首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
1. The low‐Mg calcite shells of Ostracoda (Crustacea) are often well preserved in the sediments of alkaline lakes. In coastal waters that have undergone large temporal changes in salinity, ostracod assemblages preserved in the sediment record have been used to reconstruct palaeosalinity, often assuming that salinity is the only significant control on the faunas. 2. We evaluate the performance of ostracods as palaeosalinity indicators in Hickling Broad, a shallow brackish coastal lake in Norfolk, U.K., by comparing fossil ostracod assemblages covering two centuries with geochemical inferences and instrumental records of past salinity and water composition along with other palaeolimnological indicators. 3. Despite large changes in the salinity of the lake and the supposed salinity sensitivity of ostracods, the fossil ostracod assemblages do not clearly reflect the salinity trends inferred from the other independent data. Rather, a complex series of changes has occurred in the lake over the past 200 years and factors other than salinity, including eutrophication, toxicity and associated complex alterations in habitat availability have probably influenced ostracod assemblages. In contrast, there is a good broad agreement between inferred or measured salinity and the trace‐element chemistry of ostracod shells. 4. We conclude that ostracod faunas may not always provide unambiguous palaeosalinity records and should therefore not be used to reconstruct salinity changes except as part of a multi‐proxy investigation that includes other palaeoecological and/or geochemical indicators.  相似文献   

2.
Taxonomical and geochemical investigations on freshwater ostracods from 15 waters in Central and Northeast (NE) Yakutia have been undertaken in order to estimate their potential usefulness in palaeoenvironmental reconstructions based on regional fossil records. Higher variability in environmental factors such as pH, electrical conductivity, and ionic content was observed in thermokarst-affected lakes in Central Yakutia than in NE Yakutia lakes. Species diversity of freshwater ostracods reached up to eight taxa per lake, mostly dominated by Candona weltneri Hartwig 1899, in Central Yakutia, whereas in NE Yakutian waters the diversity was lower and Candona muelleri jakutica Pietrzeniuk 1977 or Fabaeformiscandona inaequivalvis (Sars 1898) had highest frequencies. Coupled analyses of stable isotopes (δ18O, δ13C) and element ratios (Sr/Ca, Mg/Ca) were performed on both host waters and ostracod calcite, aiming to estimate the modern relationships. Correlations between host waters and ostracod calcite of single species were found for δ18O, δ13C and Sr/Ca and Mg/Ca ratios. The relationships between δ18O, Mg/Ca and Sr/Ca ratios and electrical conductivity (salinity) as an expression of solute concentrations in the waters mainly controlled by evaporation are more complicated but evident, and may be useful in future interpretation of geochemical data from fossil Siberian ostracods. Handling editor: K. Martens  相似文献   

3.
P. Anadón  R. Julià 《Hydrobiologia》1990,197(1):291-303
A reconstruction of the early Pleistocene paleohydrochemistry based on the Mg, Sr and Ca content of the Cyprideis valves is presented for shallow lacustrine sequences of the Baza basin. A large number of environmental changes in this marginal area has been recorded by the recurrent alternation of two fossil assemblages which differ in their salinity requirements. Measurements of the Sr/Ca and Mg/Ca ratios of individual calcite shells of Cyprideis show that the water in the higher saline stages (with thalassic organisms indicating marine-like conditions) was of non-marine origin. The Sr/Ca values of Cyprideis valves from sands deposited during a saline water phase show lower values than those from an overlying carbonate sequence which was formed under lower salinity conditions. These unexpected values are assumed to be the result of major changes in the chemical composition of the water in shallow, littoral ponded areas of a hydrologically complex lake. In the sequences that originated in these areas, Sr/Ca values may be used only as salinity indicators within each portion of the sequence formed in a single, continuous evolution. In more open areas, the wide fluctuations of Sr/Ca and Mg/Ca recorded in ostracodes from individual layers of rippled ostracode-shell sands probably reflect the mixing of valves from changing short-term environmental conditions.  相似文献   

