首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The adenyl cyclase and phosphodiesterase metabolizing adenosine 3',5'-cyclic monophosphate (cyclic AMP) were detected in mycelia of strains of Coprinus macrorhizus which form fruiting bodies, but not in those of strains which do not form fruiting bodies. The adenyl cyclase synthesized cyclic AMP from adenosine triphosphate. The phosphodiesterase degr[UNK]ded cyclic AMP to adenosine-5'-monophosphate and was inhibited by adenosine-3'-monophosphate, theophylline, and caffeine. The strains which form fruiting bodies incorporated and metabolized cyclic AMP, but strains which do not form fruiting bodies did not. The possible participation of cyclic AMP in the induction of fruiting bodies is discussed.  相似文献   

2.
Abstract— The effect of adrenalectomy or hypophysectomy on the metabolism of adenosine 3',5'-monophosphate (cyclic AMP) in the cerebral cortex of male Wistar rats was investigated.
The bilateral removal of adrenal glands reduced significantly the activity of cerebral adenylate cyclase [EC 4.6.1.1]. whereas that of cyclic 3'.5'-nucleotide phosphodiesterase [EC 3.1.4.17] remained unchanged. The formation of cyclic AMP measured in cerebral cortical slices from adrenalectomized or hypophysectomized rats was also diminished. Decreases in the activity of adenylate cyclase and formation of cyclic AMP following adrenalectomy were antagonized by in vivo administration of dexamethasone or aldosterone, while those observed in hypophysectomized rats were restored by ACTH or dexamethasone. It is suggested that the pituitary adrenal axis has a modulating role in the metabolism of cerebral cyclic AMP, possibly by changing adenylate cyclase activity.  相似文献   

3.
The activities of cyclic AMP phosphodiesterase (3',5'-cyclic nucleotide 5'-nucleotidohydrolase, EC 3.1.4.17) and adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] and calmodulin content during development of chick ventricular myocardium were determined. The specific activity of cyclic AMP phosphodiesterase was relatively low in early embryos, increased during embryogenesis by about 4-fold to reach highest values just before hatching, and then decreased by approx. 30% within 1 week after hatching. In contrast, adenylate cyclase did not change during embryonic development, but increased by approx. 50% within 1 week after hatching. Calmodulin content remained constant at 9 micrograms/g wet wt. during embryonic development and decreased to 6 micrograms/g wet wt. by 1 week after hatching. DEAE-Sephacel chromatography of chick ventricular supernatant revealed a single major form of cyclic nucleotide phosphodiesterase activity in early embryonic (9-day E) and hatched (6-day H) chicks. This enzyme form was eluted at approx. 0.27 M-sodium acetate, hydrolysed both cyclic AMP and cyclic GMP, and was sensitive to stimulation by Ca2+-calmodulin, with an apparent Km for calmodulin of approx. 1 nM. In contrast, ventricular supernatant from late-embryonic (18-day E) chicks contained two forms of phosphodiesterase separable on DEAE-Sephacel: the same form as that seen at other ages, plus a cyclic AMP-specific form which was eluted at approx. 0.65 M-sodium acetate and was insensitive to stimulation by Ca2+-calmodulin. The ontogenetic changes in cyclic AMP phosphodiesterase activity in chick ventricular myocardium are consistent with reported ontogenetic changes in the steady-state contents of cyclic AMP in this tissue and suggest that this enzyme may be responsible for the changes that occur in this nucleotide during development of chick myocardium.  相似文献   

4.
Most tissues contain multiple forms of cyclic nucleotide phosphodiesterases (3':5'-cyclic-nucleotide 5' nucleotidohydrolase, EC 3.1.4.17). Consequently, in most, if not in all, tissues, substrate-velocity curves deviate from Michaelian kinetics and exhibit an apparent negative co-operativity. We have studied the possible theoretical consequences of this property on the quantitative features of cyclic AMP accumulation in response to activation of adenylate cyclase. Negative co-operativity of phosphodiesterases tends to generate a "positively co-operative" cyclic AMP accumulation curve. It amplifies the stimulation of cyclic AMP accumulation as compared with the stimulation of cyclic AMP synthesis. It enhances the sensitivity of cyclic AMP accumulation to slight variation of phosphodiesterase maximal velocity. It tends to shift the cyclic AMP accumulation curve to higher concentrations of stimulator as compared with the adenylate cyclase activation curve. This accounts for much of the data in the literature of hormonal effects on phosphodiesterase activity. It shows that the characteristics of cyclic nucleotide phosphodiesterases are as important as those of adenylate cyclase in determining the response of the system.  相似文献   

