首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The cleaner fish Labroides dimidiatus affected the pigmented monogenean parasite Benedenia lolo on the fish Hemigymnus melapterus (Labridae) held in aquaria. The effect of cleaner fish varied with the size class of fish; only small fish [ a posteriori size class <11.5 cm standard length ( L S)] exposed to cleaner fish had fewer monogeneans compared with fish not exposed to cleaner fish. The abundance of monogeneans on large fish ( a posteriori size class <11.5 cm L S) was not affected by cleaner fish. The size-frequency distributions of monogeneans on both size-classes of H. melapterus were affected by cleaner fish. Fish exposed to cleaner fish had fewer large (>3 mm) and more small (<1 mm) monogeneans than fish not exposed to cleaner fish, suggesting cleaner fish selectively removed larger monogeneans. This difference was more pronounced on large fish. In the absence of cleaner fish, small fish had almost as many monogeneans as large fish; they also had more small monogeneans than the large fish, suggesting small fish were more vulnerable to infection by monogeneans than larger fish. This suggests that the cleaner fish L. dimidiatus has the potential to control benedeniine monogeneans on captive fish and highlights the importance of taking into account fish size in studies of the effect of cleaner fish on ectoparasites.  相似文献   

2.
Cleaning behaviour is considered to be a classical example of mutualism. However, no studies, to our knowledge, have measured the benefits to clients in terms of growth. In the longest experimental study of its kind, over an 8 year period, cleaner fish Labroides dimidiatus were consistently removed from seven patch reefs (61-285 m(2)) and left undisturbed on nine control reefs, and the growth and parasite load of the damselfish Pomacentrus moluccensis determined. After 8 years, growth was reduced and parasitic copepod abundance was higher on fish from removal reefs compared with controls, but only in larger individuals. Behavioural observations revealed that P. moluccensis cleaned by L. dimidiatus were 27 per cent larger than nearby conspecifics. The selective cleaning by L. dimidiatus probably explains why only larger P. moluccensis individuals benefited from cleaning. This is the first demonstration, to our knowledge, that cleaners affect the growth rate of client individuals; a greater size for a given age should result in increased fecundity at a given time. The effect of the removal of so few small fish on the size of another fish species is unprecedented on coral reefs.  相似文献   

3.
Mutualisms affect the biodiversity, distribution and abundance of biological communities. However, ecological processes that drive mutualism-related shifts in population structure are often unclear and must be examined to elucidate how complex, multi-species mutualistic networks are formed and structured. In this study, we investigated how the presence of key marine mutualistic partners can drive the organisation of local communities on coral reefs. The cleaner wrasse, Labroides dimidiatus, removes ectoparasites and reduces stress hormones for multiple reef fish species, and their presence on coral reefs increases fish abundance and diversity. Such changes in population structure could be driven by increased recruitment of larval fish at settlement, or by post-settlement processes such as modified levels of migration or predation. We conducted a controlled field experiment to examine the effect of cleaners on recruitment processes of a common group of reef fishes, and showed that small patch reefs (61–285 m2) with cleaner wrasse had higher abundances of damselfish recruits than reefs from which cleaner wrasse had been removed over a 12-year period. However, the presence of cleaner wrasse did not affect species diversity of damselfish recruits. Our study provides evidence of the ecological processes that underpin changes in local population structure in the presence of a key mutualistic partner.  相似文献   

4.
Cleaning behaviour is deemed a mutualism, however the benefit of cleaning interactions to client individuals is unknown. Furthermore, mechanisms that may shift fish community structure in the presence of cleaning organisms are unclear. Here we show that on patch reefs (61–285 m2) which had all cleaner wrasse Labroides dimidiatus (Labridae) experimentally removed (1–5 adults reef−1) and which were then maintained cleaner-fish free over 8.5 years, individuals of two site-attached (resident) client damselfishes (Pomacentridae) were smaller compared to those on control reefs. Furthermore, resident fishes were 37% less abundant and 23% less species rich per reef, compared to control reefs. Such changes in site-attached fish may reflect lower fish growth rates and/or survivorship. Additionally, juveniles of visitors (fish likely to move between reefs) were 65% less abundant on removal reefs suggesting cleaners may also affect recruitment. This may, in part, explain the 23% lower abundance and 33% lower species richness of visitor fishes, and 66% lower abundance of visitor herbivores (Acanthuridae) on removal reefs that we also observed. This is the first study to demonstrate a benefit of cleaning behaviour to client individuals, in the form of increased size, and to elucidate potential mechanisms leading to community-wide effects on the fish population. Many of the fish groups affected may also indirectly affect other reef organisms, thus further impacting the reef community. The large-scale effect of the presence of the relatively small and uncommon fish, Labroides dimidiadus, on other fishes is unparalleled on coral reefs.  相似文献   