4.
This paper provides quantitative information concerning the response of ostracods to environmental variability in order to reconstruct past environments. Ostracod faunas from modern sediments of Bolivian lakes and swamps were studied. Ostracod distribution is controlled by several ecological characteristics such as lake-level and water chemistry. Statistical results indicate that three transfer functions (on water depth, Total dissolved Salts and water in Mg/Ca ratio) can be developed, from ostracod species frequencies in lacustrine sediments, with some restrictions for the two last ones.  相似文献   

5.
Different precipitation regimes across Patagonia generate an environmental gradient that is expected to reflect upon the solute composition and concentration of lake water through the ensuing differences in water balance. In turn, this hydrochemical gradient could influence the occurrence and distribution of ostracods in the area. A cluster analysis on hydrochemical data of 36 Southern Patagonian waterbodies shows that low salinity, bicarbonate-dominated waters characterize Andean and ecotonal lakes, located in the wetter part of the precipitation gradient, while their steppe counterparts, which receive a much lower precipitation input, are more saline, enriched in all major anions and sodium-dominated. Kruskal–Wallis tests followed by Mann–Whitney pairwise comparisons show statistically significant differences in the ostracod species each water type hosts, with L. patagonica, E. cecryphalium, P. smaragdina and P. incae being found in the more dilute waters characteristic of Andean and ecotonal lakes and Limnocythere rionegroensis in the mesohaline, evaporatively evolved waters typical of steppe lakes. Other species studied do not appear to have such distinct distributions, having been found throughout the range of conditions studied. These findings promote the use of the aforementioned ostracods as semi-quantitative paleohydrological indicators, which could improve paleoclimatic reconstructions in Patagonia.  相似文献   

6.
Cyprideis torosa (Jones , 1850) is a very common brackish water ostracod of the German coasts, but, despite empty valves are found occasionally in surface sediments of some modern inland waters, C. torosa could not be found living in modern athalassic waters of Germany so far. During interglacial periods, including the Holocene, however, fossils of this species are quite common in Central Germany, at a distance of more than 300 km away from the coasts of the Baltic and North Seas. All 31 Quaternary localities with C. torosa known so far from Germany are documented. C. torosa is an indicator for brackish waters and widely used as index‐fossil in palaeosalinity reconstructions relying on water chemistry bound morphological changes (nodes, sieve‐pores). The comparisons imply a general underestimation of palaeosalinity in oligo‐ to mesohaline athalassic waters if using nodes and sieve‐pores of C. torosa as proxy. A water chemistry (ionic composition) driven morphological response is assumed instead one by salinity only. Palaeosalinity estimations for athalassic waters, relying on morphological variability alone, should therefore be used with caution. Palaeosalinity trends, however, can be detected. Distinguishing thalassic and athalassic sediments with C. torosa is possible by using the associated ostracod fauna as a discriminator. Regarding the ecology and distribution of C. torosa, permanent, brackish, and shallow water bodies under relatively warm conditions are required for its settlement. The source of the salt are brines originating from Zechsteinian or Triassic underground evaporites. Warm and relatively dry climates could enhance the process for such water bodies of becoming salty, a situation present in Holocene Central Germany. The occurrence of C. torosa can therefore be used for palaeoclimatological studies. The most probable migration path of this ostracod species to athalassic waters is by avian transport. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The current study presents the ostracod communities recovered from 26 shallow waterbodies in southern Kenya, combined with an ecological assessment of habitat characteristics. A total of 37 waterbodies were sampled in 2001 and 2003, ranging from small ephemeral pools to large permanent lakes along broad gradients in altitude (700–2 800 m) and salinity (37–67 200 µS cm?1). Between 0 and 12 species were recorded per site. Lack of ostracods was associated with either hypersaline waters, or the presence of fish in fresh waters. Three of the 32 recovered ostracod taxa, Physocypria sp., Sarscypridopsis cf. elizabethae and Oncocypris mulleri, combined a wide distribution with frequent local dominance. Canonical correspondence analysis on species–environment relationships indicated that littoral vegetation, altitude, surface water temperature and pH best explain the variation in ostracod communities. Presence of fish and water depth also influence species occurrence, with the larger species being more common in shallow waterbodies lacking fish. Based on Chao’s estimator of total regional species richness, this survey recovered about two-thirds (60–68%) of the regional ostracod species pool. Scanning electron micrographs (SEM) of the valve morphology of 14 ostracod taxa are provided, in order to facilitate their application in biodiversity and water-quality assessments and in palaeoenvironmental reconstruction.  相似文献   