5.
The level of adenosine 3',5'-monophosphate (cyclic AMP) in the eggs of the sea urchin, Anthocidaris crassispina, was found to change periodically after fertilization. The minimum and maximum levels of cyclic AMP were 1.0 X 10(-7)M and 1.5 X 10(-6)M, respectively. The activity of adenylate cyclase in a 105 000 X g precipitate reached a plateau at 20 min after fertilization and stayed constant for at least 2 h. It was also found that 1.0 mM CaCl2 increased the activity of adenylate cyclase in the same precipitate from unfertilized eggs. In contrast, phosphodiesterase activity changed periodically and correlated with cyclic AMP levels in the eggs. Up to a concentration of 1.5 X 10(-6)M cyclic AMP, phosphodiesterase activity was low, but it became activated when the level of cyclic AMP rose beyond this level. These results indicate that the change in the intracellular level of cyclic AMP is regulated mainly by the change in phosphodiesterase activity.  相似文献   

6.
J C Redshaw 《In vitro》1980,16(5):377-383
The effects of glucagon and dexamethasone on the activities of the enzymes involved in cyclic adenosine 3':5'-monophosphate (cyclic AMP) metabolism in primary monolayer cell cultures of adult rat hepatocytes were examined. Short-term experiments indicated that the magnitude of the cultured cells' response to glucagon, as measured by production of cyclic AMP, was essentially the same as that for freshly isolated hepatocytes. However, the time course of this response was markedly different. Although the activity of adenylate cyclase is maintained throughout the culture period at a level similar to that of the freshly isolated hepatocytes, the activity of both low and high Km forms of phosphodiesterase decreases rapidly with length of time in vitro. This is reflected by an increase in cyclic AMP produced in response to glucagon and theophylline by cells of different ages. Dexamethasone caused an increased loss of phosphodiesterase activity, as well as increased cyclic AMP accumulation in the presence or absence of theophylline. Various agents failed to restore the lost phosphodiesterase activity. These results may indicate that phosphodiesterase activity is more sensitive to the inevitable inadequacies of the in vitro environment of cultured hepatocytes than adenylate cyclase. It was also found that a modification of the method of Seglen (1) for the preparation of isolated hepatocytes yielded cells that had less phosphodiesterase activity than those prepared by the method of Berry and Friend (2).  相似文献   

7.
The variations in the concentrations of intra- and extracellular cyclic AMP and in he specific activities of adenylate cyclase (EC 4.6.1.1) and cyclic AMP phosphodiesterase (EC 3.1.4.17) have been monitored in synchronized cultures of Nocardia restricta, a prokaryote belonging to the group of Actinomycetes. At the beginning of the cell cycle, during a first period of RNA and protein synthesis, there is an increasing synthesis of adenylate cyclase which can be suppressed in the presence of chloramphenicol or rifampicin. Simultaneously, the specific activity of cyclic AMP phosphodiesterase decreases and the concentrations of intra- and extracellular cyclic AMP rise. After the end of DNA replication, during a second period of RNA and protein synthesis, the specific activity of cyclic AMP phosphodiesterase increases; during the same time, the specific activity of adenylate cyclase and the level of intracellular cyclic AMP drop. It appears that the overall metabolism of cyclic AMP is coordinated so that the cyclic AMP level will be high at the beginning of DNA replication and will fall thereafter. The results are discussed in comparison with known data about the variations of cyclic AMP during the cell cycle of mammalian cells in cultures.  相似文献   