5.
The ecological significance of cleaner fish on coral reefs was investigated. I removed all cleaner fish, Labroides dimidiatus, from eight small reefs, measured the subsequent effect on the abundance and species composition of all reef fish after 3 and 6 months, and compared it with eight control reefs with cleaner fish. The removal of cleaner fish had no detectable effect on the total abundance of fish on reefs and the total number of fish species at both times. Multivariate analysis by non-metric multidimensional scaling and ANOSIM pairwise tests based on 191 fish species revealed no effect of cleaners on the community structure of fish. Similar results were obtained using principal components analysis on subsets of the data using the 33 most common fish species and the 15 most abundant species (≥5 individuals per reef ) with both log10 (x + 1) transformed data and with fish numbers standardized for abundance. This study demonstrates that the removal of cleaner fish for 6 months did not result in fish suffering increased mortality nor in fish leaving reefs to seek cleaning elsewhere. Received: 28 October 1996 / Accepted: 7 February 1997  相似文献   

6.
Population density, number of species, diversity, and species-area relationships of fish species in eight common coral reef-associated families were studied in three marine parks receiving total protection from fishing, four sites with unregulated fishing, and one reef which recently received protection from fishing (referred to as a transition reef). Data on coral cover, reef topographic complexity, and sea urchin abundance were collected and correlated with fish abundance and species richness. The most striking result of this survey is a consistent and large reduction in the population density and species richness of 5 families (surgeonfish, triggerfish, butterflyfish, angelfish, and parrotfish). Poor recovery of parrotfish in the transition reef, relative to other fish families, is interpreted as evidence for competitive exclusion of parrotfish by sea urchins. Reef substrate complexity is significantly associated with fish abundance and diversity, but data suggest different responses for protected versus fished reefs, protected reefs having higher species richness and numbers of individuals than unprotected reefs for the same reef complexity. Sea urchin abundance is negatively associated with numbers of fish and fish species but the interrelationship between sea urchins, substrate complexity, coral cover, and management make it difficult to attribute a set percent of variance to each factor-although fishing versus no fishing appears to be the strongest variable in predicting numbers of individuals and species of fish, and their community similarity. Localized species extirpation is evident for many species on fished reefs (for the sampled area of 1.0 ha). Fifty-two of 110 species found on protected reefs were not found on unprotected reefs.  相似文献   

7.
To determine whether the choice of client fishes in the cleaner fish Labroides dimidiatus was influenced by client size, cleaner fish were given a choice of equal amount of food spread on large and small client redfin butterflyfish Chaetodon trifasciatus models. All large models received bites from cleaners compared to 27% for small models. Seventy‐nine per cent of cleaners took their first bite from the large fish model. The results suggest that client size may affect cleaner fish choice.  相似文献   

8.
The influence of habitat structure on reef-fish communities at Bar Reef Marine Sanctuary, Sri Lanka, was investigated. The relationship between habitat characteristics and the distribution and abundance of 135 species of fishes was examined on two reef types: coral and sandstone reefs. Results suggested that the reef-fish communities were strongly influenced by various aspects of reef structure. However, relationships between habitat variables and fish communities structure, varied between the two reef types. Fish species diversity was correlated with a number of habitat variables on the sandstone reefs, although structural complexity seemed to play the dominant role. There were no correlations between habitat structure and fish diversity on the coral reefs. Total abundance was not related to any one habitat parameter on either reef type. However, abundances of some species, families and trophic groups were correlated with habitat features. These specific correlations were commonly related to food or shelter availability. For example, coral feeders were correlated with live coral cover, and pomacentrid species, which used branching corals for protection, showed a significant relationship with the density of Acropora colonies. This shows that a summary statistic such as total abundance may hide important information. Effects of habitat structure on the distribution patterns of the fish communities was further investigated using multi-dimensional scaling ordination (MDS) and the RELATE-procedure. With the MDS ordinations for both habitat and fish-community composition it was possible to show that the multivariate pattern between the two ecological components was clearly correlated.  相似文献   