8.
There are close to 2,000 subjective species and about 200 genera of Recent non-marine Ostracoda. Together, Cyprididae (1,000 spp.) and Candonidae (c. 550 spp.) represent more than 75% of the extant specific diversity; the remaining 11 families comprise the other 25% of the species. The Palaearctic region has the highest absolute non-marine ostracod diversity, followed by the Afrotropical. The Australian region has the highest relative endemicity. About 90% of the species and 60% of the genera occur in one zoogeographical region only. This means that all the biological mechanisms which lead up to efficient dispersal and which are present in at least part of the non-marine Ostracoda (e.g. brooding, drought-resistant eggs, parthenogenesis) have not induced common cosmopolitan distributions in ostracods. Several habitats are hotspots for ostracod diversity and endemicity. For example, it appears that the ancient lakes hold up to 25% of the total ostracod diversity. Other speciation-prone habitats are groundwater, temporary pools and Australian salt lakes; in the latter two instances, cladogenesis has often been paralleled by gigantism. The present ostracod diversity results from 9 to 12 separate invasions of the non-marine habitat, starting about 400 Myr ago. Genetic diversity can be very different in different species, mostly, but not always, related to reproductive mode. Guest editors: E. V. Balian, C. Lévêque, H. Segers & K. Martens Freshwater Animal Diversity Assessment  相似文献   

9.
A faunistic survey covering 25 sites in estuaries, coastal lakes and ponds along the west coast of South Africa between the Cape of Good Hope in the south and the Olifants River in the north was carried out in May 2014. The study aimed to establish a dataset with ecological and distribution data of ostracods and foraminifers for later palaeoenvironmental reconstructions. Canonical correspondence analysis showed that the distribution of the 19 foraminifer and 32 ostracod taxa was controlled mainly by habitat structure, but that specific conductivity (salinity) was best and solely described by the second axis, highlighting the usefulness of the two microfossil groups for salinity reconstructions. Habitat structure was demonstrated by the foraminifer species Trochamminita irregularis’ preference for stillwater areas of lakes. Sarscypridopsis aculeata and Sarscypridopsis glabrata were the dominant ostracod species in coastal ponds and lakes. However, their living distributions excluded each other, with S. aculeata preferring areas of lower salinity and S. glabrata dominating areas of higher salinity up to hyperhaline conditions in small, closed water bodies.  相似文献   

10.
Ostracod shells in surface sediments from Ulungur Lake (Xinjiang, China) belong mainly to Limnocythere inopinata as the dominant species, and Candona neglecta and Darwinula stevensoni as accompanying, less abundant taxa. Shells of an additional nine species were recorded only sporadically. The three most abundant ostracods have wide tolerance ranges in terms of salinity, substrate and water depth. The similarly recorded bivalve Pisidium subtruncatum, and the gastropods Gyraulus chinensis and Radix auricularia belong to the most tolerant representatives of the genera. The bivalve and gastropods, in addition to the ostracod assemblage, reflect the fact that Ulungur Lake has experienced strong lake level and salinity variations due to water withdrawal in the catchment and the counteracting diversion of river waters to the lake in recent decades. The substrate in Ulungur Lake is typically fine-grained, apart from the delta region of the Ulungur River channel, which is marked by relatively coarse-grained detrital sediments barren of ostracod shells. This channel was created 40 years ago to divert water to Ulungur Lake and support its local fisheries and recreational facilities. A reassessed Holocene ostracod record from the lake shows that a significantly higher salinity and lower lake level existed in the early Holocene before 6.0 ka in response to the regional climate. In contrast, a higher lake level and lowest salinity is inferred for the late Holocene period between ca. 3.6 and 1.3 ka before present. Afterwards, the lake level declined and salinity increased in response to regional moisture reduction, although conditions similar to the early Holocene lake status were not re-established. Our surface-sediment-derived data provide a baseline for analysis of future environmental variations due to global climate change and regional water management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号