8.
1. The basal and fluoride-stimulated activities of adenylate cyclase, and the maximal activities of 3':5'-cyclic AMP phosphodiesterase and 3':5'-cyclic GMP phosphodiesterase, together with the Km values for their respective substrates, were measured in muscle, liver and nervous tissues from a large range of animals to provide information on the mechanism of control of cyclic AMP concentrations in these tissues. High activities of adenylate cyclase and cyclic AMP diesterase are found in nervous tissues and in the more aerobic muscles (e.g. insect flight muscles, cardiac muscle and some vertebrate skeletal muscles). The activities of these enzymes in liver are similar to those in the heart of the same animal. The Km values for the enzymes from different tissues and animals are remarkably similar. 2. The comparison of cyclic AMP phosphodiesterase and cyclic GMP phosphodiesterase activities suggests that in vertebrate tissues only one enzyme (the high-Km enzyme), which possesses dual specificity, exists, whereas in invertebrate tissues there are at least two phosphodiesterases with separate specificities. 3. A simple quantitative model to explain the control of the steady-state concentrations of cyclic AMP is proposed. The maximum increase in cyclic AMP concentration predicted by comparison of basal with fluoride-stimulated activities of adenylate cyclase is compared with the maximum increases in concentration produced in the intact tissue by hormonal stimulation: reasonable agreement is obtained. The model is also used to predict the actual concentrations and the rates of turnover of cyclic AMP in different tissues and, where possible, these values are compared with reported values. Reasonable agreement is found between predicted and reported values. The possible physiological significances of different rates of turnover of cyclic AMP and the different ratios of high- and low-Km phosphodiesterases in different tissues are discussed.  相似文献   

9.
In order to clarify the role of the system that generates and degrades cyclic AMP during the initiation of motility of trout sperm, short-term changes in levels of intraspermatozoal cyclic AMP, adenylate cyclase, and phosphodiesterase were measured. Levels of cyclic AMP and the activity of adenylate cyclase increased and reached a maximum level 1 sec after transfer of sperm to K+-free medium, where they became motile, and then decreased rapidly. However, there were no changes in either parameter in sperm which remained immotile in K+-rich medium. In addition, an increase in the activity of phosphodiesterase was observed 4 sec later than the increase in levels of cyclic AMP and adenylate cyclase. These findings suggest that a very rapid change in the level of intracellular cyclic AMP occurs within 1 sec, at the moment of spawning, by the activation of adenylate cyclase and phosphodiesterase, and regulates the initiation of trout sperm motility.  相似文献   

10.
(1) In order to determine the cellular localization of the secretin- and pancreozymin-sensitive adenylate cyclase in rat pancreas, the occurence of this enzyme system has been investigated in isolated pancreatic cells. (2) Digestion of rat pancreatic lobules with collagenase yields a preparation of isolated cells which upon differential morphological analysis appears to consist for 97% of acinar cells and to contain for fewer centro-acinar and ductal cells than undissociated lobules. (3) Expressed per mg protein, the isolated cells contain the same amount of DNA, chymotrypsin and lactic dehydrogenase as the undissociated tissue. The stimulated adenylate cyclase activity is nearly entirely recovered in the isolated acinar cells, as is also the case for the low Km adenosine 3',5-cyclic monophosphate phosphodiesterase activity and the adenosine 3',5'-cyclic monophosphate (cyclic AMP) content. Marked losses are noted for the basal adenylate cyclase and the high Km cyclic AMP phosphodiesterase activities. (4) Washing the isolated acinar cells in Krebs-Ringer bicarbonate medium containing 10 mM 1-methyl-3-isobutylxanthine causes a cyclic AMP level 2.6 times that in cells washed in Krebs-Ringer bicarbonate alone. The cyclic AMP level is further increased by subsequently incubating the cells for 10 min in the presence of 3-10(-7) M pancreozymin-C-octapeptide or secretin to values 1.7 or 4.7 times the control level in cells incubated for 10 min with 1-methyl-3-isobutylxanthine alone. (5) It is suggested that the adenylate cyclase of the acinar cells may be involved, with another factor, in the stimulation of enzyme secretion, whereas a ductular cyclase would function in the regulation of the bicarbonate-dependent fluid secretion.  相似文献   