9.
SYNOPSIS. For reef fish in temperate marine regions, such componentsof local assemblage diversity (i.e., within a reef) as speciesrichness, total fish density, and rank order of abundance canremain relatively constantthrough time. Long-term data (17 years)for assemblages on 2 reefs in Southern California revealed that,despite high turnover in rare species, overall species richnesswas affected only moderately by major oceanographicdisturbances.This resilience of the assemblage is in marked contrast to hightemporal variation in densities exhibited by many local populationsof individual species, and it suggests that measurements ofdiversity to indicate status of an assemblage should be usedwith caution. Here we consider various processes and factors,together with the spatial and temporal scales over which theyoperate, that can influence local diversity (and its estimation)of reef fishes. Mechanisms that can "buffer" local diversityof reef fishes include dispersal of young that inter-connectssubpopulations, high "inertia" in relative abundance and populationstructures (especially for long-lived species), and broad ecologicalrequirements of many species. These considerations suggest thatthe effect of disturbances on local diversity of reef fisheswill depend in part on the magnitude, duration, frequency andspatial scale of the perturbation. While long-term data arefew, available information suggests that, due to life historycharacteristics of the fish and the spatial and temporal scalesat which disturbances are likely to occur, assemblages of temperatemarine reef fish might be relatively resilient to environmentalperturbations  相似文献   

10.
Although coral reef health across the globe is declining as a result of anthropogenic impacts, relatively little is known of how environmental variability influences reef organisms other than corals and fish. Sponges are an important component of coral reef fauna that perform many important functional roles and changes in their abundance and diversity as a result of environmental change has the potential to affect overall reef ecosystem functioning. In this study, we examined patterns of sponge biodiversity and abundance across a range of environments to assess the potential key drivers of differences in benthic community structure. We found that sponge assemblages were significantly different across the study sites, but were dominated by one species Lamellodysidea herbacea (42% of all sponges patches recorded) and that the differential rate of sediment deposition was the most important variable driving differences in abundance patterns. Lamellodysidea herbacea abundance was positively associated with sedimentation rates, while total sponge abundance excluding Lamellodysidea herbacea was negatively associated with rates of sedimentation. Overall variation in sponge assemblage composition was correlated with a number of variables although each variable explained only a small amount of the overall variation. Although sponge abundance remained similar across environments, diversity was negatively affected by sedimentation, with the most sedimented sites being dominated by a single sponge species. Our study shows how some sponge species are able to tolerate high levels of sediment and that any transition of coral reefs to more sedimented states may result in a shift to a low diversity sponge dominated system, which is likely to have subsequent effects on ecosystem functioning.  相似文献   

11.

Cyclones have one of the greatest effects on the biodiversity of coral reefs and the associated species. But it is unknown how stochastic alterations in habitat structure influence metapopulation structure, connectivity and genetic diversity. From 1993 to 2018, the reefs of the Capricorn Bunker Reef group in the southern part of the Great Barrier Reef were impacted by three tropical cyclones including cyclone Hamish (2009, category 5). This resulted in substantial loss of live habitat-forming coral and coral reef fish communities. Within 6–8 years after cyclones had devastated, live hard corals recovered by 50–60%. We show the relationship between hard coral cover and the abundance of the neon damselfish (Pomacentrus coelestis), the first fish colonizing destroyed reefs. We present the first long-term (2008–2015 years corresponding to 16–24 generations of P. coelestis) population genetic study to understand the impact of cyclones on the meta-population structure, connectivity and genetic diversity of the neon damselfish. After the cyclone, we observed the largest change in the genetic structure at reef populations compared to other years. Simultaneously, allelic richness of genetic microsatellite markers dropped indicating a great loss of genetic diversity, which increased again in subsequent years. Over years, metapopulation dynamics were characterized by high connectivity among fish populations associated with the Capricorn Bunker reefs (2200 km2); however, despite high exchange, genetic patchiness was observed with annual strong genetic divergence between populations among reefs. Some broad similarities in the genetic structure in 2015 could be explained by dispersal from a source reef and the related expansion of local populations. This study has shown that alternating cyclone-driven changes and subsequent recovery phases of coral habitat can greatly influence patterns of reef fish connectivity. The frequency of disturbances determines abundance of fish and genetic diversity within species.

