

7.
Escherichia coli strains that are deficient in the Ada and Ogt DNA repair methyltransferases display an elevated spontaneous G:C-to-A:T transition mutation rate, and this increase has been attributed to mutagenic O(6)-alkylguanine lesions being formed via the alkylation of DNA by endogenous metabolites. Here we test the frequently cited hypothesis that S-adenosylmethionine (SAM) can act as a weak alkylating agent in vivo and that it contributes to endogenous DNA alkylation. By regulating the expression of the rat liver SAM synthetase and the bacteriophage T3 SAM hydrolase proteins in E. coli, a 100-fold range of SAM levels could be achieved. However, neither increasing nor decreasing SAM levels significantly affected spontaneous mutation rates, leading us to conclude that SAM is not a major contributor to the endogenous formation of O(6)-methylguanine lesions in E. coli.  相似文献   

8.
O6-methylguanine (O6-MeG) DNA methyltransferase (MTase) removes the methyl group from a DNA lesion and directly restores DNA structure. It has been shown previously that bacterial and yeast cells lacking such MTase activity are not only sensitive to killing and mutagenesis by DNA methylating agents, but also exhibit an increased spontaneous mutation rate. In order to understand molecular mechanisms of endogenous DNA alkylation damage and its effects on mutagenesis, we determined the spontaneous mutational spectra of the SUP4-o gene in various Saccharomyces cerevisiae strains. To our surprise, the mgt1 mutant deficient in DNA repair MTase activity exhibited a significant increase in G:C-->C:G transversions instead of the expected G:C-->A:T transition. Its mutational distribution strongly resembles that of the rad52 mutant defective in DNA recombinational repair. The rad52 mutational spectrum has been shown to be dependent on a mutagenesis pathway mediated by REV3. We demonstrate here that the mgt1 mutational spectrum is also REV3-dependent and that the rev3 deletion offsets the increase of the spontaneous mutation rate seen in the mgt1 strains. These results indicate that the eukaryotic mutagenesis pathway is directly involved in cellular processing of endogenous DNA alkylation damage possibly by the translesion bypass of lesions at the cost of G:C-->C:G transversion mutations. However, the rev3 deletion does not affect methylation damage-induced killing and mutagenesis of the mgt1 mutant, suggesting that endogenous alkyl lesions may be different from O6-MeG.  相似文献   

9.
10.
Carcinogenic Cr(VI) compounds were previously found to induce amino acid/glutathione-Cr(III)-DNA crosslinks with the site of adduction on the phosphate backbone. Utilizing the pSP189 shuttle vector plasmid we found that these ternary DNA adducts were mutagenic in human fibroblasts. The Cr(III)-glutathione adduct was the most potent in this assay, followed by Cr(III)-His and Cr(III)-Cys adducts. Binary Cr(III)-DNA complexes were only weakly mutagenic, inducing a significant response only at a 10 times higher number of adducts compared with Cr(III)-glutathione. Single base substitutions at the G:C base pairs were the predominant type of mutations for all Cr(III) adducts. Cr(III), Cr(III)-Cys and Cr(III)-His adducts induced G:C-->A:T transitions and G:C-->T:A transversions with almost equal frequency, whereas the Cr(III)-glutathione mutational spectrum was dominated by G:C-->T:A transversions. Adduct-induced mutations were targeted toward G:C base pairs with either A or G in the 3' position to the mutated G, while spontaneous mutations occurred mostly at G:C base pairs with a 3' A. No correlation was found between the sites of DNA adduction and positions of base substitution, as adducts were formed randomly on DNA with no base specificity. The observed mutagenicity of Cr(III)-induced phosphotriesters demonstrates the importance of a Cr(III)-dependent pathway in Cr(VI) carcinogenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号