11.
The variations in the concentrations of intra- and extracellular cyclic AMP and in the specific activities of adenylate cyclase (EC 4.6.1.1) and cyclic AMP phosphodiesterase (EC 3.1.4.17) have been monitored in synchronized culture of Nocardia restricta, a prokaryote belonging to the group of Actinomycetes. At the beginning of the cell cycel, during a first period of RNA and protein synthesis, there is an increasing synthesis of adenylate cyclase which can be suppressed in the presence of chloramphenicol or rifampicin. Simultaneously, the specific activity of cyclic AMP phosphodiesterase decreases and the concentrations of intra- and extracellular cyclic AMP rise. After the end of DNA replication, during a second period of RNA and protein synthesis, the specific activity of cyclic AMP phosphodiesterase increases; during the same time, the specific activity of adenylate cyclase and the level of intracellular cyclic AMP drop. It appears that the overall metabolism of cyclic AMP is coordinated so that the cyclic AMP level will be high at the beginning of DNA replication and will fall thereafter. The results are discussed in comparison with known data about the variations of cyclic AMP during the cell cycle of mammalian cells in cultures.  相似文献   

12.
Effects of morphine administration were studied on cyclic AMP metabolism in several regions of rat brain. In the cortex, cerebellum and thalamus-hypothalamus, morphine dependence did not alter the activity of either adenylate cyclase or phosphodiesterase. However, during withdrawal from the opiate treatment, adenylate cyclase activity declined in all three regions studied. In contrast, the striatal cyclic AMP metabolism was enhanced during morphine treatment as reflected by elevated endogenous cyclic AMP and increased adenylate cyclase. Furthermore, narcotic dependence produced significant increases in acetylcholinesterase activity of rat striatum. Whereas morphine withdrawal reversed the changes in striatal acetylcholine levels and acetylcholinesterase activity, the enhanced striatal dopamine remained unaltered. Although the activity of striatal adenylate cyclase was significantly reduced when compared to the morphine-dependent rats, the drop in cyclic AMP levels was not significant. Methadone replacement did not affect the changes in striatal dopamine seen in morphine-withdrawn rats. Whereas dopamine stimulated equally well the striatal adenylate cyclase from control or morphine-dependent animals, it failed to stimulate the striatal enzyme from rats undergoing withdrawal. The crude synaptosomal fraction of the whole brain from morphine-dependent rats exhibited an increase in cyclic AMP which was accompanied by elevated adenylate cyclase and protein kinase activity. Naloxone administration suppressed this rise in cyclic AMP and reversed the morphine-stimulated increases in the activities of adenylate cyclase and protein kinase. Following the withdrawal of morphine treatment, alterations in cyclic AMP metabolism were similar to those noted in morphine-naloxone group. Furthermore, substitution of morphine with methadone antagonized the observed alterations in cyclic nucleotide metabolism during withdrawal.  相似文献   

13.
The intracellular localization of adenylate cyclase and 3',5'-cyclic nucleotide phosphodiesterase in buffalo sperm was examined. Adenylate cyclase activity is distributed in heads (8.4%), midpieces (16.6%), tails (49.5%) and 5.7% in the soluble supernatant; the total recovery being 81%. A 4-fold increase in specific activity was observed in the tail fraction relative to sonicated suspension. Further fractionation of the tail fraction into plasma membrane and microtubules by dialysis against low ionic strength buffer was followed by marker enzymes (Mg2+ -ATPase, 5'-nucleotidase and alkaline phosphatase) as well as by examination of fractions under electron microscope. The recovered adenylate cyclase (79%) was found in microtubules (45%) and plasma membrane (34%). Cyclic nucleotide phosphodiesterase in tails was distributed in tail plasma membrane (13.7%), microtubules (31.5%) and cytosol (34%) with a total recovery of 80%. Similar results were obtained when the distribution of adenylate cyclase and cyclic nucleotide phosphodiesterase was studied by treatment with Triton X-100; 40% activity of adenylate cyclase present in tails (about 20% relative to sperm sonicate) appeared in the soluble form by this method. The results are discussed in relation to control of cyclic AMP levels in buffalo sperm by adenylate cyclase and cyclic nucleotide phosphodiesterase.  相似文献   