  相似文献   

12.
Predators have important effects on coral reef fish populations, but their effects on community structure have only recently been investigated and are not yet well understood. Here, the effect of predation on the diversity and abundance of young coral reef fishes was experimentally examined in Moorea, French Polynesia. Effects of predators were quantified by monitoring recruitment of fishes onto standardized patch reefs in predator-exclosure cages or uncaged reefs. At the end of the 54-day experiment, recruits were 74% less abundant on reefs exposed to predators than on caged ones, and species richness was 42% lower on reefs exposed to predators. Effects of predators varied somewhat among families, however, rarefaction analysis indicated that predators foraged non-selectively among species. These results indicate that predation can alter diversity of reef fish communities by indiscriminately reducing the abundance of fishes soon after settlement, thereby reducing the number of species present on reefs.  相似文献   

13.
Summary The distribution and abundance of fish in a rocky reef environment were investigated at the subantarctic Auckland Islands of New Zealand, in June 1986. Fish were counted in transects and specimens were taken. The diversity and abundance of species of large reef fish was low; a total of eight species were observed. Most fish were benthic carnivores. These findings are similar to studies of reef fish in subantarctic waters of Chile. Large differences in species composition were found among locations at the Auckland Islands. The number of species and their abundance was highest near exposed headlands. Few fish were found on reefs at more sheltered inlets. At most locations the nototheniids Paranotothenia angustata and P. microlepidota ranked first in abundance at deep and shallow sites. There were some species that showed differences in abundance with depth. Highest abundance of Bovichthys variegatus, Latridopsis cilaris, Latris lineata and Pseudolabrus cinctus were in deep water on reefs. Large numbers of juvenile P. microlepidota were found only in shallow water. No depth related patterns were found for P. angustata and Mendosoma lineatum. Specimens, other than those counted in transects, were also collected. There were small fish, 4 species of tripterygiids, 1 gobiescocid and 2 syngnathids. The Auckland Islands had closer zoogeographic affinities with islands of temperate and subantarctic New Zealand than with other landmasses of the westwind drift. Although most fish found at the Auckland Islands are found also in temperature New Zealand, the converse of this pattern was not found. The proportional representation of species and trophic groups differed markedly between these regions.  相似文献   

14.
Functional traits have been fundamental to the evolution and diversification of entire fish lineages on coral reefs. Yet their relationship with the processes promoting speciation, extinction and the filtering of local species pools remains unclear. We review the current literature exploring the evolution of diet, body size, water column use and geographic range size in reef‐associated fishes. Using published and new data, we mapped functional traits on to published phylogenetic trees to uncover evolutionary patterns that have led to the current functional diversity of fishes on coral reefs. When examining reconstructed patterns for diet and feeding mode, we found examples of independent transitions to planktivory across different reef fish families. Such transitions and associated morphological alterations may represent cases in which ecological opportunity for the exploitation of different resources drives speciation and adaptation. In terms of body size, reconstructions showed that both large and small sizes appear multiple times within clades of mid‐sized fishes and that extreme body sizes have arisen mostly in the last 10 million years (Myr). The reconstruction of range size revealed many cases of disparate range sizes among sister species. Such range size disparity highlights potential vicariant processes through isolation in peripheral locations. When accounting for peripheral speciation processes in sister pairs, we found a significant relationship between labrid range size and lineage age. The diversity and evolution of traits within lineages is influenced by trait–environment interactions as well as by species and trait–trait interactions, where the presence of a given trait may trigger the development of related traits or behaviours. Our effort to assess the evolution of functional diversity across reef fish clades adds to the burgeoning research focusing on the evolutionary and ecological roles of functional traits. We argue that the combination of a phylogenetic and a functional approach will improve the understanding of the mechanisms of species assembly in extraordinarily rich coral reef communities.  相似文献   

15.
In this study, fishes and habitat attributes were quantified, four times over 1 year, on three reefs within four regions encompassing a c. 6° latitudinal gradient across south-western Australia. The variability observed was partitioned at these spatio-temporal scales in relation to reef fish variables and the influence of environmental drivers quantified at local scales, i.e. at the scale of reefs (the number of small and large topographic elements, the cover of kelp, fucalean and red algae, depth and wave exposure) and at the scale of regions (mean and maximum nutrient concentrations and mean seawater temperature) with regard to the total abundance, species density, species diversity and the multivariate structure of reef fishes. Variation in reef fish species density and diversity was significant at the regional scale, whereas variation in the total abundance and assemblage structure of fishes was also significant at local scales. Spatial variation was greater than temporal variation in all cases. A systematic and gradual species turnover in assemblage structure was observed between adjacent regions across the latitudinal gradient. The cover of red algae within larger patches of brown macroalgae (a biological attribute of the reef) and the number of large topographic elements (a structural attribute of the reef) were correlated with variation observed at local scales, while seawater temperature correlated with variation at the scale of regions. In conclusion, conservation efforts on reef fishes need to incorporate processes operating at regional scales with processes that shape local reef fish communities at local scales.  相似文献   

16.
Increased habitat complexity is supposed to promote increased diversity, abundance and biomass. This study tested the effect of the macroalgal cover on temperate reef fishes by mimicking macroalgae on artificial reefs in NW Sicily (Mediterranean Sea). Macroalgal cover affected reef fishes in different ways and independently of intrinsic temporal trends. The fish assemblages of manipulated and control artificial reef units differed in the relative abundances of the associated species, but little in species composition. In line with studies in seagrass habitats, fishes were most abundant in reefs covered by artificial macroalgae. Three species (Boops boops, Serranus scriba and Symphodus ocellatus) exhibited consistently greater abundance on vegetated reef units than on control reef units. The total number of species and the abundance of three particular species (S. scriba, S. ocellatus and Thalassoma pavo) displayed temporal trends which were independent on short and large temporal scales. Only fish total biomass and one species (Spicara flexuosa) displayed strong effects of interaction among the experimental factors. Mechanisms to explain these findings are discussed from observational evidence on habitat use and interactions among multiple species. This study highlights that manipulative experiments involving repeated sampling of fish in artificial habitats appear to be a valid approach to study fish-habitat relationships in fluctuating environments. It is also concluded that macroalgae mimics may serve as a tool for restoring lost marine vegetated habitats when current human-induced conditions prevent the recovery of pristine macroalgal stands.  相似文献   

17.
The present study was conducted on Tamandaré reefs, northeast Brazil and aimed to analyse the importance of different factors (e.g. tourism activity, fishing activity, coral abundance and algal abundance) on reef fish abundance and species richness. Two distinct reef areas (A ver o mar and Caieiras) with different levels of influence were studied. A total of 8239 reef fish individuals were registered, including 59 species. Site 1 (A ver o mar) presented higher reef fish abundance and richness, with dominance of roving herbivores (29.9 %) and mobile invertebrate feeders (28.7 %). In contrast, at Site 2 (Caieiras) territorial herbivores (40.9 %) predominated, followed by mobile invertebrate feeders (24.6 %). Concerning the benthic community, at Site 1 macroalgae were recorded as the main category (49.3 %); however, Site 2 was dominated by calcareous algae (36.0 %). The most important variable explaining more than 90 % of variance on reef fish abundance and species richness was macroalgae abundance, followed by fishing activity. Phase shifts on coral reefs are evident, resulting in the replacement of coral by macroalgae and greatly influencing reef fish communities. In this context, it is important to understand the burden of the factors that affect reef fish communities and, therefore, influence the extinction vulnerability of coral reef fishes.  相似文献   