14.
Prostaglandin E1 (2.5 mug/ml) enhanced the level of cyclic adenosine 3':5'-monophosphate (cyclic AMP) three to four times in Yoshida ascites sarcoma (YS) cells cultured in vitro. When Ricinus communis toxin (RC-toxin) was added 30 min after the addition of prostaglandin E1, the enhanced level of cyclic AMP in the YS cells decreased rapidly. Of RC-toxin, 0.2 mug/ml was enough to produce the maximum effect. By addition of 5 mM lactose with RC-toxin, approximately 60% of the RC-toxin effect on the levels of cyclic AMP was abolished. This indicates that the specific binding of RC-toxin on the surface membrane is largely responsible for the observed decrease of the cyclic AMP level. The toxin treatment did not induce either leakage of cyclic AMP from the cell or change in the activity of cyclic AMP phosphodiesterase. However, the treatment of YS cells with RC-toxin caused a decrease of adenylate cyclase activity when the activity was measured at a substrate concentration of 0.15 mM ATP. In contrast, there was little difference with the control when the activity was assayed at a higher ATP concentration, 0.24 mM. It was found that the K-m of adenylate cyclase for ATP was changed by RC-toxin from 0.1 to 0.25 mM, and that the Mg2+ activation of the enzyme observable in untreated cells disappeared. These results suggested that the decrease in the level of cyclic AMP in YS cells induced by RC-toxin can be explained in terms of the change in K-m of the adenylate cyclase activity.  相似文献   

15.
Wild-type Salmonella typhimurium could not grow with exogenous cyclic adenosine 3',5'-monophosphate (AMP) as the sole source of phosphate, but mutants capable of cyclic AMP utilization could be isolated provided the parental strain contained a functional cyclic AMP phosphodiesterase.All cyclic AMP-utilizing mutants had the growth and fermentation properties of cyclic AMP receptor protein (crp) mutants, and some lacked cyclic AMP binding activity in vitro. The genetic defect in each such mutant was due to a single point mutation, which was co-transducible with cysG. crp mutants isolated by alternative procedures also exhibited the capacity to utilize cyclic AMP. crp mutants synthesized cyclic AMP at increased rates and contained enhanced cellular cyclic AMP levels relative to the parental strains, regardless of whether or not cyclic AMP phosphodiesterase was active. Moreover, adenylate cyclase activity in vivo was less sensitive to regulation by glucose, possibly because the enzyme II complexes of the phosphotransferase system, responsible for glucose transport and phosphorylation, could not be induced to maximal levels. This possibility was strengthened by the observation that enzyme II activity (measured both in vitro by sugar phosphorylation and in vivo by sugar transport and chemotaxis) was inducible in the parental strain but not in crp mutants. The results suggest that the cyclic AMP receptor protein regulates cyclic AMP metabolism as well as catabolic enzyme synthesis.  相似文献   

16.
The activities of adenylate and guanylate cyclase and cyclic nucleotide 3':5'-phosphodiesterase were determined during the aggregation of human blood platelets with thrombin, ADP, arachidonic acid and epinephrine. The activity of guanylate cyclase is altered to a much larger degree than adenylate cyclase, while cyclic nucleotide phosphodiesterease activity remains unchanged. During the early phases of thrombin-and ADP-induced platelet aggregation a marked activation of the guanylate cyclase occurs whereas aggregation induced by arachidonic acid or epinephrine results in a rapid diminution of this activity. In all four cases, the adenylate cyclase activity is only slightly decreased when examined under identical conditions. Platelet aggregation induced by a wide variety of aggregating agents including collagen and platelet isoantibodies results in the "release" of only small amounts (1-3%) of guanylate cyclase and cyclic nucleotide phosphodiesterase and no adenylate cyclase. The guanylate cyclase and cyclic nucleotide phosphodiesterase activities are associated almost entirely with the soluble cytoplasmic fraction of the platelet, while the adenylate cyclase if found exclusively in a membrane bound form. ADP and epinephrine moderately inhibit guanylate and adenylate cyclase in subcellular preparations, while arachidonic and other unsaturated fatty acids moderately stimulate (2-4-fold) the former. It is concluded that (1) the activity of platelet guanylate cyclase during aggregation depends on the nature and mode of action of the inducing agent, (2) the activity of the membrnae adenylate cyclase during aggregation is independent of the aggregating agent and is associated with a reduction of activity and (3) cyclic nucleotide phosphodiesterase remains unchanged during the process of platelet aggregation and release. Furthermore, these observations suggest a role for unsaturated fatty acids in the control of intracellular cyclic GMP levels.  相似文献   