18.
  1. The deep reef refugia hypothesis (DRRH) predicts that deep reef ecosystems may act as refugium for the biota of disturbed shallow waters. Because deep reefs are among the most understudied habitats on Earth, formal tests of the DRRH remain scarce. If the DRRH is valid at the community level, the diversity of species, functions, and lineages of fish communities of shallow reefs should be encapsulated in deep reefs.
  2. We tested the DRRH by assessing the taxonomic, functional, and phylogenetic diversity of 22 Brazilian fish communities between 2 and 62 m depth. We partitioned the gamma diversity of shallow (<30 m) and deep reefs (>30 m) into independent alpha and beta components, accounted for species’ abundance, and assessed whether beta patterns were mostly driven by spatial turnover or nestedness.
  3. We recorded 3,821 fishes belonging to 85 species and 36 families. Contrary to DRRH expectations, only 48% of the species occurred in both shallow and deep reefs. Alpha diversity of rare species was higher in deep reefs as expected, but alpha diversity of typical and dominant species did not vary with depth. Alpha functional diversity was higher in deep reefs only for rare and typical species, but not for dominant species. Alpha phylogenetic diversity was consistently higher in deep reefs, supporting DRRH expectations.
  4. Profiles of taxonomic, functional, and phylogenetic beta diversity indicated that deep reefs were not more heterogeneous than shallow reefs, contradicting expectations of biotic homogenization near sea surface. Furthermore, pairwise beta‐diversity analyses revealed that the patterns were mostly driven by spatial turnover rather than nestedness at any depth.
  5. Conclusions. Although some results support the DRRH, most indicate that the shallow‐water reef fish diversity is not fully encapsulated in deep reefs. Every reef contributes significantly to the regional diversity and must be managed and protected accordingly.
  相似文献   

19.
The reefs are heterogeneous systems that maintain a high diversity of organisms. Fish community structure varies within and among reefs, so it would be expected that reef structure and heterogeneity should affect fish communities inhabiting reefs. Four reef patches at Catalinas Islands (Sur, La Pared, Roca Sucia and Sombrero) and one in Ocotal beach (10 degrees 28'45" N; 85 degrees 52'35" W) were studied with visual censuses (July-December 2003). The structure and composition of fishes between Catalinas islands and Ocotal beach were different, and habitat structure and composition explain most of the variance founded. The presence of the fleshy algae Caulerpa sertularioides in Ocotal, and the corals Tubastrea coccinea and Pocillopora spp. at Catalinas Island explained the variability among sites and how it affected fish community structure and composition. The butterfly fish Johnrandallia nigrirostris, damselfish Microspathodon dorsalis, and surgeon fish Prionurus punctatus were directly correlated with the ahermatipic coral Tubastrea coccinea in Roca Sucia reef, while the angel fish Holacanthus passer was associated to reefs with a major percentage of rocky substrate. Other species such as the damselfish Abudefduf troschelli and Halichoeres dispilus were more abundant at Ocotal, where the algae C sertularioides dominated. The number and abundance of reef fishes was directly correlated with the rugosity index at the reefs of Roca Sucia and Ocotal, but not at reefs of La Pared and Sombrero.  相似文献   

20.
The distribution and abundance of reef fishes in relation to habitat structure were studied within Bar Reef Marine Sanctuary (BRMS) and on an adjacent reef, disturbed by destructive fishing techniques, in north-western Sri Lanka, by visually censusing 135 species groups using fifty metre belt-transects. Two types of continental shelf patch-reefs are found in the study area: coral reefs and sandstone reefs, which are divided into distinct habitats, four for the coral reef (shallow reef flat, shallow patch reef, deep reef flat and Porites domes) and two for the sandstone reef (structured sandstone-reef and flat sandstone-reef). Fish assemblages varied in structure between reef types and among habitats within reef types. Functional aspects of habitat structure and composition, such as available food and shelter, seemed to be important factors influencing distribution patterns. The strongest separation in the organisation of fish assemblages in BRMS was between reef types: 19% of all species were confined to the coral-reef patches while 22% were restricted to the sandstone reef patches and 59% were represented on both reef types. In terms of distribution among habitats, 21% of all species were restricted to one habitat while only 1.5% were present in all. The highest density of fish was in the coral reef habitats while highest species diversity was found in the most structurally complex habitat: the structured sandstone-reef. This habitat also had the highest proportion of species with restricted distribution. Planktivores were the most abundant trophic group in BRMS, and the species composition of the group varied among habitats. The comparison of the disturbed reef with BRMS suggested that habitat alteration caused by destructive fishing methods has strongly influenced the fish community. Within the fished area the structure of the fish assemblages was more heterogeneous, fish abundance was lower by an order of magnitude and species numbers were lower than in BRMS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号