17.
Simulations of the roles of multiple cyclic nucleotide phosphodiesterases.   总被引:2,自引:2,他引:0  
1. Simulations were performed using a model for cellular cyclic AMP metabolism involving a hormone-activated adenylate cyclase and two cyclic nucleotide phosphodiesterases with different Michaelis constants. 2. The response curves of cyclic AMP concentration as a function of hormone concentration were affected by regulating the phosphodiesterases. The maximum velocity of the high-affinity phosphodiesterase (V1) was important in determining the position of the response curve; when v1 was less than the maximal activity of adenylate cyclase (Vc), sigmoid response curves were readily produced. The maximum attainable concentration of cyclic AMP was determined primarily by V1 when Vc less than V1, and primarily by the activity of the low-affinity enzyme when Vc greater than V1 (V2 much greater than Vc in all cases). 3. The glucagon-stimulated adenylate cyclase and insulin-stimulated phosphodiesterase of the rat liver plasma membrane were simulated using experimentally determined values for the enzyme-kinetic parameters, and a considerable potential for regulation of the system by insulin was demonstrated. 4. Other possible functions for the regulation of phosphodiesterases are considered, in particular the value of increasing the speed of response to decreases in hormone concentration.  相似文献   

18.
The cyclic AMP metabolism of cultured epithelial cells was investigated. Epinephrine or 1-methyl,3-isobutylxanthine (MIX) alone had no effect on cyclic AMP levels in intact cells, whereas the combination of the two agents yielded a 6- to 10-fold increase in cyclic AMP levels. Both basal and stimulated cyclic AMP levels decreased with increasing cell density. Cell-free adenylate cyclase preparations were stimulated markedly by epinephrine or isoproterenol in the absence of MIX. Since the epithelial cells were found to have a relatively small amount of cyclic nucleotide phosphodiesterase (PDE) activity, the requirement for MIX to visualize intact cell responsiveness to epinephrine could be explained only partially by its PDE inhibitory properties.  相似文献   

19.
Activity, ratio and summary content of cyclic AMP enzymes, adenylate cyclase and phosphodiesterase varied depending on growth conditions of phototrophic bacteria (Rhodospirillum rubrum and Rhodopseudomonas palustris). It suggests, that membrane-bound and soluble enzymes carry different functions. The increase of adenylate cyclase under chaning growth conditions was usually accompanied by the increase of phosphodiesterase. Sharp increase of both enzymes activity was observed when bacteria were growth in aerobic conditions. The activity of both enzymes in chromatophores was 2.8-fold higher when bacteria were grown in the light in anaerobic conditions, than in chromatophores of bacteria grown under stationary aerobic conditions in the light. It is suggested that 3':5' AMP can participate in autotrophic carbon assimilation or in the synthesis of pigments and other components of bacterial photosynthetizing apparatus. Substitution of NH4+ into NO3- and glutamate under the growing of R. rubrum in anaerobic conditions in the light resulted in the increase of the enzymes activities, which is the evidence of possible role of 3':5' AMP in mineral nitrogen uptake and nitrogen fixation. Glutamate concentration of 4 g/l stimulated the enzymes both in vivo and in vitro. The data obtained suggest that 3':5' AMP can carry multiple functions, participating in regulation of a number of metabolic processes in photorophic bacteria.  相似文献   

20.
Cyclic AMP content, adenylate cyclase (EC 4.6.1.1) activity and phosphodiesterase I (EC 3.1.4.1) activity of the hind leg skeletal muscle and cardiac muscle in 60- and 150-day-old normal and myopathic (UM-X7.1) hamsters were examined. In 60-day-old myopathic animals, cardiac cyclic AMP levels were higher and phosphodiesterase I activity was lower, without any changes in the basal adenylate cyclase activity, whereas in 150-day-old myopathic hamsters, cardiac cyclic AMP and basal adenylate cyclase activity were lower, without any changes in the homogenate phosphodiesterase I activity. On the other hand, basal adenylate cyclase and phosphodiesterase I activities in the skeletal muscle homogenate from 60- and 150-day-old myopathic animals were not different from the normal values but the skeletal muscle cyclic AMP levels were significantly less in 60-day-old myopathic hamsters only. The plasma cyclic AMP levels in 60-day-old myopathic hamsters, unlike 150-day-old myopathic animals, were higher than the normal. Although these results reveal differences in myopathic cardiac and skeletal muscles, it is concluded that changes in adenylate cyclase-cyclic AMP system in myopathy are dependent upon the degree of disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号